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SUMMARY
Trauma is a leading cause of death and morbidity worldwide. Here, we present the analysis of a longitudinal
multi-omic dataset comprising clinical, cytokine, endotheliopathy biomarker, lipidome, metabolome, and
proteome data from severely injured humans. A ‘‘systemic storm’’ pattern with release of 1,061 markers,
together with a pattern suggestive of the ‘‘massive consumption’’ of 892 constitutive circulating markers,
is identified in the acute phase post-trauma. Data integration reveals two human injury response endotypes,
which align with clinical trajectory. Prehospital thawed plasma rescues only endotype 2 patients with trau-
matic brain injury (30-day mortality: 30.3 versus 75.0%; p = 0.0015). Ubiquitin carboxy-terminal hydrolase
L1 (UCHL1) was identified as themost predictive circulating biomarker to identify endotype 2-traumatic brain
injury (TBI) patients. These response patterns refine the paradigm for human injury, while the datasets pro-
vide a resource for the study of critical illness, trauma, and human stress responses.
INTRODUCTION

Trauma is a common cause of preventable death and the leading

etiology of death and disability in humans under age 55, resulting

in a huge global health burden.1 The current paradigms used to

explain the adaptive and pathologic host responses to severe

injury are the result of more than a century of studies of injured
This is an open access article under the CC BY-N
humans as well as model organisms, tissues, and cells.2 This

has yielded insights into organ- and system-specific features

of the consequences of severe injury, including neurohumoral

abnormalities,3 endotheliopathy and coagulopathy,4,5 hyperme-

tabolism and acidosis,6 systemic hyper-inflammation and

genomic storm,7,8 and multi-organ dysfunction.9 It has become

clear that similarly injured humans can follow very different
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clinical trajectories and outcomes and that the nature of the host

response can dictate outcomes.10,11 However, the lack of a

comprehensive and integrated picture of these response pat-

terns remains among the most important impediments to prog-

ress in the field.

Multi-omic analysis of large patient populations as a so called

‘‘deep cohort’’ can create a more comprehensive view of human

disease responses.12 The application of cross-platform omics

(e.g., genomics/transcriptomics/proteomics/metabolomics) at

the bulk (tissue or body fluid) and single-cell levels has begun

to provide insights into the central principles driving the patho-

genesis of infection-related critical illnesses (i.e., sepsis, severe

coronavirus disease 2019 [COVID-19]).13–18 However, studies

into infection-induced disease are challenged by the con-

founders of concomitant chronic diseases and an inability to

pinpoint the time of onset.19,20 The critical illness resulting from

trauma frequently involves otherwise young, healthy individuals,

and the time of onset of the inciting event is easily identified.

These unique features make trauma an ideal condition to define

events that take place during the dynamic evolution of humans

from a healthy state to critical illness using multi-omic data inte-

gration strategies.

Here, we analyzed a six-layer multi-omics dataset of trauma

patients that includes clinical, cytokine, endotheliopathy bio-

markers (ECs), lipidome, metabolome, and proteome longitudi-

nal information. The patients and plasma biobank were a subset

of the Prehospital Air Medical Plasma (PAMPer) trial,21 a pro-

spective multi-center randomized efficacy study of prehospital

allogeneic thawed plasma (TP) in injured humans transported

to trauma centers by air ambulance. The results demonstrated

that early TP administration significantly reduced 30-day mortal-

ity compared with standard care. The major goal for our study

was to identify the potential key drivers of the early and late out-

comes of severely injured, critically ill humans. We also lever-

aged the strong positive TP treatment effect to explore whether

TP modulated any of the putative drivers to provide insights into

the mechanisms of action of TP. The analysis and datasets pro-

vide an important resource for the study of critical illness,

trauma, and human stress responses.

RESULTS

Summary of study design, cohort details, and layers
To explore the features of the human response to severe injury,

we analyzed multi-omics datasets derived from two human

trauma cohorts. The primary cohort was derived from the

PAMPer trial,21 and the second cohort was a validation dataset

from a previously published cohort of 472 blunt trauma survivors

(trauma dataset 2 [TD2]).7 Metadata for both cohorts are shown

in Figure 1. Six distinct data layers were available for analysis

with longitudinal information shown by layer in Figure 1A. Data

layers from PAMPer patients, included clinical data (n = 501),

plasma ECs; n = 390), quantitative measurement of 21 circu-

lating inflammatory mediators (cytokines; n = 393), quantitative

lipidomics (n = 194), untargeted metabolomics (n = 194), and

multiplexed proteomics (n = 156) (Figure 1B; Figure S1). The

TD2 dataset was limited to clinical data (n = 472), cytokines

(n = 472), and untargeted plasma metabolomics (n = 86) (Fig-
2 Cell Reports Medicine 2, 100478, December 21, 2021
ure 1C). The distribution of patients by outcomes categorized

as resolving (intensive care unit [ICU] length of stay < 7 days),

non-resolving (ICU length of stay R 7 days or death after 72 h),

or early nonsurvivors (death < 72 h) across the data layers is

shown in Figures 1B and 1C. The patient makeup by multi-

omic datasets included either five data layers (n = 181) or six

data layers (n = 97) for PAMPer and three data layers (n = 86)

for TD2 (Figures 1B and 1C). There was also a broad distribution

of three levels of injury severity based on the injury severity score

(ISS 0–15, mild; ISS 16–25, moderate; ISS R 25, severe) in all

layers (Figures S2A and S2B). The 0 h time point indicates the

time of admission to the emergency department, which was

less than 1 h after injury for most patients (Figures S2C and

S2D). Prehospital transfusion of packed red blood cells and crys-

talloid were comparable among all outcome groups (Figures

S2C and S2D).

K-means clustering identifies seven distinct metabolite
modules that associate with outcomes
The clinical data, EC, cytokines, and lipidomic data for PAMPer

and all three layers for TD2 have been previously published.21–24

Here, we provide an overview of themetabolomic and proteomic

findings for the PAMPer cohort. Untargeted plasma metabolo-

mics was performed on 17 non-fasting healthy controls (HCs)

and 194 trauma patients at 0, 24, and 72 h after arrival to the hos-

pital. The non-fasting subjects serve as controls primarily for the

0 h time point. The demographic information of all patients in the

metabolome layer is shown in Table S1. A total of 899 metabo-

lites were detected in the PAMPer dataset, and a similar distribu-

tion of metabolite classes was seen across both datasets (n =

660), with lipids, amino acids, and xenobiotics comprising the

largest number (Figures S3A and S3B). There was excellent cor-

relation for metabolites quantified as part of clinical blood assays

(glucose, lactate, creatine, blood urea nitrogen [BUN], and bili-

rubin) and the measurements of these molecules in the metabo-

lomics assay (Figure S3C).

To visualize global differences by outcome and across time,

HC and patient-specific metabolomic profiles for the three time

points were projected onto uniform manifold approximation

and projection (UMAP) plots (Figure 2A).25 HCs were tightly clus-

tered and could be clearly distinguished from trauma patients.

The area encircled by the red line on the UMAP plots identifies

the time 0 h pattern associated with slow resolution or early

death (Figures 2A and 2B). A distinct pattern was also observed

at 24 and 72 h for non-resolving patients (encircled by the blue

line). The metabolomic patterns were further resolved by K-

means clustering, with k = 7 (Figure 2C; Figures S4A and S4B).

These seven modules varied by both time and patient outcomes

(Table S4). The general patterns from the resolving and the non-

resolving outcomes were confirmed in the TD2 dataset (Fig-

ure 2D). Striking differences in the metabolite patterns were

observed across modules. Module 1, which represented metab-

olites that were low in HCs and at time 0 h, were elevated at 24 h

and to a much greater degree in non-resolving patients. Module

2, also low in HCs and time 0 h, increased in non-resolving pa-

tients at 72 h. Modules 3 and 4 were low in HCs, but showed a

dramatic increase at time 0 h, especially in the patient groups

with the worst outcomes. The increase in module 3 metabolites



Figure 1. Overview of study design and cohort details
(A) Scheme illustration of data layers showing longitudinal sampling of trauma patients in the exploration cohort (PAMPer, top panel) and validation cohort (TD2:

bottom panel). EC, endothelial cell; her, electronic health record.

(B and C) Distribution of patients for the exploration cohort (B) and validation cohort (C) by data layer, number of patients, and outcome.
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in early nonsurvivors was especially obvious. Remarkably, the

levels of all metabolites represented in modules 3 and 4 returned

to the low baseline levels observed in HCs by 24 and 72 h after

admission. Modules 6 and 7 were higher in HCs. Levels of these

metabolites were lower in trauma patients at time 0 h and later.
The large number of metabolites in module 5 had no distinguish-

able patterns related to outcome or time. The relative changes

based on average Z scores for the metabolites in all 7 modules

are shown for both PAMPer and TD2 datasets in Figures 2E

and 2F, confirming the patterns observed in the heatmaps.
Cell Reports Medicine 2, 100478, December 21, 2021 3



Figure 2. Global temporal patterns within the circulating metabolome based on patient outcomes

(A and B) Uniform manifold approximation and projection (UMAP) plots show the distribution of healthy controls (HCs; n = 17) and patients with trauma (n = 194).

All subjects (A) and separated by time and outcome (B). Numbers of subjects in each group: 17 (HCs), 41 (resolving 0 h), 102 (non-resolving 0 h), 51 (early

(legend continued on next page)
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Similar patterns across all seven modules were observed when

patients were segregated by injury severity, with greater injury

severity corresponding to worse outcomes (Figures S3D and

S3E).

The top metabolic and biosynthetic pathways represented in

each module are shown in Figure 3A. We also provide a list of

all the metabolites in the seven modules (Table S4). Modules 1

and 2were highly represented by lipids (66.7 and 34.8%, respec-

tively), while modules 3 and 4 included molecules from all major

subclasses (Figure S3A). Module 5 was mostly xenobiotics

(49%) that mainly consisted of drugs unrelated to trauma man-

agement (Figures S5A and S5D). Many of the metabolites in

modules 6 and 7 were plant- and xanthine-related xenobiotics,

suggesting that the lower levels in trauma patients represents

the fasting state that is part of routine clinical management (Fig-

ures S5A and S5D). To demonstrate the patterns of representa-

tive metabolites from modules 3 and 4, energy metabolites

comprising the tricarboxylic acid (TCA) cycle and glycolysis/

gluconeogenesis-related carbohydrates were projected onto

heatmaps and line plots (Figures 3B and 3D). Most of these

metabolites were higher at 0 h, with the highest levels in early

nonsurvivors. The levels of five metabolites (malate, succinate,

citrate, fumarate, and cis-aconitate) from the TCA cycle were

further validated in a quantitative assay (Figures S5B and S5C).

In addition, multiple metabolic intermediates from lipid and

amino acid metabolism were markedly elevated in the non-

resolving patients and early nonsurvivors at 0 h compared with

HCs (Figure 3A; Table S4). There were also a small number of xe-

nobiotics enriched in modules 1–4, and many of these were

related to anesthetics or antibiotics (Figures S5E–S5F).

We next assessed the relative levels of metabolites across spe-

cific pathways represented in modules 1 and 2. Heatmaps for the

polyunsaturated fatty acids (PUFAs), corticosteroids, and acyl

cholines demonstrated an increase in only a subset ofmetabolites

from these pathways, suggesting an active release and re-utiliza-

tion of certain lipids, especially at 24 h (Figures 3C and 3D). The

higher levels of stress hormones, cortisol and cortisone, at 24

and 72 h may reflect an ongoing stress response in patients

slow to resolve. Numerous choline-bound fatty acids were higher

in resolving patients, suggesting an active process involving lipid

release in the recovery phase. Interestingly, we also identified two

carbohydrates associatedwith protein glycosylation, glucuronate

and mannose, in module 1 and module 2 at 24 and 72 h. These

were higher in the non-resolving patients, which may reflect a

change in the turnover of glycoproteins (Figures 3B and 3D).
nonsurvivors 0 h), 41 (resolving 24 h), 101 (non-resolving 24 h), 41 (resolving 72

distribution from non-resolving patients and early nonsurvivors, and area encircl

(C) Heatmap shows relative levels of individual metabolites for HCs and trauma pa

Numbers of subjects in each group are same as in (A). Rows are clustered by K-

(D) Heatmap shows the validation cohort (TD2) representing the metabolites in c

each group: 61 (resolving 0 h), 48 (non-resolving 0 h), 60 (resolving 24 h), 48 (non

(E and F) Comparison of signature scores for the 7metabolite modules (from A) in

group from PAMPer dataset are same as in (A). Numbers of subjects in each gro

sampling time points. The y axis is labeled as Z score. Data are shown as me

nonsurvivors and resolving pattern based on Kruskal-Wallis (K-W) test among 3 g

Benjamini-Hochberg method: #, < 0.05; ##, < 0.01; ###, < 0.001. Asterisks indic

resolving and non-resolving groups. Pairwise comparisons were conducted by es

method: *, < 0.05; **, < 0.01; ***, < 0.001.
Dramatic perturbation of the plasma proteome
triggered by severe injury
We next analyzed the dynamic patterns in plasma protein levels

(n = 1,305) within a subset of PAMPer patients (n = 151; Table

S2). To examine the reliability of the proteomic analysis, we corre-

lated the values for six highly upregulated inflammatorymediators

in theplasmabetween thequantitativeLuminexplatform (cytokine

layer) and the Somascan proteomic analysis (proteome layer).

There was high correlation for all six cytokines/chemokines (inter-

leukin-6 [IL-6], IL-8, IL-10, MCP-1, MIG, and IP10; Figure S6A).

An assessment of the global changes in plasma proteomics

revealed that major differences were time, outcome (Figure 4A),

and injury severity associated (Figures S6B and S6C). There was

an obvious increase of most proteins (n = 880) in the circulation

early that was notably greater in patients that weremore severely

injured or that had a slower clinical recovery (Figure 4A; Figures

S6B and S6C; Table S6). However, a smaller subset of distinct

proteins (n = 95) was higher at 72 h after injury. Pathway enrich-

ment analysis for the upregulated proteins at 0 h indicated that

elevated proteins are constituents of many intracellular path-

ways such as apoptosis, necroptosis, IL signaling, interferon

(IFN) signaling, and kinase signaling (Figure 4B).

Next, we assessed changes in circulating proteins by class as a

function of time and outcome. A subset of proteins within each

class were annotated by their families (Figures 4C–4J; Table S8)

and revealed a near indiscriminate release of cellular proteins

early. Proteins that fit this pattern associated with cell stress and

death (e.g., S100/heat shock protein [HSP]/Bcl2/cathepsin/cas-

pase/HMGB family; Figure 4C), intracellular constituents (e.g.,

membrane: annexin/CD surface proteins; cytoplasm: EIF family;

ribosome: RPS/L family; mitochondrial: CYP enzyme family;

nuclei: histones; Figure 4D), inflammatory mediators (e.g., IL/

CCL/CXCL/tumor necrosis factor [TNF]/INF families; Figure 4E),

receptors for inflammatory mediators (e.g., IL/TNF/IFN receptor

families; Figure 4F), intracellular enzymes (kinases) (e.g.,

mitogen-activatedprotein kinase [MAPK]/AKT/GSK/PTK families;

Figure 4G), and endothelial cell injury- and adhesion-related mol-

ecules (e.g., VEGF/PDGF/ICAM/VCAM/CDH families; Figure 4H).

Levels of most of these proteins dropped by 24 h, and a separate

and smaller subset of proteins became elevated at 72 h, often

higher in patients with slow recovery. In striking contrast, most

of the proteins from the apolipoprotein, coagulation, fibrinolysis,

and complement pathways showed outcome-specific patterns

across time (Figures 4I and 4J). Levels of many of these proteins

were low at 0 h and became markedly elevated by 72 h, and to a
h), and 101 (non-resolving 72 h). Area encircled by red line shows time 0 h

ed by blue line shows 24 and 72 h distribution of non-resolving patients.

tients in the exploration cohort, grouping by outcome and sampling time points.

means clustering (k = 7).

ommon with the exploration (PAMPer) cohort from (C). Numbers of subjects in

-resolving 24 h), 52 (resolving 72 h), and 37 (non-resolving 72 h).

the exploration cohort (E) and validation cohort (F). Numbers of subjects in each

up from TD2 dataset are same as in (D). Patients are grouped by outcome and

an ± SEM. Hashes indicate statistical significance between patients of early

roups at 0 h with post hoc analysis of Dunn test. The p value was adjusted by

ate statistical significance based on 2-way AVOVA of time-series analysis of

timatedmarginal means test. The p value was adjusted by Benjamini-Hochberg
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Figure 3. Metabolite patterns by module and over time after severe injury

(A) Heatmap shows the enrichment metabolites from the indicated pathways (excluding xenobiotics) in the 7metabolite modules. +++, Ro/e > 2; ++, 1.2 < Ro/e <

2; +\�, 0.8 < Ro/e < 1.2; –, 0.5 < Ro/e < 0.8; —, Ro/e < 0.5.

(B) Heatmap shows temporal pattern of selected metabolites from energy and carbohydrate pathways. Patients are grouped by time point and outcome.

Numbers of subjects in each group: 17 (HCs), 41 (resolving 0 h), 102 (non-resolving 0 h), 51 (early nonsurvivors 0 h), 41 (resolving 24 h), 101 (non-resolving 24 h), 41

(resolving 72 h), and 101 (non-resolving 72 h).

(legend continued on next page)
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greater degree in patients that resolved early (e.g., APOE/APOD/

C2/C5/F5/F9). It is notable that proteins associated with fibrino-

lysis (e.g., plasmin/tissue plasminogen activator [tPA]/urokinase

plasminogen activator [uPA]; Figure 4J) were higher in the

slower-resolving patients at time 0 h and these dropped by 72 h.

Taken together, our global analysis of protein levels reveals a

broad early release of cellular constituents especially prominent

in patients that recover slowly. The relative paucity of apolipopro-

teins, coagulation factors (CFs), and complement factors early af-

ter injury may represent consumption due to pathway activation.

Distinct severity-associated systemic storm and
coagulopathy-associated massive consumption
patterns resolved by integrated multi-layer analysis
To further identify the dominant features in the hyper-acute phase

of trauma,we conducted an integrated correlation analysis for pa-

tients (n = 88) with all six data layers at 0 h in the PAMPer dataset.

All variables from the six data layers at 0 h were correlated with

injury severity (ISS), lactic acidosis (lactate levels), or coagulation

abnormalities (inverse correlation with INR). A total of 1,061

markers were correlated with ISS or lactate, and 892 markers

were inversely correlated with INR (false discovery rate [FDR] <

0.05). Many of the markers from the metabolome layer showed

a similar pattern in the TD2 dataset. The top 200 correlated vari-

ables each for ISS, lactate, and INR were used to build a correla-

tion heatmap (Figure 5A). Two clear patterns emerged, one large

set of variables positively associated with ISS and lactate and

another set of variables inversely correlated with INR. Based on

our biologic interpretation, we labeled the former pattern ‘‘sys-

temic storm’’ to reflect the extensive simultaneous release of

cellular constituents into the circulation in association with injury

severity. Because the second pattern reflected factors lost from

the circulation with increasing INR, we named this pattern

‘‘massive consumption.’’ The systemic storm pattern included

subset 1 cytokines (IL-6, IL-8, IL-10, MCP-1/CCL2, MIG/

CXCL9, and IP-10/CXCL10), EC injury biomarkers (syndecan-1,

sVEGFR, and thrombomodulin [TM]), tissue-specific injury pro-

teins (brain: glial fibrillary acid protein [GFAP]; heart: troponin

[TnT]; muscle: ceatine kinase B [CKB]; liver: cytochrome P450

oxidoreductase [CYPOR]; kidney: cystatin family), cell compart-

ment components (nucleus: histones, TATA-box-binding protein

[TBP], histone-complexed DNA [HC-DNA]), cell stress and death

proteins (HSP, S100, and Bcl2 families), IFNs (IFN alpha, beta,

gamma, and lambda), energy substrates (glucose, lactate, pyru-

vate, and ribitol), and metabolic intermediates (glycerol-3-phos-

phate). The massive consumption pattern consisted of lipids

(triacylglycerol [TAG], diacylglycerol [DAG], and cholesterols),

lipid transportation proteins (APOA), complement factors, CFs,

serpins, andKalikrein-Kallistatin (K-K) systemenzymes.Wesepa-
(C) Heatmap shows temporal pattern of selected metabolites from PUFA and cort

of subjects in each group is same as in (B)

(D) Comparison of 8 selected representative metabolites from trauma response

compared with HCs. Numbers of subjects in each group are same as in (B). Data

patients of early nonsurvivors and resolving pattern based on K-W test among 3

Benjamini-Hochberg method: #, < 0.05; ##, < 0.01; ###, < 0.001. Asterisks indicat

resolving and non-resolving groups. Pairwise comparisons were conducted by es

method: *, < 0.05; **, < 0.01; ***, < 0.001.
rately analyzed the correlation of three representative systemic

storm markers (histone 1-2 [H1-2], HSPB1, and IFNL1) with ISS

(Figure 5B). A sharp upward slope for all three was observed to

correlatewith ISSbetween 0 and 25.Above 25, the ISS score typi-

cally accepted as the threshold between moderate and severe

injury, the correlation curves flattened. Plasminogen, uridine,

and C3b from the massive consumption cluster markedly drop-

ped, with INR values between 0.9 and 1.5, followed by a flattening

in the curves at INR above 1.5. Thus, there are two dominant and

dramatic patterns that emerge in the circulation within h of injury:

one highly sensitive to the degree of injury and resulting in in-

creases in hundreds of circulating metabolites and proteins,

and the other reflecting a loss of plasma constituents that corre-

lates with the degree of coagulopathy.

To explore the potential source of released circulating factors in

thesystemicstormpattern,weselected30 representativemarkers

and ranked these based on their correlationwith plasmaHC-DNA,

amarker of necrotic cell death,26 at 0 h (Figure 5C). Histones (H1-2

and H2AW), HMGB1, the transcription factors EIF4A3 and TBP,

and the chemokine CXCL5 were highly correlated with HC-DNA

(r > 0.6), suggesting that these factorsmight be released passively

during lytic cell death. The IFNs (IFNL1, IFNA2, IFNB, and INFG),

proinflammatory cytokines/ chemokines (IL-10, IL-6, IL-8, MCP-

1/CCL2, and IP10/CXCL10) were moderately associated with

HC-DNA (0.3 < r < 0.6), consistent with a mixed passive-plus-

active release pattern. The energymetabolites and carbohydrates

(lactate, malate, glucose, and succinate) were weakly correlated

with HC-DNA, indicating that the source of their release may not

be lytic cell death. We next conducted a network-based correla-

tion analysis for both the proteins and metabolites from the injury

severity-related systemic storm pattern. The top 20 factors that

correlated with inflammation (based on IL-6), injury severity (ISS),

or lytic cell-death (HC-DNA) showed excellent inter-category cor-

relation (Figure 5D). However, the top 20 metabolites from the

energy (based on succinate) or carbohydrate (based on lactate)

categories were highly correlated with each other, but weakly

correlatedwith inflammation, ISS,orcell-death-associated factors

(Figure5D). Taken together, thesefindings indicate that themetab-

olites and proteins released in systemic storm pattern may reflect

two distinct biological processes triggered by severe injury.

Resolution and non-resolution signatures at 72 h
aligned with clinical recovery
We next conducted a similar correlation analysis using 72 h data

from five layers (clinical, cytokine, lipidome, metabolome, and

proteome; n = 51) to explore the patterns related to recovery.

Here, we correlated all factors from the five layers with length

of stay in intensive care unit (ICU LOS), a parameter that corre-

lates with patient recovery.27 For the patients that died beyond
icosteroid families. Patients are grouped by time point and outcome. Numbers

modules 1–4. Patients are represented by outcome and time point and are

are shown as mean ± SEM. Hashes indicate statistical significance between

groups at 0 h with post hoc analysis of Dunn test. The p value was adjusted by

es statistical significance based on 2-way AVOVA test of time-series analysis of

timatedmarginal means test. The p value was adjusted by Benjamini-Hochberg
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72 h (n = 9), the ICU LOSwas set at 30 days, the trial observation

endpoint. All variables positively (n = 176) or negatively (n = 52)

correlated with ICU LOS (FDR < 0.05) were selected to build a

correlation heatmap (Figure S7A). Variables positively correlated

with ICU LOS were defined as non-resolution signatures, and

those negatively correlated with ICU LOS were defined as reso-

lution signatures. Interestingly, the non-resolution signatures

included many factors seen in the systemic storm pattern at

0 h (e.g., GFAP, IL-6, and IL-8). However, this large group also

consisted of many unique metabolites, lipids, and protein fam-

ilies that were highest at 72 h (i.e., acute-phase proteins: soluble

ST2; chemokines: CXCL13 and CXL19; growth factors: SCF-a

[stem cell growth factor alpha] and SDF-1 [stromal cell-derived

factor-1]; hormones: resistin and glucagon; bacteria-derived

metabolites: imidazole lactate; M2 macrophage associated:

CD206 and MMP12; and lipids from the lipid reprogramming

signature (LRS) defined in our previous analysis of the

lipidomics of critical illness.23 The resolution signature included

factors also identified in the massive consumption pattern from

0 h (e.g., complement components, CFs, and K-K system pro-

teins). It is notable that there were differences in the specific pro-

teins from these families between the 0 and 72 h time points. We

also observed many lipids (lyso-phospholipids, cholesterol es-

ters, and sphingolipids) in the resolution signature cluster. We

have previously shown that elevated sphingolipids (e.g., sphin-

gosine-1-P) associate with better outcomes after trauma.24

Representative markers for both signatures were found to have

a linear correlation with ICU LOS (Figure S7B). Similar to the anal-

ysis at 0 h, correlation of top biomarkers with histone (H1-2), a

protein known to be released during lytic cell death,26 implicated

both passive and active processes (Figure S7C). However, in

contrast to the 0 h pattern, the release of factors across cate-

gories of molecules appears to be more interconnected, indi-

cating there may be well-coordinated processes during the later

adaptive response post injury (Figure S7D).

Early systemic storm and massive consumption
patterns associatewithmortality and delayed resolution
To identify the patterns within the data layers that most closely

associated with outcomes, we constructed signature scores

that captured the major findings from each data layer (Table

S7). The proteome layer was excluded to optimize patient

numbers and to avoid redundant information with the cytokine

and EC layers. For mortality, we observed two clear patterns:

one associated with the systemic storm (ISS, Glasgow Coma

Scale [GCS], severe head injury, subset 1 cytokines, EC bio-

markers, modules 3 and 4 metabolites), and the other with

massive consumption (INR, coagulopathy, transfusions in the
Figure 4. Global temporal pattern of circulating proteome associated

(A) UMAP plot show the distribution of proteome in patients with trauma, split by

proteome, and each dot represents one sample. Here, the distance between each

subjects in each group: 59 (resolving 0 h), 92 (non-resolving 0 h), 56 (resolving 2

(B) Main Gene Ontology (GO) pathways represented by the top 880 proteins ide

(C–J) Heatmap shows temporal and outcome-based patterns of circulating pro

Numbers of subjects in each group are same as in (A). Cell stress and death (C), i

mediators (F), enzymes (kinases) (G), cell adhesion (H), complement factors and a

gene symbols were applied for available proteins (Table S5).
first 24 h, and lipid concentration) (Figure 6A). The data features

that were associated with either systemic storm or massive con-

sumption had a strong internal correlation but exhibited weak in-

ter-pattern correlation (Figures 6A and 6B). Interestingly, both

patterns were positively correlated with 3- and 30-day mortality.

While there was a strong positive correlation among subset 2

(lymphocyte-related) and subset 3 (reparative) cytokines, these

mediator subsets were negatively correlated with EC bio-

markers, metabolite release, and clinical coagulopathy.

We next explored the importance of each variable within the

four layers (cytokines, EC, metabolome, and lipidome) to predict

early death using weighted rankings based on five statistical/ma-

chine learning methods (receiver operating characteristic [ROC]

curve, logistical regression with lasso regularization, logistical

regression with elastic-net regularization, SIMPLS algorithm

from partial least-squares regression, and random forest). MIG,

syndecan-1, TAG50:4-FA20:4, and N-acetylaspartate (NAA)

were the most important variables from the cytokine, EC, lipi-

dome, and metabolome layers, respectively (Figure 6C). A logis-

tical regression model with elastic-net regularization was applied

for prediction of early mortality. Of the five data layers, themetab-

olome layer contained the information with the highest area under

the curve (AUC) for early mortality (AUC value = 0.798). When in-

formation from all five layers was included in the model, the AUC

value reached 0.867 for early mortality (Figure 6D). The combina-

tion of fewest individual components that had the highest AUC

incorporated GCS, INR, and NAA (module 3 metabolite) (AUC

value = 0.848); adding MIG/CXCL9, syndecan-1, and TAG50:4-

FA20:4 increased the AUC value to 0.858 (Figure 6E). Taken

together, this predictive modeling shows that sensitive indicators

of brain injury/response (GCS and NAA) and coagulation abnor-

malities (INR) have the closest association with early death.

To explore the relationship between the systemic storm fea-

tures and non-resolution-related factors across five data layers

(excluding the proteome layer), we conducted a correlation anal-

ysis using data from all three time points in patients surviving to

72 h (Figures S8A and S8B). There was a strong correlation

among the major data components across time (modules 1, 3,

and 4 metabolites at 24 and 72 h; modules 1, 3, and 4 metabo-

lites at 0 h; EC biomarkers at 0 and 24 h; and subset 1 cytokines

at all 3 time points). There was also a ‘‘lead effect’’ in that the pa-

tients exhibiting a higher magnitude of perturbation at 0 h were

likely to have a relative higher magnitude response at 24 or 72

h. The overlapping factors within the early (0 h) and late adverse

patterns (24 or 72 h) also positively correlated with late outcomes

(ICU LOS and nosocomial infection [NI]; Figures S8A and S8B).

We next explored the importance of factors for predicting non-

resolution based on the 0 h data only (Figure S8C). The lipidome
with outcomes

outcome and sampling time points. This map is a 2D projection of the whole

dot reflects the difference of the proteome between two samples. Numbers of

4 h), 90 (non-resolving 24 h), 23 (resolving 72 h), and 53 (non-resolving 72 h).

ntified at time 0 h, resolving versus non-resolving patients.

teins by protein families. Representative proteins are labeled on the y axis.

ntracellular constituents (D), inflammatory mediators (E), receptors for immune

polipoproteins (I), and coagulation factors and fibrinolysis regulators (J). Entrez
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layer was excluded since it did not contain data that contributed

to outcome prediction. Interestingly, MCP-1, syndecan-1, and

NAA were the most important variables for predicting slow reso-

lution. As shown above, the latter two were also themost predic-

tive variables for early death. The clinical, cytokine, and EC injury

data layers had higher AUC for non-resolution than the metabo-

lome layer (Figure S8D). Using a combination of single variables

from the clinical (GCS), cytokine (MCP-1), EC injury (syndecan-

1), and metabolomics (NAA) data layers reached an AUC value

of 0.851 (Figure S8E) andmatched the AUC value obtained using

all variables within the data layers (AUC = 0.849; Figure S8D).

Taken together, these findings indicate that features of the

multi-omic analysis can be used to identify individual variables

that most closely associate with distinct adverse outcomes

and that predictive variables may differ by outcome.

Multi-layer characterization-derived patient endotypes
associate with distinct clinical trajectory
To test whether the multi-layer data obtained at time 0 h would

be useful to identify clinical trajectory-related endotypes, we

subjected the factors positively associated with the systemic

storm (Figure 5A) along with subsets 2 and 3 cytokines to

consensus K-means clustering (Figure 7A). This yielded two ma-

jor patient clusters designated as endotype 1 (E1; n = 91) and

endotype 2 (E2; n = 82) that were independent of brain injury (Fig-

ure 7A). E1 positively associated with subsets 2 and 3 cytokines

and negatively with EC injury biomarkers, subset 1 cytokines,

and modules 3 and 4 metabolites and exhibited significantly

lower 30-day mortality (Figure 7B). On the contrary, E2 patients

were positively associated with higher levels of EC injury bio-

markers, subset 1 cytokines, and modules 3 and 4 metabolites

and much higher mortality than E1 patients (p = 0.00048). In

fact, endotype aligned better with 30-day mortality than

grouping patients based on ISS severity (Figure 7B; Figure S9A).

Multi-variable Cox regression analysis further suggested that en-

dotype, coagulopathy, and brain injury, but not ISS, were inde-

pendent risk factors for mortality (Figure S9B). Prehospital TP

administration was the only independent factor positively asso-

ciated with survival (Figure S9B).

Prehospital TP administration only benefits the E2-TBI
subgroup
We previously reported that prehospital TP administration pro-

vided a survival benefit to patients with traumatic brain injury

(TBI).28 We next sought additional insight on the characteristics

of the patients that benefitted from TP administration. Four sub-

groups based on endotype and the presence or absence of TBI
Figure 5. Cross-platformplasmamulti-omics data integration reveals p

phase

(A) Correlation heatmap incorporating the top features in 88 patients that correlate

or INR) at time 0 h. The variables were derived from all six data layers, and the cor

emerged: one positively associated with ISS (systemic storm) and the other inve

(B) Three systemic storm variables were correlated with ISS, and three massive

(C) Ranking of 30 variables in systemic storm pattern based on the correlation

coefficients.

(D) Five correlation nodes (20 variable each), shown as circle plots, were constr

HC-DNA, lactate, and succinate. Lines between two nodes indicate strong corre
were identified. As shown in Table S3, E1-NBI (no brain injury)

comprised lower-injury-severity patients without brain injury;

E1-TBI patients were more likely to have isolated TBI or mild

non-brain injury; E2-NBI patients had severe injury, but without

TBI; and the E2-TBI group included TBI patients with moder-

ate-to-severe non-brain injury. In dramatic effect, prehospital

TP only improved survival in the E2-TBI group, with a 69% risk

reduction (44.6% net reduction in 30-day mortality; log rank

p = 0.0015; hazard ratio [HR] = 0.31; 95% confidence interval

[CI]: 0.12–0.81; Figures 7C and 7D).

We next explored the potential mechanisms of the selective

protective effect of TP on TBI patients. As expected, prehospital

TP was associated with lower admission INR in both NBI and TBI

than in patients that received standard of care (Figure S9C). Inter-

estingly, we found that TP seemed to have trend (p = 0.14) toward

mitigating the magnitude of clinical coagulopathy in TBI patients

(Figure S9E). We next assessed the impact of prehospital TP on

EC/cytokine, lipidomic, metabolomic, and proteomic patterns

as well as levels of brain-specific injury biomarkers in the circula-

tion (GFAP and ubiquitin carboxy-terminal hydrolase L1

[UCHL1]). Patient groups are shown based on treatment with or

without TBI at 0 and 24 h (Figure 7F; Figure S9D). Prehospital

TP had limited effects on cytokines or EC injury markers in both

TBI and NBI patients. In addition, no obvious alterations in

GFAP and UCHL1 levels were observed in TBI patients between

the two treatment arms in either E1 or E2 patients (Figures S9F

and S9G). While no consistent change in global patterns of

metabolites emerged with TP, there was a distinct change in

the patterns of lipids that was unique (higher levels of lipids) for

TBI patients that received prehospital TP at both 0 and 24 h (Fig-

ure S9D; Table S9). The presence of TBI associated with a

marked increase in the levels ofmany proteins that were elevated

only at the 0 h time point (a representative subset shown in Fig-

ure S9D). Most of these proteins were associated with cell

death/stress, and this was not impacted by prehospital TP. How-

ever, there was also a selective increase in 41 proteins observed

only in the TBI patients that received TP (Figure 7E). Of note, this

plasma effect was not observed in NBI patients receiving TP, and

the differences were observed at both 0 and 24 h, demonstrating

that the TP effect on levels of these proteins persisted beyond

admission. Proteins in this group included CFs and complement

factors as well as several CCL chemokines and members of the

serpin family, among others. Thus, the administration of TP to

E2 patients with TBI resulted in an increase in circulating levels

of subsets of lipids and proteins that persisted to 24 h.

We provide a brief summary of our major findings on the po-

tential mechanisms of the prehospital TP effect in Figure 7F.
attern of systemic stormandmassive consumption in the hyperacute

ISS or lactate of inversely correlate with INR (200 features each for ISS, lactate,

relations were based on Spearman correlation coefficients. Two major patterns

rsely correlated with INR (massive consumption).

consumption variables were correlated with INR.

with the necrosis marker HC-DNA; r values derived as Spearman correlation

ucted based on correlation to a lead feature for network as follows: IL-6, ISS,

lation (r > 0.6).
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We speculate that E2-TBI patients may have a pattern of coagul-

opathy that is sensitive to correction by early TP administration.

This effect is not observed in E2-NBI patients, despite the early

correction of the INR. The differential response of E2-TBI pa-

tients observed through this multi-omic analysis of plasma in-

cludes a preservation of plasma lipids and CFs and complement

factors. Whether TP has a direct benefit to brain-injury-specific

responses requires more evidence.

Early stratification of patients to identify those most
likely to benefit from early TP
Because it is not routine to carry TP in the field, due to theexpense

and challenging logistics, there would be value to the develop-

ment of point-of-care diagnostics to identify patients that are

highly likely to benefit from early administration of TP. Therefore,

we sought to build a classifier for early stratification using 2

brain-injury-specific biomarkers, 21 cytokines, and 7 EC injury-

relatedbiomarkersmeasured at 0 h (n= 173 traumapatients).Me-

dian value was used to impute missing data of GFAP and UCHL1

for TBI (n of missing data = 9) or NBI (n of missing data = 72) pa-

tients, respectively. We adopted a two-step machine learning

approach based on feature selection followed by classification

using the down-selected features. We used the standard-of-

care patient subset as a training dataset and the patients in TP

armas the test set. The top selected features by all models (accu-

racy > 0.8) in each subgroup were UCHL1 (brain-specific

biomarker), sydencan-1 (EC biomarker), IL-17A (subsets 2 and 3

cytokine), and IP10/CXCL10 (subset 1 cytokine) (Figure S10A).

We next built three models for predicting patients likely to

benefit from TP (E2-TBI subgroup) by logistic regression that

included the following: (1) systemic biomarkers only: synde-

can-1, IP10, and IL-17A; (2) brain-specific marker only:

UCHL1; and (3) a combination of (1) and (2): UCHL1, synde-

can-1, IP10, and IL-17A. We found that the brain-specific

biomarker UCHL1 alone had an excellent predictive value in

both the training and test datasets (AUC value of training set:

0.915; AUCof test set: 0.940; Figures S10B and S10C). The com-

bination of 3 systemic biomarkers (syndecan-1, IP10, and IL-

17A) had a lower AUC value than UCHL1 (AUC of training set:

0.829; AUCof test set: 0.775; Figures S10B and S10C). The com-

bination of UCHL1 with the three systemic biomarkers slightly

improved the prediction value compared with UCHL1 alone

(AUC of training set: 0.951; AUC of test set: 0.958; Figures

S10B and S10C). These data suggest that early measurement

of the brain-specific biomarker UCHL1 identifies patients with

brain injury and also accurately identifies patients that could

benefit from early TP administration.
Figure 6. Integrated analysis of mortality-related signatures in the hyp

(A) Correlation heatmap that incorporates data subsets from five data layers at tim

lipids represented by total plasma lipid concentration were generalized into in

mortality at 3 or 30 days. Variables are grouped by the data layers.

(B) Correlation circle diagram using the variables from Figure 6A demonstrating

(C) Identification of the variables from the EC+cytokines, lipidome, and metabol

machine learning tools (glm, logistical regression with lasso regularization; glmne

partial least-squares regression; rocc, ROC curve) were applied to the four data la

of the correlation with mortality.

(D and E) Areas under the curve (AUCs) were calculated for the data layers (D) or h

the clinical data layer.
DISCUSSION

In this study, we present a comprehensive characterization of the

global features of the human response to severe injury by plasma

multi-omic analysis. This permitted an exploration of the dynamic

patterns in circulating biomolecules that associate with clinical

trajectories after severe injury. We identified two early molecular

patterns—systemic storm and massive consumption—associ-

ated with early mortality and two late patterns (non-resolution

and resolution signatures) associated with rate of recovery. The

systemic storm pattern reveals the molecular breadth and level

of the systemic release of cellular constituents that immediately

follows severe injury, a pattern that associates with injury severity

and outcomes, yet rapidly resolves by 24 h. Just as biologically

interesting is the immediate disappearance from the circulation

of lipids23 and apolipoproteins as well as proteins that make up

the proteolytic cascades of the coagulation, complement, and

K-K systems revealed in the massive consumption pattern. The

identification of outcome and treatment-responsive human injury

endotypes yielded both novel biomarkers and biological insights.

We show that the presence of TBI in E2 patients markedly

changes the human response to early TP and that the brain injury

biomarker UCHL1 could be an excellent biomarker for the identi-

fication of patientsmost likely to benefit from early TP. The correl-

ative biomarkers we identified from across the data layers can

serve as a guide for precision-based strategies in the early phases

of trauma care. The biological insights from our analysis have the

potential to identify injury-specific therapeutic targets.

Early increases in circulating cell-death-related damage-asso-

ciated molecular patterns (DAMPs),29–33 endothelial injury

markers,34 proinflammatory cytokines/chemokines,7 and

acidosis-related metabolites35,36 have been previously shown in

injured humans. Our current findings indicate that this accumula-

tion of cellular constituents extends well beyond a select fewmol-

ecules identified to date37 to 1,061 markers inclusive of nuclear

proteins, inflammatory mediators and their receptors, cellular ki-

nases, energy substrates, amino acids, and carbohydrates. We

estimate that our observations expand the knowledge on circu-

lating biomolecules that change in human trauma by approxi-

mately 10-fold over those previously identified.38 While some of

these biomolecules have been shown to regulate host responses,

most have not been studied for their biological activity in systemic

responses. Our findings also suggest that the release of many of

thesemolecules is the result ofbothpassive andactiveprocesses.

However, not all major classes of biomolecules increased in the

circulation early after injury. Most notable is the drop in essentially

all classes of circulating lipids at time 0 h.23
er-acute phase

e point 0 h (n = 173). Cytokine subsets 1–3, metabolite modules 3 and 4, and

dividual scores. The r Spearman correlation coefficients were calculated for

the positive and negative correlations between data layer features.

ome data layers that correlate the most with 30-day mortality. Five statistical/

t, logistical regression with elastic-net regularization; rf, random forest, simpls,

yers (EC and cytokines data were combined) and ranked based on the strength

ighest-ranking features from (C) alone or in combination with GCS and INR from
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Trauma-induced coagulopathy (TIC) is strongly associatedwith

earlymortality after trauma.39,40Here,we identifiedamassivecon-

sumption pattern that inversely correlated with INR in the hyper-

acute phase post-trauma. This fits with prior observations and

the characterization of ‘‘early TIC’’ as being hypo-coagulable.41

Manymolecules are involved in this process (i.e., CFs, K-K system

proteins, complement, and apolipoproteins/complex lipids)

through inter-related pathways. However, we found that plasma

levels of these molecules only weakly correlated with hyperfibri-

nolysis-related proteins in the systemic storm pattern, suggesting

that these are independent biological processes or weakly con-

nected pathways. Overall, our observations support the concept

of well-organized coagulation-complement crosstalk,42–44 but a

weaker association between coagulation-complement activation

and inflammation45 in the early phase post-trauma.

Wepreviously reported that prehospital TP improves the INR in

coagulopathic patients, while reducing proinflammatory re-

sponses, endotheliopathy, and lipolysis.21–23 We have also re-

ported that prehospital TP selectively benefits patients with

TBI.28 Here, we significantly advance our understanding of the

impact of early TP to show that a specific patient endotype is

associatedwith a favorable response to TP for reducedmortality.

Only E2-TBI patients showed a reduction in mortality with TP

administration. Furthermore, the TP effect was dramatic in this

patient cohort (44.6% net reduction in 30-day mortality). TBI pa-

tients that received TP displayed a unique pattern of circulating

proteins and lipids compared with non-brain-injury patients that

received TP or patients that did not receive TP. The sustained in-

creases in many coagulation- and complement-related proteins

in TBI patients that receive TP (an observation not seen in the

NBI patients) support the notion that TBI augments the systemic

response following injury. We conclude that the combination of

polytrauma (as observed in the E2 patients) with TBI results in a

TP-responsive phenotype that processes allogeneic plasma

differently than other severely injured patient groups. In addition,

we identified the brain-specific biomarker UCHL1 as a predictive

biomarker for E2-TBI patients. This differentiates UCHL1 from

other brain injury biomarkers such as GFAP that only differenti-

ates patients with or without TBI. Further research is required to

identify the injury-specific mechanisms of the beneficial effects

of early TP and whether UCHL1 could be used as a point-of-

care biomarker to guide the treatment in the field.

Plasma multi-omics at 72 h revealed major differences be-

tween patients destined to resolve early and those patients

defined as non-resolvers. Multiple cytokines, chemokines, and

acute-phase proteins were selectively elevated at 72 h in the

slow resolvers. Whether these patterns reflect an adaptation in
Figure 7. PrehospitalTPselectivelybenefitsendotype2-traumaticbrain

(A) Heatmap showing K-means clustering (k = 2) in trauma patients (n = 173) us

modules 3 and 4).

(B) Kaplan-Meier curves for 30-day mortality showing patients grouped by endot

(C and D) Treatment effect of plasma for 30-day mortality for subgroups separa

prehospital TP. The p value was calculated by log rank test.

(E) Heatmap shows 41 proteins detected by proteomics differentially represent

prehospital TP at 0 and 24 h. Number of patients in each subgroup: 44 (NBI standa

standard 24 h), 23 (TBI standard 0 h), 51 (NBI plasma 0 h), 24 (TBI plasma 24 h). *p

0.05 for significant difference between arms of NBI patients. The p value was ca

(F) Diagram for a proposed mechanism for the selective effect of prehospital TP
patients that remain ill or are instead part of persistent patho-

genic processes requires further investigation. We also found

many molecules elevated in patients on their way to recovery,

including lyso-phospholipids, sphingolipids, and complement

components. These metabolites and proteins may be part of

repair pathways and could serve as biomarkers for recovery.46

Limitations of study
There are several limitations to our study. Although we identify

significant changes in many classes of circulating biomolecules

that correlate with outcomes and treatment, our findings cannot

establish causality. This will require mechanistic research in

representative perturbation models. Confirmation of some of

the notable changes in the metabolomics will require confirma-

tion using quantitative assays. Finally, most of the measurement

platforms were targeted assays; therefore, our analysis cannot

be considered a complete description of all the changes in circu-

lating proteins, lipids, or metabolites that take place after severe

injury in humans.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Plasma samples from patients enrolled in

PAMPer Trial and healthy volunteers

Sperry et al.21 N/A

Chemicals, peptides, and recombinant proteins

Human CD138 ELISA Kit Nordic Biosite Cat# 950.640.192

Human CD141 ELISA Kit Nordic Biosite Cat# 850.720.192

Human VEGFR1/Flt-1 Quantikine ELISA Kit Bio-Techne Cat# DVR100C

Cell Death Detection ELISAPLUS Roche Cat# 11774425001

suPARnostic� ELISA assay ViroGates Cat# E001

Human S100 Calcium-binding Protein A10

(S100A10) ELISA Kit

Abbexa Cat# abx152996

Human Total Adiponectin/Acrp30

Quantikine ELISA

Bio-Techne Cat# DPR300

MILLIPLEX MAP Human Cytokine/

Chemokine Magnetic Bead Panel

Millipore Cat# HCYTOMAG-60K

MILLIPLEX MAP Human TH17 Magnetic

Bead Panel

Millipore Cat# HTH17MAG-14K

MILLIPLEX MAP Human Cytokine/

Chemokine Magnetic Bead Panel III

Millipore Cat# HCYP3MAG-63K

Banyan UCH-L1 Kit Banyan Biomarkers Cat# BC-1208

Banyan GFAP Kit Banyan Biomarkers Cat# BC-1210

Critical commercial assays

SOMAscan� 1.3k assay somaLogic N/A

Metabolomics LC-MS global metabolomics Metabolon N/A

Deposited data

[Database]: [PAMPer Trial Metabolomics

and Proteomics Dataset]

This study https://doi.org/10.17632/vt8nhp2y2t.1

Software and algorithms

R, v3.6.0 R Project https://www.r-project.org

Cytoscape, v3.8.0 Markiel et al.47 https://cytoscape.org

ggplot2, v3.0.0 RStudio https://cran.r-project.org/web/packages/

ggplot2/index.html

clusterProfiler, v3.11 Yu et al.48 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

survival, v2.43.3 Therneau et al. https://cran.r-project.org/web/packages/

survival/index.html

clValid Brock et al.49 https://cran.r-project.org/web/packages/

clValid/index.html

Caret, v6.0-86 Kuhn et al. https://cran.r-project.org/web/packages/

caret/index.html

Analysis codes This study https://github.com/Junru-max/

PAMPer-Multi-omic-analysis
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Timothy

R. Billiar (billiartr@upmc.edu).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
The proteomics and metabolomics data generated by this study are available at Mendeley Data https://doi.org/10.17632/

vt8nhp2y2t.1. Code supporting the current study is deposited at https://github.com/Junru-max/PAMPer-Multi-omic-analysis. Any

additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient and healthy volunteer enrollment
We conducted analyses of plasma samples obtained at three time point (0, 24 and 72 h) for 194 and 156 patients in metabolome and

proteome layers, respectively, enrolled in the PAMPer Trial.21 Only the first time point was available for patients that died in the first 72

h. 17 non-fasting healthy volunteers were also analyzed with the patients in the metabolome layer. Enrollment criteria and patient

characteristics have been previously reported (Sperry et al., 2018). Briefly, patients were enrolled by air ambulance crews that

had experienced at least one episode of hypotension (systolic blood pressure < 90 mm Hg) and tachycardia (defined in this trial

as a heart rate > 108 beats per minute) or if they had any severe hypotension (systolic blood pressure < 70 mm Hg). Patients

were excluded if they experienced burns over 20%body surface, penetrating brain injury or cardiac arrest lasting over 5min. Patients

were randomized into arms of TP (prehospital administration of two units of allogeneic TP followed by standard fluid resuscitation) or

standard of care (standard fluid, crystalloid or crystalloid and packed RBC).

The order for the measurement of each data layer was cytokines, EC biomarkers, lipidome, metabolome to proteome. The patient

and sample selection for the EC, cytokine and lipidome data layers were previously reported.22,23 Briefly, patients with available sam-

ples from the PAMPer trial (n = 405) were utilized for the (Plasma arm: 188, Standard arm: 217) in cytokine and EC biomarker layers.

Patients with samples but with missing data were excluded for both EC (n = 15) and cytokines layers (n = 12), yielding 393 and 390

patients, respectively. Following the analyses of the cytokine and EC biomarkers samples for 293 patients remained. For the

remainder of the analyses, we selected all of the nonsurvivors (n = 83), all the surviving TBI patients (n = 58), and then randomly

selected surviving NBI patients (n = 53) yielding a total of 194 patients. Patients selected for the proteome layer overlapped with lip-

idome and metabolome data layers patients except that only 5 early-nonsurviors were included. A total of 59 resolving and 92 non-

resolving patients were included in this layer (Total n = 151).

The information in the clinical, cytokine, EC biomarkers and lipidome data layers were reported previously.21–23 EDTA plasma sam-

ples were collected and stored at �80�C for further analysis. The TD-2 dataset only enrolled patients expected to survive from blunt

trauma and all three layers were reported previously (Cyr et al., 2021).

This study was approved by the IRB of University of Pittsburgh. Detailed information and study protocol for PAMPer Trial are ava-

ible on https://clinicaltrials.gov/ct2/show/NCT01818427. The PAMPer Trial received approval for Emergency Exception from

Informed Consent (EFIC) protocol from the Human Research Protection Office of the US Army Medical Research and Material

Command.

METHOD DETAILS

Untargeted metabolomics assay
The same UPLC-MS/MS platform was used for the untargeted metabolomic assay for PAMPer Trial and the TD-2 dataset. 500ul of

EDTA- treated plasma was aliquoted and sent on dry ice to Metabolon Inc. (Durham, NC, US) for metabolite measurement. Several

recovery standards were added prior to the first step in the extraction process for QC purposes. Proteins were precipitated with

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting extract was

divided into five fractions: two for analysis by two separate reverse phases (RP)/UPLC-MS/MSmethods with positive ion mode elec-

trospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS

with negative ion mode ESI, and one sample was reserved for backup. Samples were placed briefly on a TurboVap (Zymark) to re-

move the organic solvent. The sample extracts were stored overnight under nitrogen before preparation for analysis.

All methods utilized aWaters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer

operated at 35,000 mass resolution. The sample extract was dried then reconstituted in solvents compatible to each of the four

methods. Each reconstitution solvent contained a series of standards at fixedconcentrations to ensure injection andchromatographic

consistency. One aliquot was analyzed using acidic positive ion conditions, chromatographically optimized formore hydrophilic com-

pounds. In thismethod, the extract was gradient eluted from aC18 column (Waters UPLCBEHC18-2.1x100mm, 1.7 mm) usingwater

andmethanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also analyzed using

acidic positive ion conditions; however, it was chromatographically optimized for more hydrophobic compounds. In this method, the

extract was gradient eluted from the same afore mentioned C18 column usingmethanol, acetonitrile, water, 0.05%PFPA and 0.01%

FAandwas operated at an overall higher organic content. Another aliquotwas analyzed using basic negative ion optimized conditions
Cell Reports Medicine 2, 100478, December 21, 2021 e2
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using a separate dedicatedC18 column. The basic extractswere gradient eluted from the column usingmethanol andwater, however

with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization following elution from a HILIC

column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 mm) using a gradient consisting of water and acetonitrile with 10mM Ammonium

Formate, pH 10.8. TheMSanalysis alternated betweenMSanddata-dependentMSn scans using dynamic exclusion. The scan range

varied slighted between methods but covered 70-1000 m/z.

Raw data was extracted, peak-identified and QC processed using in-house software and library of over 3300 commercially avail-

able purified standard compounds. Compounds were identified by comparison to library entries of purified standards or recurrent

unknown entities. Furthermore, biochemical identifications are based on three criteria: retention index within a narrow RI window

of the proposed identification, accurate mass match to the library ± 10 ppm, and the MS/MS forward and reverse scores between

the experimental data and authentic standards. The MS/MS scores are based on a comparison of the ions present in the experi-

mental spectrum to the ions present in the library spectrum. Additional mass spectral entries have been created for structurally un-

named biochemicals, which have been identified by virtue of their recurrent nature (both chromatographic and mass spectral).

Quality control of metabolome data
Several types of controls were analyzed in concert with the experimental samples: a pooled matrix sample generated by taking a

small volume of each experimental sample served as a technical replicate throughout the dataset; extracted water samples served

as process blanks; and a cocktail of QC standards that were carefully chosen not to interfere with the measurement of endogenous

compounds were spiked into every analyzed sample, allowed instrument performance monitoring and aided chromatographic align-

ment. Instrument variability was determined by calculating the median relative standard deviation (RSD) for the standards that were

added to each sample prior to injection into the mass spectrometers. Overall process variability was determined by calculating the

median RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples. TheMe-

dian RSD for the Internal Standards and Endogenous Biochemicals are 4% and 9% respectively in the metabolome layer of PAMPer

Trial.

Multiplexed proteomics assay
We adopted a multiplexed, aptamer-based approach (SOMAscan assay) capable of measuring 1,305 human proteins in plasma.50

The full lists of protein names, Entrez gene symbol, Entrez ID, Uniprot ID was shown in Table S5. 150 mL of EDTA-treated plasma was

aliquoted and sent on dry ice to SomaLogic Inc. (Boulder, Colorado, US) for protein measurement. The technical details for the SO-

MAscan assay can be found in Technical White Paper. Briefly, the assay is based on a protein-capture SOMAmer reagents which are

constructed with chemically modified single stranded DNA. The SOMAmermimic amino acid side chains and can specifically bind to

the targeted proteins. The specific interaction between SOMAmer and targeted proteins shows a similar structure compared to anti-

body-antigen interaction.51 The proteins relative concentration is positive correlated to the intensity of SOMAmer which can be de-

tected using a DNA microarray.

Quality control of proteome data
Two types of quality control (Hybridization and Calibration) were conducted to evaluate the variability at the level of samples and ex-

periments for the SOMAscan assay. Hybridization by adding the control probes (part of the SOMAmer reagent) was used to evaluate

the bias caused by differential readout conditions (eluate, transfer, hybridization, wash, scan) in individual microarrays. A scaled fac-

tor for each sample was calculated based on the hybridization control. Calibration is accomplished using a number of replicate mea-

surements of a common pooled calibrator sample whichwas used to correct run-to-run (plate-to-plate) variation. A unique calibration

scale factor is derived for each SOMAmer binding reagent within the assay and then applied to all SOMAmer measurements within

the set of samples in that run (plate). The accepted range for the Hybridization and Calibration Scale factors are 0.4-2.5 and 0.8-1.2

respectively. The median normalization for the variability related to the protein concentration was not applied in this study due to the

expectation of a dramatic alteration of concentration post trauma.

Targeted metabolites assay
Samples from 10 healthy subjects and 10 early nonsurvivors from PAMPer (5 TP and 5 standard care) were analyzed for TCA cycle

metabolites in The University of Pittsburgh Health Sciences Metabolomics and Lipidomics Core. Metabolic quenching, polar

metabolite pool extraction, and internal standardization were performed prior to detection. Calibration curves were prepared

and derivatized identically for malate, succinate, pyruvate, citrate, oxaloaceteate, fumarate, alphaketoglutarate, and cisaconitate

using serial dilution. All analyte peak areas were normalized to (D6)-propionate and expressed as the ration of peak area to

internal standard before concentration conversion. Analyses were performed by liquid chromatography-high resolution mass

spectrometry. Samples were injected via a Thermo Vanquish UHPLC and separated over a reversed phase Phenomenex Kinetex

C18 column (2.1 3 150mm, 1.7 mm particle size) maintained at 55�C. The Thermo IDX tribrid mass spectrometer was operated in

negative mode, scanning in Full MS mode. Calibration was performed prior to analysis using the PierceTM FlexMix Ion Calibration

Solutions (Thermo Fisher Scientific). Integrated peak areas were then extracted manually using Quan Browser (Thermo Fisher Xca-

libur ver. 2.7).
e3 Cell Reports Medicine 2, 100478, December 21, 2021
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Targeted proteins (biomarkers) assay
Details for the quantitive measurement of 21 cytokines, 7 EC biomarkers, and 2 brain injury related biomarkers were reported pre-

viously.22,28 Briefly, inflammatory mediators were measured using three kits from Luminex assay MAGPIX (Austin, TX, Luminex Inc).

The Luminex systemwas used in accordance tomanufacturer’s instructions. EC biomarkerswere assayed by commercially available

immunoassays (ELISA) separately. Quantitative value as concentration for all 21 cytokines and 7 EC biomarkers (except for HCDNA)

were recorded. Concentration of 2 brain injury related biomarkers UCHL1 and GFAP were detected using chemiluminescent

enzyme-linked immunosorbent assays.

QUANTIFICATION AND STATISTICAL ANALYSIS

Normalization, transformation and scaling
Missing data were evaluated in each layer and the variables with over 20% missing were removed. The median value was used to

infer the missing data clinical layer due to the possibility of unrecording. Minimum value was used to infer the missing data from cy-

tokines and EC layer due to the possibility of detection limit. For untargetedmetabolomics layer, raw peak intensity datawere normal-

ized by amedian normalization to equal one (1.00) based on the run-day blocks for eachmetabolite. For Multiplexed proteomics, raw

fluorescent intensity data were normalized by multiple Hybridization and Calibration Scale factors for each sample respectively. The

normalized data for each layer were further log2 transformed to obey a normal distribution approximately. The log2 transformed data

were auto-scaled (Z score) across each sample for downstream analysis for different purpose (e.g., Visualization in heatmap, Dimen-

sion reduction).

Dimension reduction and visualization
Two-step dimension reduction (Linear &Nonlinear) was applied for exploration of global patterns. First, the principal component anal-

ysis was conducted in the normalized data for each layer (except for the clinical layer). The PC numbers were set as 20 and 15 for

metabolomics and proteomics, respectively. Second, the top 15 and 10 PCs were selected (> 95% variance explained) for UMAP

analysis,25 which is a non-linear method for dimension reduction and more sensitive than linear methods to the subtle differences.

The visualization for the UMAP dimension reduction is based on a scatterplot. Each dot represents one sample and was labeled with

outcome, time point or injury severity according to the purpose.

Unsupervised clustering
Two types of unsupervised clustering method were used in this study. The first was Hierarchical clustering which was conducted

based on the ‘‘Euclidean distance’’ and the exact method was set as ‘‘complete.’’ The second was consensus K-means clustering

repeated 1000 times. The choice and validation for numbers of clusters was performed in R package clValid.49 The suitable numbers

of K were evaluated by two types of measures together with reasonable biological interpretation. Internal measures include the

connectivity, and Silhouette Width, and Dunn Index were used to evaluate the connectedness, compactness and separation of

the clusters. External measures include the average proportion of non-overlap (APN), the average distance (AD), the average distance

between means (ADM), and the figure of merit (FOM) were used to evaluate the stability of the k-means clustering result. The eval-

uation results of metabolites clustering in PAMPer dataset for three methods (Hierarchical, K-means, Partitioning Around Medoids:

PAM) can be found in Figures S4A and S4B. The dendrogram for the clustering results were diminished for some heatmaps for

visualization.

Metabolites family preference analysis
Themethod formetabolites family preference analysis wasmodified fromprevious reports.52 A constancy table ofmetabolite families

by the seven modules we identified in Figure 3C and chi-square tested was applied to evaluate whether different metabolite families

were randomly distributed in each module. We then computed the Ro/e for each combination of metabolite family according to the

follow formula:

Ro = e = observed number of metabolites=expected number of metabolites

Where Ro/e is the ratio of observed metabolites number over the expected metabolites of a given combination of metabolite fam-

ilies andmodules. The Ro/e can reflect whether ametabolites family is enriched in themodule or not. For instance, if the Ro/e > 1, this

suggests that the metabolite family is enriched in that module more than other modules. If the Ro/e < 1, this suggests that the metab-

olite family is depleted in that module compared to other modules.

Pathway enrichment analysis
Over-representation method was applied for pathway enrichment analysis in R package Clusterprofiler (v 3.1148). Names of 880 up-

regulated proteins (p < 0.05 & Fold change > 1.2) at 0 h were transformed into Entrez ID and database of Reactome was used to

search related pathways. The P value of enriched pathways was adjusted by BH method. Pathways with adjusted P value < 0.05

were consider to be significant.
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Feature selection and regression analysis
Five statistical/machine learning methods (ROC Curve, logistical regression with lasso regularization, logistical regression with

elastic-net regularization, SIMPLS algorithm from partial least-squares regression, random forest) were applied to evaluate the pre-

dictive value of variables in each layer for binary outcome (early-death, non-resolving pattern). R package Caret was used to tune the

parameters with 10-fold cross-validation. A score from 0-100 was computed by all five methods to each variable to evaluate the rela-

tive contribution. Top 25 metabolites/proteins were visualized and ranked by average score from the five methods.

Logistical regression with elastic-net regularization was applied to predict the binary outcome (early-death, non-resolving pattern,

clinical coagulopathy). The combination of elastic net mixing parameter(alpha) and penalty(lambda) was tuned by 10 different values

with 10-fold cross-validation. Multi-variable Cox regression modeling was applied to the survival data (Time to death).

Predictive model for early stratification
173 patients labeled both TBI and endotype were included for the establishment of predictive model. Only quantitive biomarkers

(2 brain-specific biomarkers, 21 cytokines and 7 EC injury related biomarkers) were included for the analysis. The 2 brain-specific

biomarkers were missing in 9 TBI and 72 NBI patients, which was imputed by the median value for these. The imputed value of

GFAP and UCHL1 were 33 pg/mL and 548.5pg/mL for NBI patients, which was close to a previous report.53 A cut off of 22 pg/mL

of GFAP and 327 pg/mL of UCHL1 (< 12 h) were used to identify mild TBI patients. For detection of intracranial injury, the test had

a sensitivity of 0$976 (95% CI 0$931–0$995) and an NPV of 0$996 (0$987–0$999).53

The importance of biomarkers for early stratification were evaluated by a machine learning based two-step feature selection strat-

egy as previously reported.54 Briefly, two models (least absolute shrinkage and selection operator: lasso; support vector machine

with the radial basis function: SVM-RBF) were fitted sequentially and 100 times repeated and nested 5-fold cross-validation (Both

outer and inner sampling were 5 folds). The lasso model was fitted into inner sampling of each 5-fold for tuning the hyperparameter.

Then a fold-specific classifier was trained by SVM-RBF in the selected features from the lasso model in the same fold. The perfor-

mance (accuracy) of the fold-specific classifier was internally evaluated in the outer-sampling. The frequency of selected features

was summarized in all models with accuracy > 0.8. The top selected features (UCHL1, Syndecan1, IP10, IL17A) were used for clas-

sification by logistical regression model with 10-fold cross-validation.

Generation of customized signature scores
Detailed definition and explanation about the customized signature scores can be found in Table S7. Briefly, a signature score to

summarize major patterns in each layer was applied for downstream analysis (i.e., Correlation or Clustering). The signature score

was more stable than individual variables and this might reflect the magnitude of a common biological process. Average Z score

was used to generate the customized signature scores for selected metabolites/proteins sets.

Survival, Correlation and Statistical analysis
Survival analyses were conducted by K-M curve and raw log rank p values were computed. Spearman correlation analysis was

applied to reveal the non-linear correlation among variables from different layers and p value was estimated by Spearman’s rho sta-

tistic from Algorithm AS 89 with multiple test correction by FDR. Pearson’s c2 test or Kruskal-Wallis test was used for categorical

variables or continuous variables in the contingency table of clinical layer data. Multiple group comparisons were conducted by Krus-

kal-Wallis test with post hoc analysis by Dunn test. Time-series analyses were tested by Two-way ANOVAwith pairwise comparisons

EstimatedMarginal Means test. Differential metabolites/proteins were generated byWilcoxon Rank Sum test and p value adjustment

was performed using Bonferroni correction.
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