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Abstract

African trypanosomes of the sub-genus Trypanozoon) are eukaryotic parasitesthat cause

disease in either humans or livestock. The development of genomic resources can be of

great use to those interested in studying and controlling the spread of these trypanosomes.

Here we present a large comparative analysis of Trypanozoon whole genomes, 83 in total,

including human and animal infective African trypanosomes: 21 T. brucei brucei, 22 T. b.

gambiense, 35 T. b. rhodesiense and 4 T. evansi strains, of which 21 were from Uganda.

We constructed a maximum likelihood phylogeny based on 162,210 single nucleotide poly-

morphisms (SNPs.) The three Trypanosoma brucei sub-species and Trypanosoma evansi

are not monophyletic, confirming earlier studies that indicated high similarity among Trypa-

nosoma “sub-species”. We also used discriminant analysis of principal components (DAPC)

on the same set of SNPs, identifying seven genetic clusters. These clusters do not corre-

spond well with existing taxonomic classifications, in agreement with the phylogenetic analy-

sis. Geographic origin is reflected in both the phylogeny and clustering analysis. Finally, we

used sparse linear discriminant analysis to rank SNPs by their informativeness in differenti-

ating the strains in our data set. As few as 84 SNPs can completely distinguish the strains

used in our study, and discriminant analysis was still able to detect genetic structure using

as few as 10 SNPs. Our results reinforce earlier results of high genetic similarity between

the African Trypanozoon. Despite this, a small subset of SNPs can be used to identify

genetic markers that can be used for strain identification or other epidemiological

investigations.

Author summary

Trypanosomes are a major health threat to the people and livestock of Sub-Saharan Africa.

Building genomic resources and understanding the genetic structure of these parasites
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will aid researchers trying to control their spread. To this end, we compared the genomes

from 83 trypanosome strains, identifying 162,210 single nucleotide polymorphisms

(SNPs) between them. Our analysis shows high genetic similarity between the trypano-

somes, and confirms earlier results indicating that the traditional taxonomic classifica-

tions do not correspond well with genetic data. Further, we demonstrate that, despite the

high genetic similarity, each strain in the study can be distinguished using as few as 84

SNPs, suggesting that a small number of SNPs can be useful for tracking and classifying

populations of African trypanosomes.

Introduction

Trypanosomes are single-celled, eukaryotic parasites of mammalian bloodstreams that are a

major health and economic burden on communities with endemic circulating strains. This is

especially true in sub-Saharan Africa, where trypanosomes belonging to the species Trypano-
soma brucei are vectored between human and animal hosts by the tsetse fly. Trypanosoma bru-
cei brucei (Tbb) causes nagana in livestock, while Trypanosoma brucei gambiense (Tbg) causes

chronic sleeping sickness and Trypanosoma brucei rhodesiense (Tbr) causes acute sleeping sick-

ness in humans. This species, along with Trypanosoma evansi (Tev) and Trypanosoma equiper-
dum (Teq) comprise the sub-genus Trypanozoon. Both Tev and Teq are also found outside of

sub-Saharan Africa and are recognized as being highly similar to Trypanosoma brucei [1,2].

Tev causes surra, a disease of livestock, and Teq causes dourine, which affects horses. Most of

the African Trypanozoon taxa are morphologically indistinguishable, with the main differences

between them being the host in which the trypanosome causes disease or the insect vector that

enables their distribution (with the exception of Teq, which has lost its dependence on an

arthropod host). In addition, both Tev and Teq have lost all or part of their kinetoplastid DNA

(analogous to mitochondrial DNA in other eukaryotes [2]). Both Tbr and Tbg have evolved

distinct mechanisms of evading trypanolytic factors in human blood [3,4,5]. Despite some

similarities, and the ability for some groups to recombine [6], each group has developed diver-

gent phenotypes that affect their range and impact on humans and livestock.

The African trypanosomes belonging to the Trypanozoon sub-genus were first isolated in

the late 19th and early 20th centuries [6]. Being morphologically similar, and without the aid

of molecular techniques, early taxonomic classifications were therefore based on host range

and symptoms caused by infection. Tbb is found throughout sub-Saharan Africa, matching the

range of the tsetse fly vector. Tbr is found in the Eastern portion of this range, and Tbg found

in the West. Teq and Tev, however, have spread to Northern Africa, Asia and beyond. While a

classification system based on infectious symptoms and geography is useful in a clinical set-

ting, it does not necessarily reflect the actual phylogenetic relationship among trypanosomes

in this group. Initially, it was not clear if the genetic differences between the groups repre-

sented deep phylogenetic divergence supporting a separate species classification, or were more

representative of an alternative phenotype or sub-species. With the development and applica-

tion of molecular tools, it has become increasingly clear that none of the T. brucei sub-species

merits a separate species rank based on their genetic relatedness. Whole genome analyses of

selected Tev and Teq strains showed the two groups are highly similar to Tbb, despite their dra-

matic range expansion and loss of functional kinetoplastids [7]. Similarly, molecular evidence

suggests that Tbr is essentially a Tbb strain that has acquired the serum resistance-associated

(SRA) gene. This transition apparently evolved multiple times from different Tbb strains

[8,9,10,11]. Isolates of Trypanosoma brucei gambiense have been divided into Tbg group 1
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(Tbg-1) and Tbg group 2 (Tbg-2). The first one comprises most Tbg isolates. They are geneti-

cally distinct from the single Tbg-2 isolate found originally in Ivory Coast and now thought to

be extinct [12,13]. Both Tbg types are more distinct from Tbb than Tbr still harbors a large

amount of genetic similarities to it [8,11,14,15]. Isolates form T. evansi also harbor further

genetic subdivisions, with Tev strains being classified as Type A or Type B, according to their

mini-circle DNA sequences [2] and the presence of the RoTat1.2 gene [16]. Taken together,

this evidence supports the idea that mutations altering host range and specificity have occurred

relatively recently and are not uncommon. This highlights the need to monitor trypanosome

populations of both human and non-human parasites, as these types of mutations in particular

could have serious health and/or economic consequences. This is especially concerning in

Uganda, which contains both the Eastern edge of the Tbg-1 range and the Western edge of the

Tbr range [17]. Because both prognosis and treatment of the two types of sleeping sickness

caused by the two variants is different, accurate diagnosis is critical. The two ranges are less

than 100km apart [17], and Tbb and the tsetse fly vector occur throughout the country, over-

lapping with the Tbr and Tbg-1 ranges. Sleeping sickness cases caused by a co-infection of both

Tbg-1 and Tbr could be a possibility. The epidemiological consequences of the overlap in

ranges are difficult to predict but would certainly pose challenges to healthcare professionals.

The purpose of the present study is twofold. First, we provide a large comparative genomic

analysis of African trypanosomes of the sub-genus Trypanozoon by analyzing whole genome

data from 83 strains from across sub-Saharan Africa, representing a range of human and ani-

mal infective types (S1 Table), and comprising 21 Tbb, 21 Tbg-1, 1 Tbg-2, 35 Tbr and 4 Tev
strains (4 Type A and 1 type B). Nineteen of the Tbg-1 strains were isolated from a hospital in

the Democratic Republic of the Congo in response to a sleeping sickness outbreak [18]. Eleven

of the newly sequenced strains, and 24 in total, are from Uganda, the only country where both

Tbr and Tbg-1 co-occur and where methods of strain discovery can be extremely useful [17].

This data set complements previous work that has sought to clarify the genetic relationships

between the African trypanosomes [7,8,10,11, 19,20].

For the second aim, we used the genome data from these 83 strains in combination with a

powerful statistical technique, sparse linear discriminant analysis (SLDA), to select a subset of

SNPs to facilitate strain identification. SLDA calculates linkage disequilibrium across all SNPs

and, unlike existing procedures which generally consider the association between a phenotype

and a single SNP, simultaneously selects informative variants across the whole genome [21–

25]. In this study, we used SLDA to evaluate the possibility of using a small subset of SNPs to

classify Trypanozoon strains into genetic clusters, identified using whole genome data. Mini-

mizing the number of SNPs necessary to diagnose specific strains of T. brucei has practical

implications, as being able to define strains using a subset of markers significantly reduces the

cost and effort to do so, allowing for the development of field portable diagnostics [26]. Select-

ing only the most informative SNPs through SLDA will still yield information reflective of the

whole genome data and should prove useful from an epidemiological perspective.

Methods

Sequencing and SNP discovery

S1 Table lists the source and sub-species of all 83 trypanosome strains analyzed in this paper,

along with the reference where their genome sequence was presented, if applicable. For all pre-

viously undescribed strains (except for STIB348TBABB, a derivative of Stib348), a diagnostic

ITS1 PCR [27] was conducted to screen for T. brucei versus other African trypanosomes. A

second PCR test for the presence of the serum resistance-associated (SRA) gene diagnostic of

Tbr (following Radwanska et al. [28]) was also performed. A third PCR for the Tbg specific
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glycoprotein TgsGP [28] was conducted on SRA negative strains to distinguish Tbg from Tbb.

The newly screened strains included 503_s, Cow248, Apendum, Dog157, Keko, LWO07A,

LWO11A, LWO150A, LWO24A, and LWO30A. Whole genome sequencing and extraction

was performed as described in [10], with all sequencing performed at the Yale Center for

Genomic Analysis using the Illumina HiSeq 2000 platform. Raw sequences were quality

checked with Fastqc [29] and aligned to the large chromosomes of the reference Trypanosoma
brucei brucei strain 927 [30] genome, using Bowtie2 [31]. To prepare the data for SNP calling,

duplicate read removal was performed using picard tool’s MarkDuplicates tool. In addition,

realignment around indels (insertions and deletions) was done using the Genome Analysis

Toolkit’s (GATK) IndelRealigner tool [32]. SNPs were called using GATK’s HaplotypeCaller

tool [33]. SNPs with a minor allele frequency of less than 0.05 and/or any missing data were fil-

tered out using vcftools [34]. SNPs occurring in repetitive regions, as determined by Repeat-

Masker [35], or in the coding sequencing of variant surface glycoprotein genes (VSG), were

excluded using R [36], as described in [36], due to the difficulty in accurately assigning SNPs

to these regions. After all filtering steps, 162,210 SNPs were retained.

Clustering analysis

We carried out several clustering and phylogenetic analyses to investigate the relative evolu-

tionary affinities of the 83 strains included in the study. A maximum-likelihood phylogeny

was constructed based on SNPs. The SNPhylo pipeline was used to filter and align SNPs, as a

first step in phylogeny construction [37]. The minor allele frequency was set to 0.025 and the

max missing data filter was set to 0.1. The linkage disequilibrium filter was set to 0.9. This left

37,893 SNPs. The maximum-likelihood phylogeny and bootstrapping analysis (1000 repli-

cates) was performed in R using the filtered SNP set and the phangorn R package. Neighbor-

joining phylogenies were constructed using the “nj” function in the ape R package [38]. K-

means clustering, an algorithm to classify objects into a predefined number of groupings, and

Discriminant Analysis of Principal Components (DAPC) were performed using the find.clus-

ters and dapc functions, as implemented in the R package adegenet [39]. These clustering anal-

yses were carried out on different SNP data sets: (1) the entire 162,210 SNP data set to identify

the most likely number of different genetic clusters in which the 83 Trypanozoon strains could

be grouped; (2) several sub-sets of the main dataset that included either a smaller number of

either SNPs or strains (see below). A-score optimization was performed to avoid over-fitting

for each DAPC analysis, following the recommendations of the package authors [39].

SNP sub-set classification

To identify subsets of SNPs that are especially useful and informative to classify an unknown

strain to one of the identified genetic groups (see above), we carried out logistic regression and

Sparse Linear Discriminant Analysis (SLDA). Starting with the main set of SNPs and the clus-

ters identified by k-means clustering, we used a four-fold cross validation strategy, where four

replicates of the data were used, with each having one-fourth of the initial data removed from

the analysis to avoid over-fitting. This resulted in four data sets, each comprised of three quar-

ters of the total data. Within each sub-dataset, dichotomized variables were generated to indi-

cate the cluster label for each individual. An LD filtering step was carried out using the PLINK

clump procedure (LD threshold = 0.2), to eliminate highly similar SNPs.

On each data set, we carried out logistic regression analysis to identify SNPs significantly

associated with each of the genetic clusters identified by k-means clustering (p-value < 0.05).

This was done using the software PLINK association procedure [40]. SNPs passing the sig-

nificance and LD thresholds from all binary models were then aggregated to construct a
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discriminant function to classify strains using SLDA, as implemented in R (Package spar-

seLDA). The SLDA was repeated 1000 times, in each of the four sub-dataset, and selecting the

top 10 SNPs with the greatest contribution for all the discriminant functions. SNPs were

ranked based on their frequency of selection by SLDA across replicates, which reflected their

utility in classifying strains into one of the original clusters.

We then examined the number of unique genotypes obtained only by considering combi-

nations of the top-ranked SLDA-SNPs. Starting with the top ten ranked SLDA-SNPs, we

concatenated the genotypes for each strain and calculated the number of unique combination

genotypes obtained, using R. This procedure was repeated while adding the next highest-rank-

ing SNPs until 83 unique combination genotypes were obtained.

To further test the classifying ability of the SLDA-selected SNPs (SLDA-SNPS), we repeated

the DAPC and k-means clustering analysis on the top X ranked SLDA-SNPs, where X is equal

to 10,000, 1000, 500, 250, 100, 50, 20, or 10 out of the total 31,164 SLDA-SNPs. We compared

the clustering results obtained when using these eight subsets of SLDA-SNPs to the entire

162,210 SNP dataset by calculating the percentage of overlap in cluster membership for each

strain, then calculating the average percentage for all strains. As an example, consider if Strain-

X is assigned to cluster 1 based on the whole dataset, and cluster 3 based on the top 10 SLDA-

SNPs (the clusters are arbitrarily named). The number of other strains assigned to both cluster

3 (based on the top 10 SLDA-SNPs), and cluster 1 (based on the entire SNP dataset), is 4. The

total number of strains assigned to cluster 3 is 5 (not counting Strain-X). The percentage of

overlap is 80% (4/5) for Strain-X. This metric is calculated for all strains, measuring how fre-

quently the strains are grouped together in different k-means analyses.

To further assess the classification ability of the SLDA-SNPS we carried out an additional

test. First, we removed 21 randomly selected strains from the original dataset. Then, we carried

out DAPC analyses with each of the eight SLDA-SNP subsets, using the cluster assignment

from the k-means clustering analysis done on the whole data set (giving data tables consisting

of, for example, 62 strains by the top 10 SLDA-SNPs, 62 strains by the top 20 SLDA-SNPs,

etc.). Then, we used the predict.dapc function of the adegenet R package to assign the 21 previ-

ously removed strains to a cluster, based on the discriminant function produced by the new

DAPC. The assignment was considered successful if the correct cluster was given the highest

probability score by the predict.dapc function. This process was repeated with 10 sets of 21

randomly selected strains for each of the 8 SLDA-SNP subsets.

Results

We jointly analyzed the genome sequences of 83 trypanosome strains, 25 of which were previ-

ously unpublished. To characterize genomic variation among these strains, we identified

931,876 SNPs. Filtering for minor allele frequency (0.05), missing data, indels and informative-

ness yielded 162,210 SNPs for clustering and phylogenetic analysis. This reduced set is smaller

than the one identified by Sistrom et al. 2014 [10] (608,501 SNPs). This is likely due to our

avoidance of mapping to variant surface glycoprotein (VSG) genes and other repetitive

sequences (see methods). In addition, we only mapped to sequences on the major chromo-

somes of Tbb, and applied a minor allele frequency filter.

Phylogenetic and cluster analysis

We used multiple phylogenetic and clustering methods to clarify the underlying genetic rela-

tionship of the 83 African trypanosome strains. We constructed a phylogenetic tree by first

thinning the SNPs with more than 90% correlation to account for linkage, leaving 37,893

SNPs. The SNPhylo pipeline was used to concatenate and align the SNPs, and the phangorn R

Comparative genomics of African trypanosomes
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package was used to perform maximum-likelihood and bootstrapping analyses (Fig 1). Boot-

strap percentages are shown on the phylogeny nodes. The strains in our study were classified

as originating from Western Sub-Saharan Africa (Ivory Coast, Cameron, and Nigeria), the

Democratic Republic of the Congo (DRC), Uganda, Eastern Sub-Saharan Africa (any point

east of Uganda, within the endemic region of Tbr), or outside of Africa (Tev strains Type A:

E110 and STIB 810). The Western strains are confined to two of the major clades, indicating

some geographic separation among strains. In contrast, the Tbb and Tbr strains are broadly

Fig 1. Maximum-likelihood phylogeny of 83 Trypanosoma brucei strains. Based on 37,893 concatenated SNPs obtained by using

SNPhylo and Phangorn in R. Color of strain names indicates their named sub-species: blue: Tbb, red: Tbr, green: Tbg-1 and Tbg-2, purple:

Tev. Color of the branches indicate the geographic origin of each strain: dark blue: Western Africa, light blue: Democratic Republic of the

Congo, light red: Uganda, dark red: Eastern Africa, Purple: outside of Africa. See S1 Table for geographic locations. Internal branches are

black if they connect two branches of different colors. An asterisk identifies nodes with bootstrap support above 80%.

https://doi.org/10.1371/journal.pntd.0005949.g001
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paraphyleitc. All Tbg-1 strains are in a single clade, while the Tbg-2 (Th126) is the sister taxon

of a clade including other Tbb strains from Western Africa. This is likely a reflection of shared

ancestral polymorphisms between some Tbb strains and this Tbg-2 strain, confirming previous

studies [8,10]. For Tev, the 3 type A strains cluster in a clade with Tbb strains, while the single

type B strain in this study (KETRI 2479) falls in a relatively distant branch of the ML tree

[7,41,42]. The results of the ML analysis are generally confirmed by the result of a neighbor-

joining phylogeny based on the whole SNP dataset (162,210 SNPs, S1 Fig).

To complement these analyses, we performed multivariate analyses on the whole SNP data-

set (N = 162,210). We used Discriminant Analysis of Principal Components (DAPC), as it pro-

vides a way to visualize differences between clusters of strains. K-means clustering based on

principal components built from SNPs was used to group the strains (indicated in S1 Table).

This analysis indicated 7 to 11 distinct genetic clusters were present based on Bayesian Infor-

mation Criterion (BIC) metrics (S2 Fig). Since BIC values were similar for K = 7–11, we pres-

ent the results for the DAPC for k = 7 in Fig 2. DAPC calculates discriminant functions that

optimally distinguish the clusters. These clusters are generally well separated, suggesting the k-

means groupings reflect the underlying genetic structure of the samples. The first axis (x-axis)

distinguishes cluster 6 (see S1 Table for cluster assignments) from the rest of the clusters. This

cluster mainly contains the Tbg-1 strains (see Fig 2B). Strain D16, a Tbr isolate, is also placed

in this cluster. While its placement in mainly Tbg cluster is unusual, we have no reason to

think our sample is mislabeled or contaminated, as D16 is SRA positive. The most likely expla-

nation is that this Tbr strain is genetically close in terms of genome wide polymorphisms to

the ancestral Tbb strain that also gave rise to the Tbg strains. The second axis distinguishes the

remaining clusters from each other. While clusters 3, 4, and 5 are in close proximity, the BIC

indicates the data is best explained by 7 instead of 6 or fewer clusters, arguing against collaps-

ing the data into fewer clusters. None of the groups contain samples exclusively from a single

named sub-species or a geographic location. However, all 4 Tev strains are found in cluster

7, in contrast with the results of the phylogenetic analyses, where the type A strains cluster

together while the Type B strain is included in a different cluster. Every cluster except for

Fig 2. DAPC using the entire SNP data set. DAPC using the whole 162,210 SNP data set, with k = 7 clusters, based on k-means clustering. Scatter

plot of the first two discriminant functions. Part A shows strains colored by cluster, and are connected by lines to the cluster’s centroid. The region

enclosed by the dashed square is expanded in the inset for clarity. Part B shows the same data as in A, but with the strains colored according to their

named taxon. The circles representing the clusters are the same as in part A for comparison.

https://doi.org/10.1371/journal.pntd.0005949.g002
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cluster 6 (the mainly Tbg-1 cluster) contains at least one Tbr and Tbb strain. Thus, while

DAPC detected genetic structure in the 83 strains, as it identifies at least 7 distinct genetic clus-

ters, this structure does not coincide with the traditional taxonomy, with the exception of Tbg-
1. The DAPC for K = 8 through K = 11 are qualitatively similar (see S3 Fig).

Diagnostic SNP discovery

We asked if a smaller number of SNPs could be useful in measuring genetic diversity or diag-

nosing strain origin among the 83 strains analyzed. This can be useful for studies wishing to

carry out genome level analyses on a large number of strains, or in the development of diag-

nostic tools. To assess the amount of information that could be extracted from the fewest num-

ber of SNPs and still reflect the information gathered when using tens of thousands of SNPs,

we took the approach of ranking SNPs based on their ability to differentiate strains, using

Sparse Linear Discriminant Analysis (SLDA, see Methods for complete details). SLDA selected

31,164 SNPs at least once. The top 1500 most frequently picked SNPs were selected in more

than 50% of the times, suggesting that a small number of SNPs (less than 4% of the initial

31,164 SNPs) makes a disproportionately large contribution to classifying strains into the 7

pre-defined clusters.

We then tested how well smaller subsets of SNPs performed based on their ranking in the

SLDA study by using several metrics. Next, we performed DAPC and k-means clustering for

8 different data sets, using the top-ranked 10,000, 1000, 500, 250, 100, 50, 20, or 10 SNPs

(SLDA-SNPs). Fig 3 shows the scatter plots of the first two discriminant functions for selected

eight SLDA-SNP data sets. The results show that, when using datasets with fewer SNPs (as low

as 10,000, Fig 3, upper left corner, for example), the clusters still tend to be separated, matching

the pattern seen with the whole dataset (Fig 2), but with fewer SNPS the separation is reduced,

Fig 3. DAPC results for the eight SLDA-SNPs sets. Number of SLDA-SNPs indicated on each sub-figure. Scatter plots use the first two discriminant

functions. Strains from the same cluster have the same color, and are connected by lines to the cluster’s centroid. The cluster number is arbitrarily

assigned for each analysis.

https://doi.org/10.1371/journal.pntd.0005949.g003
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and the clusters are less discrete (compare Fig 2 to Fig 3, for example). However, all DAPC

analyses, regardless of SNP numbers, differentiate strains into seven groups. Interestingly,

even using only the top 10 SLDA-SNPs result in well distinguished clusters (Fig 3, bottom

right corner).

To further assess the congruence of the DAPC results on the SLDA-SNPs data sets with the

one from the whole data set, we checked how many times a certain strain grouped together

with the same strains in the SLDA-SNPs and in the full SNP dataset DAPC analyses. We did

this by examining each strain in the a SLDA-SNP data set, and calculating the percentage of

strains that co-occur with that strain in its cluster assigned by the SLDA-SNP DAPC and the

full data-set DAPC (See Methods for details). Fig 4 shows the percentage of strains co-occur-

ring in the same cluster averaged for each SLDA-SNP. This metric gives an indication of how

Fig 4. The median co-occurence of strains in clusters generated by DAPC. Clusters generated using the whole SNP

dataset and DAPC using the number of SLDA-SNPs indicated on the x-axis. Boxes indicate the upper and lower quartiles, and

whisker length is equal to 1.5 times the interquartile range.

https://doi.org/10.1371/journal.pntd.0005949.g004
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frequently strains are grouped together in the same cluster, using the smaller versus the larger

SNP dataset. The percentage is 57% while using 10,000 to 250 SLDA-SNPs, and 33%, when

using as few as 10 SLDA-SNPs.

As a test of the classification ability of the SLDA-SNPs, we repeated the DAPC analysis

using each of the 8 SLDA-SNP sets after first removing 21 strains (approximately 25% of the

strains) to see how often the removed strains fell into one of the 7 clusters they were assigned

to by the full data set. We used the “predict.dapc” function to use the discriminant analysis

made by DAPC to classify the excluded strains. This process was repeated with 10 sets of 21

randomly chosen strains. The average number classified correctly for each SLDA-SNP set is

shown in Fig 5. The results vary for different numbers of SNPs, but at least 40% of the strains

are classified correctly when using at least 50 SNPs. This variability is likely due to randomness

in the strains chosen for each test. While the SNPs are ranked based on their ability to distin-

guish the strains in our study, some SNPs may be better or worse at distinguishing certain

strains that make up the test set.

We next examined the genotypes of each strain for the top-ranked SLDA-SNPs to see how

many SLDA-SNPs were required to generate a unique combination of genotypes for each

strain. The genotypes of the top 84 SLDA-SNPs combined to generate a unique genotype for

each strain, suggesting that using SNPs ranked by SLDA provides a powerful way to identify

strains using a select few informative SNPs (84 out of 162,210, less than 0.1%) that represents

the genetic relationships of the strains based on whole genome data (Fig 5).

Discussion

Evolutionary relationships

Given the medical and economic importance of trypanosomiasis, we searched the genomic

data for markers, which could be used to understand the evolutionary relationships among

African trypanosomes. We identified 162,210 SNPs among the 83 Trypanozoon samples in our

study. The phylogenetic and clustering analyses elucidate the evolutionary relationship among

the strains (Fig 1) and group them in clusters of genetically similar strains (Fig 2), yet none of

them reflect the traditional taxonomy implied by their taxonomic rank.

In the ML phylogeny (Fig 1) none of the sub-species and species form monophyletic clus-

ters, according to their taxonomic rank. The only exception is represented by the clade that

grouped all Tbg-1 strains, confirming their close genetic relationship, most likely due to their

mostly asexual nature [15]. This reinforces the idea, suggested by others, that the different spe-

cies or sub-species are actually morphotypes within the same genetic meta-population rather

than distinct evolutionary lineages as is implied by their current taxonomic ranks. This is espe-

cially apparent for the Tbr strains, where they are frequently found in clades near Tbb strains,

and more distant from other Tbr strains. For Tev, our conclusions are weakened by the fact

that only 4 strains are included in this analysis. Interestingly, the three type A strains we ana-

lyzed (S1 Table) cluster together, with a Tbb strain, as the next most closely related strain to

that clade, while the only Type B strain (KETRI 2479) is in a relatively distant branch of the

phylogeny.

Geographic origin is reflected weakly in the ML phylogeny. The strains from Western

Africa (shaded in light or dark blue in Fig 1) are found in two of the major branches, while the

Eastern African strains are found throughout the phylogeny. One of these branches contains

the Tbg-1 strains, which come largely from the DRC. In this instance, sub-species classification

as Tbg-1 rather than geographic origin may drive membership in this clade. The only other

strain from DRC (SW3_87, a Tbb strain) is found in the clade with the other Western African

strains, supporting this observation. Tbb and Tbr strains from Eastern Africa are found
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throughout the rest of the phylogeny and do not seem to group according to country of origin.

Therefore, while there does appear to be a geographic signal in the data, it does not fully

explain similarities between the strains, and none of the regions could be assigned exclusively

to a single clade. Sistrom et al. [10], who performed a comparative genomic analysis of 23 Tbr
and Tbb strains, including some of those studied in our analysis, also found some evidence of

geographic structure. They performed a clustering analysis and found a significant association

between geographic origin and cluster membership. As an example, all of the strains from the

Ivory Coast in our analysis were also included in [10]. In both studies, all of the Ivory Coast

strains were assigned to one cluster. As another example, our analysis contains 8 strains of

Tanzanian origin (4 of which were included in [10]) and all but one are included in same

Fig 5. Average number of correctly classified strains. Average number of strains (+/- standard error of the mean) correctly classified

using the DAPC results from the eight different SLDA-SNPs datasets (number of SNPs used indicated on the x-axis). Averages are

based on 10 runs, and the highest score possible per run is 21. The blue line indicates the number of unique genotypes present when

using the number of SLDA-SNPs on the x-axis, expressed as a percentage (83 unique genotypes are possible). See methods for further

details.

https://doi.org/10.1371/journal.pntd.0005949.g005
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DAPC group. The strains from Uganda and DRC, which make up the majority of the strains

in our study, though, do not form monophyletic clades. However, strains from Western sub-

Saharan Africa are generally well separated from the Eastern strains. Taken together, geo-

graphic origin appears to contribute to the genetic structure of the African trypanosomes ana-

lyzed, but does not completely explain it.

The phylogenetic analyses were complemented by the results of the multivariate analyses,

which focus on identifying how many genetically distinct groups of strains are present in our

dataset, regardless of their phylogenetic relationships. The DAPC results group strains in 7

clusters, indicating the presence of genetic differentiation among them. However, as in the

phylogenetic analyses, the strains do not group according to their traditional taxonomic classi-

fication or geographic origin. Clusters tend to include more than a single species or sub-spe-

cies, although cluster 6 contains all Tbg-1 strains and includes only one other non-Tbg strain

(strain D16). Cluster 7 groups all four Tev strains analyzed in this study, a result at odds with

the topological assignment in Fig 1, where the only Type B Tev strain falls in a differ clade

from the other 3 Tev strains (S1 Table). However, cluster 7 also contains Tbb and Tbr strains,

ranging from the Ivory Coast to Ethiopia, so the members of this cluster are not very similar

due to geography or taxonomy. A larger sample size of Tev strains will be able to more fully

address the question of Tev phylogeny among the different types. A recent genome analysis

based on a few Tev strains confirmed the origin of type B and A from different Tbb strains.

This result has been recently corroborated by a microsatellite survey of 41 Tve isolates from

Kenya [43]. In general, a revision of the taxonomic ranks of the African trypanosomes that

reflects both their evolutionary history and their adaptation [6] is warranted.

Marker selection

While neither geography nor the traditional sub-species/species designations fully explain the

patterns of genetic structure observed in the African trypanosomes strains in this study, the

observation of genetic structure can be used to develop assays based on strain-specific markers.

These assays can be used, for instance, to track the origins of new outbreaks by genotyping a

large number of strains with relatively little effort. This type of tool can also facilitate popula-

tion level analyses by enabling researchers to look at the pattern and amount of spread over

space and time for a large number of strains, allowing for quick identification of possible

recombinant genotypes between different pathogenic strains.

However, classifying and tracking strains cannot rely on whole genome comparisons, as

whole-genome sequencing of parasite populations is still expensive and non-trivial. Our analy-

sis suggests that careful selection of SNPs, using statistical methods such SLDA, can yield com-

parable information to genome-wide data. Tests of the ability of SNPs to assign strains to

predefined clusters showed that using 10,000 SLDA-SNPs resulted in an average of 13 out of

21 correct classifications per test, though this number dropped to approximately 5 per test

when using 10 to 20 SLDA-SNPs (Fig 5). Although apparently disappointing, the results of this

type of analyses are encouraging, when considering that this test is quite conservative, using

only the information from two-thirds of the strains, and the remaining third for testing. Addi-

tional strains would likely increase the classification power. The informativeness of the

SLDA-SNPs is further validated by the observation that 84 SLDA-SNPs are sufficient to distin-

guish each of the strains in our study, when using them in genotypic combinations rather than

as isolated SNPs. Using as few as 50 SLDA-SNPs still yielded 73 unique genotypes (Fig 5).

These results are encouraging since we could distinguish very closely related strains and com-

ing from the same location, such as the Tbg strains analyzed in this study (see [32]). This find-

ing could lead to the development of field friendly barcode-based assay, as has been done for
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other parasites, such as Plasmodium falciparum [44], where TaqMan genotyping assays have

been developed using only 24 SNPs [44,45].

In conclusion, this analysis takes advantage of genomic data coupled with statistical meth-

ods not generally used for strain identification to select a small subset of SNPs that have similar

information content as the whole genome data to uniquely identify strains. This approach can

be used in a variety of contexts and with different types of organisms, as long as genome data

for a representative group of individuals is available, allowing the development of efficient and

relatively inexpensive ways to screen for genomic variation a large number of samples, while

still retaining the information content provided by whole genome analyses.

Supporting information

S1 Table. List of strains. Tbb = Trypanosoma brucei brucei, Tev-Type A = Trypanosoma evansi
Type A, Tev-Type B = Trypanosoma evansi Type B, Tbg-1 = Trypanosoma brucei gambiense
group 1, Tbg-2 = Trypanosoma brucei gambiense group 2, Tbr = Trypanosoma brucei rhode-
siense. The final column lists the reference where the genome was first published. NA indicates

this is the first time the genome is described.

(XLS)

S1 Fig. Unrooted Neighbor-joining phylogeny of all 83 Tb strains. Based on 162,210 SNPs.

Color of strain names indicates the sub-species: blue: Tbb, red: Tbr, green: Tbg, purple: Tev.

(TIFF)

S2 Fig. Comparison of Bayesian Information Criterion (BIC) for varying number of clus-

ters identified by k-means clustering of SNP-based principal components. BIC plotted for

k = 1–40. Clustering based on the 162,210 SNP dataset.

(TIF)

S3 Fig. DAPC using the whole 162,210 SNP data set, with k = 11 clusters, based on k-

means clustering. Part A shows strains colored by cluster, and are connected by lines to the

cluster’s centroid. The region enclosed by the dashed square is expanded in the inset for clarity.

Part B shows the same data as in A, but with the strains colored according to their named

taxon. The circles representing the clusters are the same as in part A for comparison.

(TIF)
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