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Overview

Endophytic insect-pathogenic fungi (EIPF) are both plant mutualists and insect pathogens, liv-

ing inside plant tissues without causing any symptoms to their plant partner while also parasit-

izing and killing insects [1]. These interactions can occur simultaneously and lead to the

demise of plant insect pests. The ecology and evolution of EIPF are still not fully understood;

however, several studies have investigated their diversity [2,3], the mechanisms of plant and

insect infection [4,5], and the nature of plant–insect–fungus relationships [6,7]. These multi-

kingdom interactions are of particular interest not only because EIPF are an ideal model for

understanding the mechanisms of symbioses, but they are also widely used for practical appli-

cations and particularly relevant to agricultural pest control [8]. Here, we provide an overview

on EIPF by reviewing what is currently known about their evolution, ecology, and mechanisms

of insect and plant colonization. We also address real-world applications of EIPF and identify

possible research directions for the field in the future.

The EIPF lifestyle evolved in the fungal order Hypocreales

(Ascomycota)

Insect pathogenicity is a relatively common nutritional mode among fungi and has evolved

independently multiple times within different lineages [9,10]. However, most insect-patho-

genic fungi do not have the ability to establish themselves in living plant tissues. EIPF evolved

in the order Hypocreales (Ascomycota) [2,3], with the generalist insect pathogens Beauveria
and Metarhizium (in the families Cordycipitaceae and Clavicipitaceae, respectively) as the

most well-studied EIPF genera. The evolution of EIPF is currently not fully understood; how-

ever, a study investigating divergence of the genes involved in insect and plant associations

suggested Metarhizium’s association with plants was more likely to have driven diversification

than insect pathogenicity [11]. This genus displays a large number of genes specific to plant

degradation that allow the digestion of plant material, suggesting it may have evolved from

fungi associated with plants [12]. Ancestral character reconstruction based on broad phyloge-

netic sampling of the Hypocreales suggests that the order’s ancestral ecology also involved

insect pathogenicity but recovered Metarhizium or Beauveria as related to plant-associated

clades [2,3]. The limited breadth and depth of sampling throughout the Hypocreales and

assigning a single lifestyle to each species (endophytic, plant pathogen, or insect pathogen)

may have limited the insight of these results. More intense sampling and comprehensive scor-

ing of species’ endophytic habits and insect pathogenicity abilities would assist in detecting

further EIPF lineages and widen our understanding of both their distribution across the fungal

tree of life and their evolutionary history. For example, linking environmental surveys of
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endophytic fungal diversity with phylogenetic studies could be a powerful approach for detect-

ing more EIPF. Given the high diversity of fungal insect pathogens, it is possible that many

more are also endophytic and have so far been overlooked as EIPF.

The ecology of EIPF involves intimate multikingdom nutrient

transactions

EIPF establish mutualistic associations with plants and parasitize insects. These associations

can occur simultaneously, with one single fungal individual colonizing plant tissues and infect-

ing insects, forming a tripartite interaction and allowing for nutrient transfer across the fun-

gus, the plant, and the insect (Fig 1). Most of our understanding of these interactions comes

from studies investigating Metarhizium robertsii, whose mycelium colonizes both plant root

cells and the soil larvae feeding on root tissue. Elegant experiments using radioactive isotopes

showed M. robertsii both receiving carbon from the plant partner [7] and transferring nitrogen

from insects to plant roots [6]. These microcosm experiments tracked 15N and 13C in M.

robertsii, plants, and larvae, demonstrating that insect-derived nitrogen is moved to the plant

only when the fungus is present and that plant-derived carbon is transferred to the fungus and

incorporated in fungal carbohydrates such as chitin and trehalose.

These experiments clearly show a complex tripartite interaction, characterized by transfer

of nutrients across EIPF, plants, and insects. Although these studies provide a powerful insight

Fig 1. Model of fungal-mediated nutrient transfer in tripartite interactions between EIPF, plants, and insects. The

fungal hyphae colonize both partners (circles depict plant and larval tissue colonized by EIPF mycelium) with different

effects. The fungus obtains nitrogen (N) by digesting insect tissue and transfers it to the plant. In addition, plant-

derived carbon (C) is moved from the plant to the fungus. EIPF, endophytic insect-pathogenic fungi.

https://doi.org/10.1371/journal.ppat.1007831.g001
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on mediated nutrient transfer, it is still unknown whether or how these mechanisms can be

generalized and applied to fungi other than M. robertsii. Future research collecting experimen-

tal evidence on diverse EIPF, plant, and insect species will contribute to quantify the impor-

tance of nutrient transfer for each party’s survival and test the stability of these interactions

over time. Such experiments will shed light on how widespread these three-way symbioses are

and how they operate in nature.

EIPF have similar mechanisms to infect both plant and insect hosts

In order for EIPFs to be successful symbionts of plants and insects, they need to be able to

invade and establish in both organisms. The insect infection processes in the genera Beauveria
and Metarhizium have been well studied and serve as a general model for EIPF [1,13]. These

fungi seem to use similar mechanisms to penetrate and establish inside their plant and insect

hosts, with similar genes involved in insect infection and establishment in plants. Such genes

have been hypothesized to derive from gene duplications [5] or horizontal gene transfer

[14,15], implying shared processes in becoming plant and insect symbionts. We currently

know more about the genes involved in EIPF insect infection than the genes involved in plant

colonization [1].

Fungal insect colonization starts with the adhesion of asexual spores to the host surface, fol-

lowed by penetration into the living tissue and proliferation inside the body cavity [16]. In

order to successfully parasitize insects, the fungus needs to evade the animal’s immune system.

Once established, the fungus kills the insect in a rapid process. In M. robertsii, the adhesin

MAD1 is essential for insect cuticle conidial spore adhesion [5], whereas hydrophobins play

this role in Beauveria [17]. Surface proteins on the conidia recognize insect-specific com-

pounds and initiate degradation of the insect cuticle. Following successful adherence, the

conidia germinate to form hyphae. Degradation of the cuticle is accomplished via enzymatic

activity by various proteases [18] and the mechanical pressure exerted by specialized infection

hyphal structures, such as appressoria [19]. Once the fungus penetrates the cuticle, it reaches

the insect hemolymph, where it differentiates into blastospores (yeast-like asexual spores).

Blastospores absorb nutrients in the hemocoel and produce insecticidal metabolites, such as

beauvericin [20] and destruxins [21], resulting in insect death within a matter of days. These

insect pathogens can also produce antimicrobial compounds post-insect death that prevent

microbial competition and assure nutrients are fully available for fungal growth and reproduc-

tion [22].

EIPF also colonize plants, establishing as mutualists in their tissues. Different EIPF prefer-

entially establish in distinct plant parts, with Metarhizium primarily found in roots and Beau-
veria within multiple plant tissues [23]. The plant adhesion process in M. robertsii depends on

the adhesin MAD2, a very similar protein to the MAD1 adhesin involved in insect attachment

[5]. As in insect cuticle penetration, proteases degrade the plant cell wall to allow EIPF access

to plant tissues [19]. In order to establish as an endophyte, the fungus avoids plant defenses in

a process thought to be mediated by diffusible communication molecules, as in other plant-

mutualistic fungi not associated with insects [19]. In contrast to the antagonistic interaction

with insects, EIPF establish as plant mutualists and provide nitrogen to the plant [6], promote

plant growth and productivity [24], and combat plant pests [1].

Details on all the genes involved in EIPF plant establishment, as well as on fungal-plant

communication, are not well known. However, research on M. robertsii has shed light on plant

colonization and communication, unveiling some of the mechanisms involved in endophyt-

ism. Plant establishment in this fungus is dependent on a raffinose transporter and an extracel-

lular invertase involved in sucrose hydrolysis [22,23]. Raffinose and sucrose are abundant in
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root exudates, and these molecules are essential for M. robertsii growth in the rhizosphere and

for root competence. This species is well known for promoting plant growth and plant benefits

correlate with fungal association to roots [24,25,26]. M. robertsii promotes root growth

through an auxin-dependent mechanism that might also be linked to insect pathogenicity, as

auxins have been shown to enhance insect virulence [27,28]. Future research focusing on a

broad sample of EIPF lineages will unveil more genes involved in interactions with both insects

and plants, inform on the existence of distinct mechanisms across different fungal clades, and

contribute to a more general understanding of symbiotic interactions with plants and insects.

EIPF as tools for agricultural and biotechnological applications

The potential for EIPF in practical applications has been explored since the discovery of Beau-
veria bassiana in the early nineteenth century [29]. These fungi are well known for promoting

plant growth and enhancing insect virulence [27,28,30,31,32] and are currently explored for

pest control in agriculture [33]. EIPF are also exploited for their secondary metabolites, which

are useful in biotechnology and medicine.

Endophytic fungi are currently used as tools to improve crop productivity [34], and EIPF in

particular have the added benefit of also acting as pest-control agents. It is clear that EIPF

improve plant growth and crop yield and are effective at protecting plants against insect

attacks both in the lab and the field [27,28,30,31,32,35]. In fact, biocontrol of invertebrate pests

is an attractive alternative to the current prolific use of synthetic pesticides, which have detri-

mental environmental impacts [36]. Application of microbial biopesticides provides a poten-

tial alternative that is comparably environmentally sound, and effective EIPF isolates are

currently commercially available for invertebrate pest control, including species of Beauveria
and Metarhizium [37,38]. For example, B. bassiana alone is effective for controlling herbivo-

rous insects in maize [35], cotton [39], banana [40], white jute [41], and poppy [42]. This spe-

cies also establishes in wheat plants, controlling for cotton leafworm larvae (a widespread pest

of many cultivated crops) while also increasing spike production [32]. EIPF may also help con-

trol plant disease, making them promising for biocontrol of other pathogenic agents [43].

Recent efforts have focused on improving fungal virulence against their insect hosts to make

EIPF more efficient [1]. While the use of EIPF in agriculture has advanced the field of biocon-

trol and these fungi hold great promise for improving food production worldwide, their appli-

cation also warrants caution. Many of these fungi are insect generalists [1] and may affect

species other than the target pest, resulting in unwanted consequences to the local ecology. For

example, B. bassiana conidia are known to effectively kill Amblyseius swirskii, a predatory mite

that feeds on insects and other mites that is also used for biocontrol in agriculture [44]. It is

therefore crucial to perform adequate tests before field EIPF applications as to assure off-target

infections are not detrimental to crops and local ecosystems.

EIPF are most notorious for applications in agriculture, but their study has also spawned

use in the medical sciences. Many EIPF secondary metabolites have antimicrobial and cyto-

toxic activities [45], such as beauvericin, oosporein, and taxol. It is thought that EIPF synthe-

size such compounds in order to kill insects as well as to limit bacterial competition within the

host [22]. Because of their cytotoxic properties, these molecules have been investigated for

anticancer therapy. Beauvericin has been shown to slow the migration of prostate and breast

cancer cells [46], making it a promising candidate for anticancer treatments. Fungal-derived

taxol is also known for being effective in inducing apoptosis and preventing tumor prolifera-

tion in human cancer cells [47,48], and current efforts are being made to obtain high taxol

yields from fungal cultures, including from species in the genus Metarhizium [49]. Further

research investigating the potential of diverse EIPF lineages for agricultural biocontrol as well
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as the discovery of novel fungal secondary metabolites and their activities will certainly lead to

new innovations and applications.

In conclusion, the study of EIPF systems has great potential to elucidate fundamental ques-

tions on the ecology and evolution of multispecies interactions and to provide solutions to

agricultural and medical problems.
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