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Metabolomics combined with network 
pharmacology exploration reveals 
the modulatory properties of Astragali Radix 
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Abstract 

Background:  Astragali Radix (AR) is widely-used for improving liver fibrosis, but, the mechanism of action has not 
been systematically explained. This study aims to investigate the mechanism of AR intervention in liver fibrosis based 
on comprehensive metabolomics combined with network pharmacology approach.

Materials and methods:  UPLC–Q-TOF/MS based metabolomics technique was used to explore the specific metabo-
lites and possible pathways of AR affecting the pathological process of liver fibrosis. Network pharmacology analysis 
was introduced to explore the key targets of AR regarding the mechanisms on liver fibrosis.

Results:  AR significantly reduced the levels of ALT, AST and AKP in serum, and improved pathological characteristics. 
Metabolomics analysis showed that the therapeutic effect of AR was mainly related to the regulation of nine metabo-
lites, including sphingosine, 6-keto-prostaglandin F1a, LysoPC (O-18:0), 3-dehydrosphinganine, 5,6-epoxy-8,11,14-
eicosatrienoic acid, leukotriene C4, taurochenodesoxycholic acid, LysoPC (18:1 (9Z)) and 2-acetyl-1-alkyl-sn-glycero-
3-phosphocholine. Pathway analysis indicated that the treatment of AR on liver fibrosis was related to arachidonic 
acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism and primary 
bile acid biosynthesis. Validation of the key targets by network pharmacology analysis of potential metabolic markers 
showed that AR significantly down-regulated the expression of CYP1B1 and up-regulated the expression of CYP1A2 
and PCYT1A.

Conclusion:  Metabolomics combined with network pharmacology was used for the first time to clarify that the 
treatment of AR on liver fibrosis, which is related to the regulation of arachidonic acid metabolism and ether lipid 
metabolism by modulating the expression of CYP1A2, CYP1B1 and PCYT1A. And the integrated approach can provide 
new strategies and ideas for the study of molecular mechanisms of traditional Chinese medicines in the treatment of 
liver fibrosis.
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Background
As a worldwide clinical problem, liver fibrosis is a wound 
healing process with recurrent chronic liver damage [1]. 
It can accelerate the development of chronic liver dis-
ease by destroying normal liver parenchyma, eventually 
leading to cirrhosis, liver failure and even primary liver 
cancer [2]. Although the pathogenesis of liver fibro-
sis, such as inflammatory response, hepatic stellate cell 
activation and extracellular matrix formation, has been 
widely recognized, it has not got an effective and power-
ful treatment [3, 4]. Therefore, it is necessary to develop 
an effective treatment tool for liver fibrosis with high effi-
ciency, low side effects and multiple targets.

Astragali Radix (AR), is a worldwide used traditional 
Chinese medicine  (TCM) is the dried root of Astragali 
radix membranaceus (Fisch.) Bge. or Astragali radix 
membranaceus (Fisch.) Bge. var. mongholicus (Bge) 
Hsiao [5, 6]. In traditional Chinese formula, AR is often 
used for the treatment of liver fibrosis [6, 7]. Funda-
mental studies have exhibited the anti-hepatic fibrosis 
effects of AR by inhibiting TGF-β/Smads signaling [8, 9]. 
In addition, AR and its active ingredients have obvious 
protective effects on cholestasis [8], carbon tetrachlo-
ride [10], dimethyl nitrosamine [8], acetaminophen [11] 
and ethanol [12] induced liver injury. Moreover, studies 
have shown that AR is safe without obvious toxicity, side 
effects or genotoxicity [13, 14]. Therefore, AR exhibits 
significant advantages for the treatment of liver fibrosis.

Metabolomics can characterize the dynamic changes of 
metabolites throughout the biological system providing 
a powerful platform for discovering new biomarkers and 
biochemical pathways [15, 16], improving diagnosis [17], 
treatment and prediction [18, 19] in complex systems. 
Although some studies have analyzed the metabolites of 
AR in vivo, only the changes of endogenous metabolites 
of AR from different habitats in normal mice for quality 
evaluation were compared [5, 20]. The analysis of metab-
olite changes of AR in diseased mice is currently lacking. 
In addition, network pharmacology has become a power-
ful tool for studying complex diseases to reveal the com-
plex relationships between proteins, diseases and drugs 
[21]. This method helps to determine the main active 
ingredients of drugs and their role in the treatment of 
various diseases [22, 23]. A combination of metabolomics 
and network pharmacology can link endogenous metab-
olites to disease targets, further to uncover the molecular 
mechanisms of TCM  with multi-component and multi-
target characteristics [24].

This study combined the UPLC–Q-TOF/MS serum 
metabolomics and network pharmacology techniques to 
systematically explain the modulatory properties of AR 
on liver fibrosis. Multivariate data analysis was used to 
screen potential metabolite makers and corresponding 

metabolic pathways to explore the function of AR. The 
feasibility of AR for the treatment of liver fibrosis was 
further confirmed by constructing a component–target–
metabolite network to identify the key targets on liver 
fibrosis (Fig. 1).

Methods
Reagents
Colchicine was got from XiShuangBanNa BanNa Phar-
maceutical Co. (Yunnan, China). Carbon tetrachloride 
(CCl4) was purchased from Tianjin Guangfu Chemical 
Research Institute (Tianjin, China). Alanine amino trans-
ferase (ALT), aspartate amino transferase (AST), alka-
line phosphatase (AKP) detection kits were bought from 
Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China). alpha smooth muscle actinα (α-SMA) and trans-
forming growth factor-beta (TGF-β1) were bought from 
Cell Signaling Technology (United States). GAPDH was 
bought from ABclonal (China). Quercetin and nicotinic 
acid were bought from Chengdu Cloma Biological Co., 
Ltd (China).

Preparation of AR water extract
AR (the dried root of Astragali radix membranaceus 
(Fisch.) Bge.) was purchased from Beijing Lvye pharma-
ceutical co. (Beijing, China). Firstly, AR was extracted 
with boiling water (1/10, w/v) for 2  h. Then, it was 
extracted twice with boiling water (1/8, w/v) for 1.5  h 
each time. The aqueous extract of AR was dried to power 
by freeze vacuum drying oven, and the final yield of pow-
der was about 40.08%. A Q-TOF LC/MS analysis was 
carried out to identify the main constituent in the tested 
extract (Additional file 1: Figure S1 and Table S1).

The active ingredients of AR extract were identified 
on Triple TOF 4600 high-resolution mass spectrometry 
system (AB SCIEX, USA), and 3 μL of each sample was 
injected into ZORBAX Eclipse C8 analytical column 
(1.8  μm i.d., 2.1  mm i.d. × 100  mm, Agilent Technolo-
gies, USA). The column temperature was maintained at 
35 °C. The flow rate was set as 0.25 mL/min. the mobile 
phase was solvent A (water with 0.1% formic acid) and 
solvent B (acetonitrile with 0.1% formic acid). The gra-
dient was used as follows: a linear gradient of 0% B over 
initial-1.0 min, 0–5% B over 1.0–8.0 min, 5–55% B over 
8.0–20.0 min, 55% B in 20.0–26.0 min and 55–5% B over 
26.0–30.0  min. The eluent was directly introduced into 
the mass spectrometer. The mass spectrometry condi-
tions were as follows: the electrospray capillary voltage 
was 5.5  kV in positive ionization mode and 4.5  kV in 
negative ionization mode. The Gas1 and Gas2 were 55 
Psi, the gas temperature was 600  °C, and the collision 
voltage was 40 V in the positive and negative ionization 
mode. The full scan mode was adopted and with the aid 
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of information correlation acquisition and background 
subtraction technology. The first scanning frequency was 
0.2 s and the second scan frequency was 0.12 s.

Animal experiments and sample collection
180–200 g male Sprague–Dawley rats were offered by the 
China food and drug certification research institute (Per-
mission NO. SCXK(Jing)-2014-0013) and housed with 
same feeding environment (temperature: 25  °C ± 2  °C, 
humidity: 55% ± 5% 12:12 h light: dark cycle) in the Cen-
tral Animal Laboratory of The Fifth Medical Center of 
PLA General Hospital.

Thirty-six rats were randomly divided into six groups. 
The control group was only given with olive oil and the 
other five groups were given with intraperitoneal admin-
istration of olive oil (1:1, v/v) dissolved CCl4 (2  mL/kg) 
twice a week for 8  weeks. Then AR (10.8, 5.4, 2.7  g/kg/
day) and colchicine (0.2 mg/kg/day, as a positive control 
group) were administered by intragastric administration 
for 6 weeks, except for the control and model groups, and 
CCl4 was given intraperitoneally at the same time.

After 12 h of the last treatment, the rats were sacrificed 
and liver and blood were collected. The blood was cen-
trifuged at 3500  rpm for 15  min to separate the serum 
without hemolysis. Serum and liver tissue were stored 
at − 80  °C for the biochemical parameters and metabo-
lomics analysis. All animal experiments were approved 

by the Ethical Committee of Fifth Medical Center of PLA 
General Hospital of China.

Serum levels of ALT, AST and AKP were tested accord-
ing to the instruction of kits. Liver tissue was fixed in 
10% neutral buffered formalin for 24  h. All fixed livers 
were embedded in paraffin, and then were cut into sec-
tions (about 4–5 μm thick) by using a microtome. Hema-
toxylin–eosin (HE) and Masson staining were used for 
highlighting the liver damage and collagen deposition, 
respectively.

Immunofluorescence and immunohistochemistry analysis
To measure immunofluorescence, liver tissues were 
sliced into 14  μm thick sections and then blocked with 
blocking buffer containing 0.01  M phosphate buffered 
saline (PBS), 0.1% Triton X-100 and 5% normal goat 
serum solution for 60  min. Subsequently, the sections 
were incubated with primary antibody [TGF-β1 (1:100)]. 
The sections were washed and incubated with an anti-
rabbit Alexa Fluor 488-conjugated IgG secondary anti-
body. 4,6-diamidino-2-phenylindole counterstaining was 
used to stain the nuclei. The sections were cover-slipped 
with fluorescent mounting medium.

To measure immunohistochemical, liver tissues were 
immersed in 2% H2O2 for 25  min at room temperature 
and then blocked with 5% rabbit serum for 30 min. Then, 

Fig. 1  Scheme of the study
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the primary antibody [α-SMA (1:100)] was added for 
incubation at 4 °C overnight. After washing with PBS, the 
liver sections were incubated with horseradish peroxi-
dase-conjugated secondary antibody for 50 min at room 
temperature. Liver sections were immersed in diamin-
obenzidine for 3 min and then stained with ethanol dehy-
drated hematoxylin. The stained areas of the sections 
were observed under an optical microscope of 200 nm.

Western blotting
Liver tissue (80 mg) was homogenized and lysed in ice-
Cold lysis buffer with PMSF and protein phosphatase 
inhibitor mixture, and then centrifuged at 12,000×g and 
4  °C for a 10 min. The supernatant was western blotted 
with 10% SDS-PAGE and the blot was transferred to the 
polyvinylidene fluoride membrane. Subsequently, it was 
incubated with 5% skim milk powder in blocking buffer 
for 2 h. And polyvinylidene fluoride membrane incubated 
with α-SMA (1:1000) and GAPDH (1:2000) primary anti-
bodies at 4  °C with gentle shaking overnight. Finally, 
after incubation with the secondary antibody for 1 h, the 
membrane was washed 3 times with TBST for 5 min each 
time and the immunoreactivity bands were detected by 
chemiluminescence detection kit.

Sample preparation and UPLC–Q‑TOF/MS assay
600 μL of methanol was added to 200 μL of serum and 
was mixed. The sample was allowed to stand at 4  °C for 
20  min and then centrifuged at 12,000  rpm for 10  min. 
Finally, the supernatant was absorbed and filtered 
through 0.22  μm micropore filter. The filtrate was col-
lected for analysis. For the quality control (QC) samples, 
taken 20 μL from each prepare sample extract and mix, 
used the rest of the samples for Q-TOF LC/MS test.

An Agilent 6550 iFunnel Q-TOF LC/MS (Agilent Tech-
nologies, USA) system was used for serum metabolic 
spectrum analysis. A 4  μL aliquot of each sample was 
injected into the system on a ZORBOX RRHD C18 ana-
lytical column (2.1 mm i.d. × 100 mm, 1.8 μmi.d., Agilent 
Technologies, USA) for sample separation at 30  °C. Sol-
vent A (water containing 0.1% formic acid) and solvent 
B (acetonitrile containing 0.1% formic acid) were used as 
the mobile phase for a linear gradient separation at a flow 
rate of 0.30 mL/min for 25 min a linear gradient of 100% 
A over 0–1.0 min, 100–60% A over 1.0–9.0 min, 60–10% 
A over 9.0–19.0 min, 10–0% A over 19.0–21.0 min, 100% 
B over 21.0–25.0 min.

Both positive and negative mode electrospray ioniza-
tion sources (ESI) were used. The electrospray source 
parameters are set as follows: electrospray capillary volt-
age is 3.5  kV in negative ionization mode and 4  kV in 
positive ionization mode, mass range is from m/z 50 to 

1200, gas temperature is 225  °C, gas flow rate is 13  L/
min, nebulizer is set to 20 psi, sheath gas temperature is 
275 °C, sheath gas flow is 12 L/min, and nozzle voltage is 
2000 V in both negative and positive modes.

Data extraction and multivariate analysis
MassHunter Profinder software (Agilent, California, 
United States) was used to extract sample data and per-
form peak detection and alignment. The full scan mode 
is applied to the mass range of m/z 80–1000 and sets 
the initial and final retention times for data collection. 
Data was normalized using MetaboAnalyst 4.0 and then 
analyzed by principal component analysis (PCA) and 
orthogonal-partial least squares-discriminant analysis 
(OPLS-DA) using SIMCA-P 14.1 software (Umetrics, 
Umea, Sweden).

Biomarkers identification and pathway enrichment 
analysis
Biomarkers were discovered by screening for meta-
bolic differences. Differential metabolite satisfying 
the conditions (VIP>1.0, |p(corr)| ≥ 0.58 and P<0.05 
in ANOVA) were used as potential biomarkers in 
the OPLS-DA analysis [24]. Metabolites (molecular 
weight error < 20 ppm) were identified based on precise 
molecular weight in the Human Metabolome Database 
(HMDB) and Metlin database. The identified com-
pounds were resubmitted to MetaboAnalyst 4.0 to ana-
lyze their signaling pathways.

Identification of drug targets and network construction
The chemical components of AR (oral bioavailability 
(OB) ≥ 30% and a drug-likeness (DL) > 0.18) were col-
lected in the TCMSP database. And the MBROLE 2.0 
database was used to collect the protein targets for 
potential metabolites. UniProt ID was used to replace 
different types of protein IDs, and then a metabolic–
target–component interaction network was established 
through protein interaction (PPI) information. Finally, 
the network was visualized and analyzed using Cytoscape 
3.6.1 software.

Real‑time polymerase chain reaction (RT‑PCR) detection
Total RNA was extracted from liver tissue by trizol rea-
gent and RNA (2  μg) was transcribed into cDNA by 
PrimerScript RT regent kit. The cDNA was subsequently 
subjected to PCR amplification by ABI Step One Plus. 
Data analysis was performed by 2−ΔΔCT method. The 
primers are listed in Table 1.

Statistical analysis
Data were analyzed by one-way ANOVA and Duncan’s 
multi-range test. The SPSS computer program was used 
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to analyze the mean of Windows. Results are expressed 
as mean ± standard deviation (SD). P < 0.05 was consid-
ered statistically significant.

Results
AR reduced pathological damage in CCl4‑induced liver 
fibrosis
As shown in Fig. 2a–c, serum ALT, AST and AKP lev-
els in the model group were significantly increased 
(P < 0.01) compared with that in the control group, 

Table 1  Primer sequences used for RT-PCR

Gene Forward Reverse

CYP1A2 GTG​GTG​GAA​TCG​GTG​GCT​
AAT​GTC​

CTT​GCT​GCT​CTT​CAC​GAG​GTT​
GAG​

CYP1B1 CGA​GAG​TTG​GTG​GCA​GTG​
TTGG​

CTC​GGC​ATC​GTC​GTG​GTT​GTAC​

PCYT1A AGA​CGA​GGT​GGT​GAG​GAA​
CGC​

TGG​AGA​TGC​CTT​CTG​TCC​TCT​
GTG​

α-SMA GGC​CAC​TGC​TGC​TTC​CTC​TTC​ TGC​CCG​CCG​ACT​CCA​TTC​C

TGF-β1 ATG​GTG​GAC​CGC​AAC​AAC​GC CTG​GCA​CTG​CTT​CCC​GAA​TGTC​

GAPDH GTC​CAT​GCC​ATC​ACT​GCC​ACTC​ GAT​GAC​CTT​GCC​CAC​AGC​CTTG​

Fig. 2  Effect of AR on liver function and histopathology of liver fibrosis. a AR decreased serum AST level. b AR decreased serum ALT level. c AR 
decreased serum AKP level. d Hematoxylin and eosin (HE) stained liver section in six groups. Original magnification, ×200, ×400. e Histological 
examination of liver section with Masson stain. Original magnification, ×200, ×400. Blue areas show collagen fibers and damaged liver tissue. 
Data were expressed as mean ± SD (n = 6). #P < 0.05, ##P < 0.01 compared with control group; *P < 0.05, **P < 0.01 compared with model group. ALT 
alanine amino transferase, AST aspartate amino transferase, AKP alkaline phosphatase
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respectively. And serum ALT, AST and AKP concen-
trations were attenuated in a dose-dependent manner 
by AR. Compared with the model group, ALT, AKP 
and AST levels were most significantly reduced after 
administration of 10.8  g/kg AR alone (P < 0.01). His-
tologic analysis was performed using HE staining and 
MASSON staining. As shown in Fig. 2d, the liver struc-
ture of rats in the control group was normal, and several 
histological features of the liver in CCl4-administration 
group included pericentral necrosis and fibrosis, vacu-
olar steatosis, inflammatory cell infiltration, and cyto-
plasmic degeneration. AR treatment of animals exposed 
to CCl4 can effectively improve liver necrosis, fibro-
sis, and reduce inflammatory infiltration, especially in 
10.8  g/kg AR group. In the liver section of MASSON 
staining, the blue area represented the deposited col-
lagen. The results showed that a large amount of col-
lagen was deposited around the hepatic sinus of the 
model group. And compared with model group, 10.8 g/
kg AR could effectively reduce collagen deposition and 
improve liver fibrosis (Fig. 2e).

AR reduced CCl4‑induced liver fibrosis
α-SMA and TGF-β1 are two key markers of CCl4-induced 
liver fibrosis. Western blot, immunohistochemistry and 
immunofluorescence were used to analyze the correla-
tion between AR and liver fibrosis. As shown in Fig. 3a, 
western blotting showed that the expression of α-SMA 
protein in the model group was significantly higher 
than that in the control group. And α-SMA expres-
sion was decreased in a dose-dependent manner by AR. 
These results were consistent with the results observed 
via immunohistochemistry (Fig.  3b). Immunofluores-
cence showed that TGF-β1 expression in model group 
increased significantly and the expression of TGF-β1 was 
lower than that in the model group after administration 
of AR, especially in the 10.8 g/kg AR group (Fig. 3c). Fur-
thermore, the mRNA levels of α-SMA and TGF-β1 were 
detected by RT-PCR. The results of RT-PCR confirmed 
the above results again (Fig. 3d, e). In conclusion, these 
results suggest that AR can reduce CCl4-induced liver 
fibrosis in a dose-dependent manner. Therefore, 10.8  g/
kg of AR was selected as the optimal effective dose for 

Fig. 3  AR alleviated α-SMA and TGF-β1 expression during liver fibrosis. a Western bolt analysis for α-SMA. b Immunohistochemical analysis for 
α-SMA. c Immunofluorescence analysis for TGF-β1. d RT-PCR analysis for α-SMA. e RT-PCR analysis for TGF-β1. Data were expressed as mean ± SD 
(n = 6). #P < 0.05, ##P < 0.01 compared with control group; *P < 0.05, **P < 0.01 compared with model group. α-SMA alpha smooth muscle actin, 
TGF-β1 transforming growth factor-beta
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metabolic analysis and subsequently screening for meta-
bolic differences.

Quality control
QC can determine whether the systematic error of the 
whole experiment is within the controllable range. As 
shown in Fig. 4, the cluster analysis of QC samples rela-
tive to the experimental samples showed that the QC 
samples were closely clustered, especially in positive ion 
mode. The above results prove that the method has good 
stability and repeatability.

Multivariate statistical analysis
Firstly, SIMCA-14.1 software was used to distinguish the 
control, model and 10.8 g/kg of AR groups in the serum 
metabolic phenotypes and metabolites by PCA. The pur-
pose of PCA was description, which is used to observe 
the separation between different groups of metabolites 
[25, 26]. The results showed that a significant classifi-
cation between the clustering of the control and model 
groups and the control and AR groups was observed in 
both the ESI+ and ESI− modes (Fig.  5). As shown in 
the Additional file 2: Figure S2, the corresponding load-
ing scores plots from PCA could well summarize the 

influence of variables on the model. Subsequently, mul-
tivariate analysis was used to explore which metabolites 
contributed to these differences.

OPLS-DA, as a pattern recognition approach, was 
designed for predictions to identify differential metabo-
lites that were significantly changed between control, 
model and 10.8  g/kg of AR groups [25, 26]. The OPLS-
DA could only be used for screening differentially 
expressed metabolites between the two groups [27]. 
And this study aimed to explore the specific metabolites 
regulated by AR in rats with liver fibrosis. Therefore, we 
respectively identified differential metabolites from con-
trol vs model groups and model vs 10.8 g/kg AR groups 
in OPLS-DA mode. Metabolites identified between the 
different groups are listed in Additional file 3: Tables S2 
and S3. The same differential metabolites were chosen for 
subsequent analysis. In the OPLS-DA mode established 
from the serum data of the control and model groups, 
the variance of the response variable (R2Y) in the positive 
and negative modes were 1 and 1, and the variance for 
modeling in cross-validations (Q2) were 0.774 and 0.777, 
respectively (Fig.  6a and Additional file  4: Figure S3A). 
For serum data of the model and AR groups in positive 
and negative modes, R2Y values were 0.999 and 0.999 

Fig. 4  Principal component analysis (PCA) score plot of quality control (QC) samples. a ESI+ mode. b ESI− mode

Fig. 5  Principal component analysis (PCA) score plot of normal, model and 10.8 g/kg AR groups. a ESI+ mode. b ESI− mode
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with Q2 0.778 and 0.778, individually (Fig. 6b and Addi-
tional file 4: S3B). The relevant parameter demonstrated 
that the modes had good explanatory and predictive 
ability. The permutation tests (n = 100) were performed 
to validate the predictive ability of modes (Fig. 6c, d and 
Additional file 4: S3C, D). The results showed that all R2 
and Q2 values were lower than that in the permutation 
tests, demonstrating the goodness of fit and better pre-
dictability of the OPLS-DA mode. The S-plot was used 
to study the inherent clustering variables. In the corre-
sponding S-plot, variables whose VIP value were over 1 
at average and P(corr) absolute values over 0.58 means 
can be considered as potential biomarkers (Fig.  6e, f 
and Additional file  4: S3E, F). In order to characterize 

differential metabolites more comprehensively, the 
potential differential metabolites obtained under ESI+ 
and ESI− modes were combined for subsequent analysis 
[28].

Identification of potential metabolites in AR treatment
During the potential metabolite identification, 595 
potential differential metabolites were selected based 
on the principles that VIP > 1.0 and |P(corr)| ≥ 0.58 in 
the S-plots as candidates for ANOVA analysis. Can-
didate variables with significant differences were then 
screened using ANOVA analysis. Candidates with sig-
nificant changes were identified as biomarkers based on 
the METLIN and Metaboanalyst databases. A total of 9 

Fig. 6  The OPLS-DA score plots, S-plots and 100-permutation test generated in ESI+ mode. OPLS-DA score plots were the pair-wise comparisons 
between the control and model groups (a) as well as between the model and AR groups (b). The 100-permutation test of the OPLS-DA mode was 
for the control and model groups (c) as well as for the model and AR groups (d). S-plots of the OPLS-DA mode for the control and model groups (e) 
as well as for the model and AR groups (f)
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metabolic differences were identified, 7 in ESI+ mode 
and 2 in ESI− mode, which were marked with red in 
the S-plots diagram (Fig.  6E, F and Additional file  4: 
S3E, F). As shown in Fig. 7, the nine potential biomark-
ers were sphingosine (C00319), 6-keto-prostaglandin F1a 
(C05961), LysoPC (O-18:0) (C04317), 3-dehydrosphin-
ganine (C02934), 5,6-epoxy-8,11,14-eicosatrienoic acid 
(C14768), leukotriene C4 (C02166), taurochenodes-
oxycholic acid (C05465), LysoPC (18:1 (9Z)) (C04230), 
2-acetyl-1-alkyl-sn-glycero-3-phosphocholine (C04598). 
The distribution patterns of 9 potential metabolites in 
the three groups were visually displayed by heatmap. 
And vertical cluster analysis was used to demonstrate 
the difference between model and control groups and the 
equivalent efficacy of AR (Fig.  8b). The corresponding 
formula and parameters including retention time, m/z 
and differences between groups were listed in Table 2.  

Pathway analysis
To explore the mechanism of AR on liver fibrosis, the 
metabolic pathways were constructed by importing the 
identified potential metabolites into MetaboAnalyst 4.0. 
It could be concluded that five pathways including ara-
chidonic acid metabolism, ether lipid metabolism, sphin-
golipid metabolism, glycerophospholipid metabolism 
and primary bile acid biosynthesis were responsible for 
regulating CCl4-induced liver fibrosis (Table 3). As shown 
in Fig.  8a, the top three pathways were arachidonic 
acid metabolism, ether lipid metabolism and sphin-
golipid metabolism, which played a key role in reflecting 
changes. The impact-values of metabolites were 0.051, 
0.07375 and 0.15499, respectively. The MetScape and 
KEGG pathway analysis showed that the nine metabolic 
differences and five pathways were directly or indirectly 
related, as shown in Additional file  5: Figure S4. Based 
on the above results, we mapped the signaling networks 
associated with differentially expressed metabolic path-
ways (Fig. 8c).

“Potential metabolite–target–component” interactive 
network and analysis
To visually reveal the interaction among the poten-
tial metabolites, protein targets and components of AR 
regulation, a potential metabolite–target–component 
interaction network was constructed by collecting drug 
targets and targets associated with potential metabolites. 
As shown in Fig. 9a, 54 components interacted with 927 
targets and 8 metabolites were involved in the potential 
metabolite–target–component interaction network. The 
next analysis showed 6 drug targets, including 2-acylg-
lycerol O-acyltransferase 2 (Q3SYC2), cytochrome P450 
1A2 (P05177), choline-phosphate cytidylyltransferase A 
(P49585), cytochrome P450 3A4 (P08684), cytochrome 

P450 1B1 (Q16678), and cytochrome P450 2A6 (P11509), 
directly regulate the 3 potential metabolites (Fig. 9b). The 
6 drug targets were directly regulated by the 6 chemi-
cal components of AR, including daidzein, nicotinic 
acid, kaempferol, coumarin, palmitic acid and quercetin 
(Fig. 9b).

Verification of network pharmacology
RT-PCR and LC–MS/MS methods were used to verify 
the accuracy of network pharmacology prediction results. 
As shown in Fig. 10a, b, the expression of CYP1A2 and 
PCYT1A were significantly reduced in the model group 
compared to the control group (P < 0.01). And the lev-
els of CYP1A2 and PCYT1A were significantly up-reg-
ulated after AR treatment in a dose-dependent manner 
(P < 0.01). Furthermore, the expression of the CYP1B1 in 
CCl4-induced hepatic fibrosis rats was significantly inhib-
ited after AR treatment (P < 0.01, Fig. 10c). In Fig. 10d, e, 
the mass spectrometry data of AR aqueous extract and 
reference substance showed that quercetin and nico-
tinic acid existed in AR aqueous extract, and the related 
parameters were shown in Table 4.

Discussion
Liver fibrosis is a chronic progressive liver disease with 
complex pathological mechanisms and there are no safe 
and effective treatment tools [1, 4]. The mean of com-
bining metabolomics with network pharmacology to dig 
data extensively can effectively overcome these problems 
[24, 29]. Metabolomics analyzes and detects the levels 
of small molecules in body fluids to determine which 
compounds have significant abnormalities and to reveal 
the mechanisms of disease development [30]. Network 
pharmacology reveals the molecular mechanism of drug 
therapy by analyzing the interactions between chemical 
components and disease-related macromolecule targets 
[23]. Therefore, in this study, UPLC–Q-TOF/MS-method 
based rat serum metabolomics combined with network 
pharmacology was firstly used to clarify the protective 
effect of AR on liver fibrosis, which also provided an in-
depth understanding of the mechanism of AR on liver 
fibrosis.

Serum biochemical indicators showed that AR signifi-
cantly reduced serum ALT, AST and AKP levels, restored 
liver function and effectively alleviated liver injury. HE 
staining and Masson staining also confirmed that AR 
could effectively reduce liver damage and collagen depo-
sition in liver tissue, as well as improved liver fibrosis. In 
addition, this study used a variety of methods to detect 
the expression of two specific makers of liver fibrosis, 
including α-SMA (a specific marker of hepatic stellate cell 
activation) and TGF-β1 (an important factor of hepatic 
fibrosis induced by CCl4) [31]. The results confirmed that 
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Fig. 7  Potential metabolites changes in CCl4-induced liver injury treated by AR. a Leukotriene C4; b LysoPC(18:1 (9Z)); c 2-Acetyl-1-alkyl-sn-gly
cero-3-phosphocholine; d 6-Keto-prostaglandin F1a; e Taurochenodesoxycholic acid; f 5,6-Epoxy-8,11,14-eicosatrienoic acid; g LysoPC(O-18:0); 
h Sphingosine; i 3-Dehydrosphinganine. Data were expressed as mean ± SD (n = 6). #P < 0.05, ##P < 0.01 compared with control group; *P < 0.05, 
**P < 0.01 compared with model group
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Fig. 8  Potential metabolomic pathway in CCl4-induced liver injury treated by AR. a Metabolomic pathway construction of the metabolic pathways 
involved in the effects of AR on liver fibrosis. b The heatmap of 9 potential metabolites. c Signaling networks associated with the differentially 
expressed metabolic pathways. 1: Arachidonic acid metabolism. 2: Ether lipid metabolism. 3: Sphingolipid metabolism. 4: Glycerophospholipid 
metabolism. 5: Primary bile acid biosynthesis

Table 2  Identified metabolites of the serum from different groups

No. R.T. (min) Mass (m/z) Metabolites Formula KEGG Change trend Pathway

Control/model Model/AR

1 14.174 624.281 Leukotriene C4 C30H47N3O9S C02166 Down Up Arachidonic acid metabolism

2 14.224 544.339 LysoPC(18:1 (9Z)) C26H52NO7P C04230 Down Up Glycerophospholipid 
metabolism

3 16.987 524.371 2-Acetyl-1-alkyl-sn-glycero-
3-phosphocholine

C26H54NO7P C04598 Down Up Ether lipid metabolism

4 10.064 371.235 6-Keto-prostaglandin F1a C20H34O6 C05961 Up Down Arachidonic acid metabolism

5 14.609 498.335 Taurochenodesoxycholic acid C26H45NO6S C05465 Down Up Primary bile acid biosynthesis

6 16.363 343.224 5,6-Epoxy-8,11,14-eicosatrien-
oic acid

C20H32O3 C14768 Down Up Arachidonic acid metabolism

7 16.030 532.340 LysoPC(O-18:0) C26H56NO6P C04317 Down Up Ether lipid metabolism

8 18.113 322.269 Sphingosine C18H37NO2 C00319 Down Up Sphingolipid metabolism

9 18.150 322.270 3-Dehydrosphinganine C18H37NO2 C02934 Down Up Sphingolipid metabolism
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AR could effectively reduce the expression of the two 
markers. The above results confirmed that AR exhibited 
significant anti-hepatic fibrosis effect, which was consist-
ent with clinical observation.

Subsequently, the metabolomic profiles of AR in the 
treatment of liver fibrosis were described. AR protected 
liver fibrosis by reversing potential metabolites to nor-
mal levels. Biomarkers can be an effective method for 
disease diagnosis, treatment and prognosis [32]. Metabo-
lism biomarkers were identified in the OPLS-DA mode. 
There were significant differences of biomarkers between 
the control group and the model group, which indicated 
that the serum metabolomics profile was significantly 
affected by CCl4. At the same time, significant differences 
were observed between the AR group and the model 
group, which indicated the regulatory role of AR. Finally, 
nine differential metabolites were screened to reveal the 
regulatory mechanism of AR in ameliorating liver fibro-
sis. These metabolites can interact in different ways. The 

results suggest that the development and progression of 
liver fibrosis were caused by the changes in many physi-
ological and pathologically related molecules, and most 
of the changes in the body are interrelated. AR modu-
lated these nine biomarkers to normalize their expression 
levels, indicating that AR can treat liver fibrosis through 
multiple pathways and multiple targets.

Those metabolites involved five main metabolic path-
ways including arachidonic acid metabolism, ether lipid 
metabolism, sphingolipid metabolism, glycerophospho-
lipid metabolism and primary bile acid biosynthesis. 
The decomposition and metabolism of arachidonic acid 
plays a major role in triggering and eliminating inflam-
mation [33]. Sustained inflammatory response is the 
key to the progress of liver fibrosis. Studies have shown 
that AR can improve liver fibrosis by regulating arachi-
donic acid metabolism. Ether lipids are a unique class 
of glycerophospholipids, which account for about 20% 
of mammalian total phospholipids and are present in 

Table 3  Results of integrating enrichment analysis of biomarkers with MetaboAnalyst 4.0

No. Pathway name Match status P − log(p) Impact

1 Arachidonic acid metabolism 3/62 0.0012245 6.7052 0.051

2 Ether lipid metabolism 2/23 0.0030196 5.8026 0.07375

3 Sphingolipid metabolism 2/25 0.0035667 5.6361 0.15499

4 Glycerophospholipid metabolism 1/39 0.13694 1.9882 0.00317

5 Primary bile acid biosynthesis 1/47 0.16287 1.8148 0.00992

Fig. 9  The “potential metabolite–target–component” interaction network with (a) all target information and (b) key target information participating 
in the treatment of liver fibrosis by AR. The red triangles represent active chemical constituents of AR. The blue dots represent the protein targets of 
drugs. The yellow dots represent potential metabolites. The purple dots represent the targets associated with potential metabolites
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Fig. 10  The verification results of network pharmacology. a The expression of CYP1A2. b The expression of PCYT1A. c The expression of CYP1B1. d 
The mass spectrum of quercetin. e The mass spectrum of nicotinic acid. Data were expressed as mean ± SD (n = 6). #P < 0.05, ##P < 0.01 compared 
with control group; *P < 0.05, **P < 0.01 compared with model group

Table 4  The parameters of the active compounds in the AR extract

No. Compound Formula Extraction mass Found mass Error (ppm) RT (min)

1 Quercetin C15H10O7 303.04993 303.04926 − 2.2 9.32

2 Nicotinic acid C6H5NO2 124.03930 124.03934 0.3 2.9
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small amounts in the liver [34]. Studies have shown that 
ether lipid metabolism was associated with liver damage 
caused by steatosis. Acetaldehyde phosphatide may pre-
vent steatosis and non-alcoholic steatohepatitis through 
anti-oxidative stress [35, 36]. Sphingolipid metabolites 
played a key role in inflammatory signal. Studies have 
confirmed that sphingolipid metabolism was associated 
with hepatic lipid degeneration and inflammation [37]. 
Metabolic results suggested that AR played a protec-
tive role in liver by regulating sphingolipid metabolism. 
In addition, studies have proved that both glycerophos-
pholipid metabolism and primary bile acid biosynthesis 
were closely related to liver injury. Glycerophospholipid 
metabolism played a key role in liver injury [38]. Bile acid 
is synthesized by cholesterol in the liver, and its synthe-
sis and secretion can reflect liver function. In addition, 
bile acid can destroy cell membranes through its decon-
tamination and promote oxidative stress through reactive 
oxygen species production, leading to hepatocyte and 
non-parenchymal cell damage [39].

In order to better understand the mechanism of AR 
in the treatment of liver fibrosis and the correlation 
between the AR chemical constituents and metabolites, 
a metabolite–target–component interaction network in 
combination with network pharmacology was further 
constructed. The results showed that six chemical com-
ponents directly acted on a variety of targets, includ-
ing CYP1A2, PCYT1A, CYP3A4, CYP2A6, MOGAT2 
and CYP1B1, and were directly related to a variety of 
metabolites. CYP1A2 is a member of the CYP450s fam-
ily and plays a crucial role in liver metabolism [40]. It 
has been found that the activity of CYP1A2 decreases 
with the degree of fibrosis in non-tumorous liver tissues 
[41]. CYP1B1 is also a member of CYP450s, which exists 
in hepatic endothelial cells and activated stellate cells 
and is involved in the metabolism of many important 
physiological compounds [42]. Studies have shown that 
hepatic steatosis and tumorigenesis could be reduced by 
inhibiting CYP1B1 [43]. Metabolomics combined with 
network pharmacological analysis showed that CYP1A2 
and CYP1B1 directly regulate 5,6-Epoxy-8,11,14-eico-
satrienoic acid, which participates in arachidonic acid 
metabolism. These results demonstrated that AR might 
ameliorate liver fibrosis by regulating the liver CYP450s 
in  vivo for the potential therapeutic control of arachi-
donic acid metabolism. PCYT1A is the rate-limiting 
enzyme in the synthesis of phosphatidylcholine (PC), 
and PC is an essential component in all cell membranes. 
Previous studies have reported that pcyt1a−/− mice 
exhibited severe fatty liver, dyslipidemia and other phe-
notypic characteristics [44]. MOGAT2 plays an impor-
tant role in the process of fat absorption and metabolism. 
It is reported that mogat2−/− mice are protected from 

hepatic steatosis induced by high-fat diet [45, 46]. Net-
work pharmacological analysis showed that PCYT1A 
and MOGAT2 act directly on 2-Acetyl-1-alkyl-sn-
glycero-3-phosphocholine, which participates in ether 
lipid metabolism. And these results indicated that AR 
could modulate ether lipid metabolism to ameliorate 
CCl4-induced hepatic steatosis and fibrosis by regulating 
PCYT1A and MOGAT2.

The results of RT-PCR in liver tissue of rats with 
liver fibrosis showed that the expression of CYP1A2 
and PCYT1A was up-regulated and the expression of 
CYP1B1 was down-regulated in AR treatment groups, 
which was consistent with the previously reported 
results. The mRNA expression of CYP3A4, CYP2A6 
and MOGAT2 was not detected, probably because the 
results of network pharmacology came from big data, 
and not all results could be verified. It might also be 
due to improper detection methods. Mass spectrometry 
data indicated that AR extract contained quercetin and 
nicotinic acid, which might play an important role in the 
treatment of liver fibrosis. The other four components 
were not detected, which might be due to the change 
of compounds during AR extraction. It might also be 
that the content of those components in AR extract was 
too low to be detected. These results not only indicated 
that AR could ameliorate liver fibrosis by regulating the 
expression of CYP1A2, PCYT1A and CYP1B1, but also 
confirmed that the predicted results of network pharma-
cology were credible.

Taken together, our study found that AR could be 
involved in the regulation of arachidonic acid metab-
olism and ether lipid metabolism by regulating the 
expression of CYP1A2, PCYT1A and CYP1B1, thereby 
effectively improving liver fibrosis. This study confirmed 
the advantages of AR in the treatment of liver fibrosis 
with multiple targets and multiple pathways. In addi-
tion, it has been reported that Asiatic acid can ameliorate 
CCl4-induced liver fibrosis in rats by regulating PI3K/
AKT/mTOR, Bcl-2/Bax, Nrf2/ARE, NF-κB/IκBα and 
JAK1/STAT3 signaling pathways [47, 48]. Salvia miltio-
rrhiza could inhibit liver fibrosis by regulating TGF-β/
Smad, Nrf2/HO-1 and NF-κB/IκBα signaling pathways 
[49, 50]. These results indicate that multi-channel and 
multi-target are the advantages of TCM, which has great 
potential in the treatment of liver fibrosis and deserves 
further exploration.

Conclusions
This study confirmed that AR had a therapeutic effect on 
CCl4-induced liver fibrosis, possibly by regulating ara-
chidonic acid metabolism and ether lipid metabolism, 
which may provide new insights into the mechanism 
of AR in the treatment of liver fibrosis. In addition, this 
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study also confirmed that TCM has potential advantages 
in the treatment of liver fibrosis, which is worth further 
exploring.
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