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Abstract. Gallbladder cancer (GBC) is the most aggressive 
cancer type in the biliary tract, and our previous studies 
observed that microRNA (miR)‑135a‑5p expression was 
downregulated in GBC tissues. However, few studies have 
focused on the mechanism of action of the miR‑135a‑5p 
target genes in GBC. The present study aimed to investi‑
gate the regulatory role of miR‑135a‑5p signaling in GBC. 
The present study found that miR‑135a‑5p expression was 
downregulated in GBC tissue, as detected by immunohis‑
tochemistry and reverse transcription‑quantitative PCR. In 
addition, overexpression of miR‑135a‑5p significantly inhib‑
ited the proliferation and migration of GBC‑SD cells. Using a 
luciferase activity assay, it was identified that angiopoietin‑2 
(ANGPT2) was a potential target gene of miR‑135a‑5p in 
GBC. Knockdown of ANGPT2 expression significantly 
inhibited the proliferation and invasion of GBC‑SD cells. In 
conclusion, the present results suggested that miR‑135a‑5p 
affected GBC cell proliferation and invasion by targeting 
ANGPT2. Moreover, miR‑135a‑5p may be a potential 
biomarker for GBC progression and a potential target for 
GBC therapeutic intervention.

Introduction

Gallbladder cancer (GBC) is the most aggressive cancer 
type in the biliary tract, accounting for 80‑95% of all biliary 
tract malignancies (1). Despite significant efforts in clinical 
research on GBC, the prognosis of GBC remains poor, with 

a 5‑year survival rate of ~5%, due to late diagnosis and easy 
metastasis (2,3). Therefore, it is important to elucidate the 
underlying molecular mechanisms of GBC that may serve a 
key role in developing GBC‑targeted therapies.

MicroRNAs (miRNAs/miRs) are a type of small endog‑
enous RNA that serve an important role in the regulation of 
gene expression by reducing the post‑transcriptional trans‑
lation of target mRNAs (4). Previous studies have reported 
that miRNAs are involved in the proliferation, migration 
and invasion of cancer cells (5,6). Moreover, miRNAs can 
be used as markers of cancer diagnosis and prognosis. For 
example, miR‑135a‑5p is significantly downregulated in 
several cancer types, such as gastric carcinoma, and low 
expression of miR‑135a‑5p is associated with a low overall 
survival in gastric cancer  (7). Furthermore, miR‑135a‑5p 
induces apoptosis in prostate cancer cells by targeting the 
regulation of STAT6 expression (8). It has also been shown 
that miR‑135a‑5p inhibits glioma cell proliferation and inva‑
sion by targeting and regulating FOXO1 expression (9). Other 
previous studies have also identified miRNAs that affect 
GBC patient survival, such as miR‑146b‑5p, miR‑335 and 
miR‑101, amongst others (10‑12).

Our previous studies have observed that miR‑135a‑5p was 
significantly downregulated in GBC tissues, as determined by 
analyzing a miRNA microarray (13). In addition, the relation‑
ship between miR‑135a‑5p and GBC was further examined 
through in vivo and in vitro experiments, and it was found that 
miR‑135a‑5p exerted strong therapeutic effects on GBC (14). 
However, few studies have focused on the mechanism of action 
of the miR‑135a‑5p target genes in GBC.

Angiopoietin‑2 (ANGPT2) is a ligand for the tyro‑
sine‑protein kinase receptor Tie‑2, which functions as a 
vascular stabilizing molecule and is an important regulator of 
vascular maturation (15,16). ANGPT2 is produced by endo‑
thelial cells and promotes angiogenesis. ANGPT2 is lowly 
expressed in normal tissues but tends to be highly upregulated 
in tumor blood vessels (17). It has been reported that elevated 
circulating ANGPT2 is associated with poor prognosis 
and tumor invasion in several cancer types, such as gastric 
carcinoma (18,19). However, no relevant studies reporting the 
function of ANGPT2 in GBC were identified in a prelimi‑
nary search. Thus, the present study aimed to investigate the 
regulatory role of miR‑135a‑5p signaling and the function of 
ANGPT2 in GBC.
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Materials and methods

Tissues, cell lines and culture. GBC and matched adjacent 
non‑tumorous gallbladder tissues (≥2 cm away from the tumor 
tissue) were obtained from 10 patients (age range, 45‑63 years, 
mean age 53.8±8.6 years; seven female patients and five male 
patients) who underwent surgery in The Seventh People's 
Hospital Affiliated to Shanghai University of Traditional 
Chinese Medicine between January 2019 and December 2019. 
The study was approved by the Ethics Committee of The 
Seventh People's Hospital Affiliated to Shanghai University of 
Traditional Chinese Medicine. All enrolled patients signed an 
informed consent form before surgery. The Cancer Genome 
Atlas (TCGA) survival analysis data were evaluated using 
OncoLnc (oncolnc.org).

A human GBC cell line (GBC‑SD) was purchased from The 
Chinese Academy of Sciences. Cells were cultured in DMEM 
(Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% 
FBS (Gibco; Thermo Fisher Scientific, Inc.) and 100 U/ml peni‑
cillin/streptomycin (Corning, Inc.) with 5% CO2 at 37˚C.

Immunohistochemistry (IHC). IHC staining was performed 
according to a method described in a previous study (20). GBC 
and matched adjacent non‑tumorous gallbladder tissues (≥2 cm 
away from the tumor tissue) were fixed with 4% paraformal‑
dehyde at room temperature for 30 min and then embedded 
in paraffin and sliced into 0.5‑µm sections, followed by IHC. 
Briefly, the paraffin‑embedded sections were dewaxed in 
xylene and rehydrated in a graded alcohol series (100, 95 and 
80%). Subsequently, the sections were blocked with 5% BSA 
(cat. no. ST025; Beyotime Institute of Biotechnology) at 37˚C 
for 1 h, and heated in a microwave oven in sodium citrate buffer 
(0.1 mM; pH 6.0) for 5 min for antigen retrieval. The sections 
were then incubated overnight at 4˚C with primary antibodies 
against ANGPT2 (cat. no. ab56301; 1:200; Abcam). Following 
which, the sections were incubated with a secondary antibody 
(cat. no. ab6728; 1:1,000; Abcam) at 37˚C for 1 h. The sections 
were then stained with diaminobenzidine at room temperature 
for 3‑15 min and counterstained with hematoxylin at room 
temperature for 5 min. Finally, the images were captured using 
an Olympus light microscope (Olympus Corporation) under 
x200 magnification (21). In total, two independent investigators 
performed the scoring of the respective expression profiles. 
The number of positive cells was graded as follows: 0 (<5%), 1 
(6‑20%), 1 (21‑40%), 3 (41‑60%), 4 (61‑80%) or 5 (>80%) (22).

RNA isolation and reverse transcription‑quantitative (RT‑q) 
PCR. Total RNA from gallbladder tissues and GBC‑SD cells 
was extracted using TRIzol® (Invitrogen; Thermo Fisher 
Scientific, Inc.). Total RNA was reverse‑transcribed using a 
ReverTra Ace™ qPCR RT kit (Toyobo Life Science) according 
to the manufacturer's protocol. RT‑qPCR was performed 
using a SYBR Supermix PCR kit (Kapa Biosystems; Roche 
Diagnostics) under the following conditions: 95˚C for 3 min, 
followed by 40 cycles at 95˚C for 10 sec and 60˚C for 1 min, 
and melting curve analysis, according to the manufacturer's 
protocol. Primers were obtained from Sangon Biotech Co., 
Ltd., and are presented in Table I. GAPDH and U6 were used 
as endogenous controls. Data were analyzed using the 2‑ΔΔCq 
calculation (23).

Transfection of miRNAs and small interfering (si)RNAs. 
Synthesized RNA duplexes of miR‑135a‑5p mimics, 
miRNA mimics negative control (mi‑NC), ANGPT2 siRNA 
and scrambled siRNA NC (si‑NC) were designed and 
synthesized by Shanghai GenePharma Co., Ltd.. A total 
of 1x106 cells/well were seeded into the 6‑well plates and 
transfected with miR‑135a‑5p mimics and inhibitor using 
HilyMAX reagent (Dojindo Molecular Technologies, Inc.), 
according to the manufacturer's instructions. Transfection was 
performed using the following reagents: 120 µl Opti‑MEM 
(Gibco; Thermo Fisher Scientific, Inc.); 80 pmol (4 µl) mimics 
or inhibitor; 12 µl HilyMAX reagent, at room temperature for 
15 min. GBC‑SD cells were harvested for RT‑qPCR at 48 h 
after transfection. The siRNA sequences and miRNA mimics 
are shown in Table II.

Luciferase activity assay. Wild‑type (WT) and mutant 
(MUT) ANGPT2 3'‑untranslated regions (UTRs) were 
cloned into pmiRGLO vectors (Shanghai GenePharma 
Co., Ltd.). For the luciferase activity assay, GBC‑SD cells 
(1x105) were seeded in a 24‑well plate. Cells were trans‑
fected with the miR‑135a‑5p mimics or mimic control and 
WT or MUT ANGPT2 3'‑UTR, according to the manufac‑
turer's instructions. Before transfection, the miR‑135a‑5p 
mimics or mimic control and WT or MUT ANGPT2 
3'‑UTR were incubated separately with HilyMAX reagent 
at room temperature for 15 min. Incubation was performed 
using the following reagents: 120 µl Opti‑MEM; 4 µg WT 
or MUT ANGPT2 3'‑UTR; 80 pM miR‑135a‑5p mimics or 
mimic control; 12 µl HilyMAX reagent. Then, cells were 
transfected with the incubated mixture at 37˚C for 4 h. After 
transfection, cells were cultured in DMEM (10% FBS) for 
48  h. Subsequently, the relative luciferase activity was 
determined using a luciferase reporter system (Promega 
Corporation). Luciferase activity was normalized to Renilla 
luciferase activity.

Cell proliferation assays. Cell proliferation was determined 
using a Cell Counting Kit‑8 (CCK‑8; Dojindo Molecular 
Technologies, Inc.), according to the manufacturer's protocol. 
GBC‑SD cells (5x103 cells/100 µl) were seeded in a 96‑well 
plate. After 24, 48 and 72 h of culturing at 37˚C, proliferation 
was assessed using the CCK‑8 solution. The cells in each well 
were incubated with 10 µl CCK‑8 solution for 1 h on a shaker 
according to the manufacturer's instructions. Subsequently, the 
absorbance value was measured at 450 nm using a microplate 
reader (Thermo Fisher Scientific, Inc.). The experiments were 
performed in triplicate.

Wound healing assay. For the wound‑healing assay, GBC‑SD 
cells (1x105) were seeded in 24‑well plates and cultured at 37˚C 
overnight. When they had reached 80% confluency, a 10‑µl tip 
was used to create a 1‑mm wide strip at the bottom of wells, 
and the floating cells were gently washed twice with DMEM. 
Cells were cultured at 37˚C in DMEM (1% FBS) for 24 h. The 
cells migrating into the wounded areas were captured using a 
light microscope at x100 magnification at 0 and 24 h. Wound 
healing was assessed using MShot Image Analysis System 
1.3.10 (Guangzhou Mingmei Photoelectric Technology Co., 
Ltd.).
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Transwell assays. For the Transwell assay, Matrigel was diluted 
with serum‑free medium (dilution concentration was no less than 
1:3), and 50 µl Matrigel was added to the upper chamber (pore 
size, 8 µm) of each well in a 24‑well plate, and incubated at 37˚C 
for 3‑5 h, Subsequently, 70 µl serum‑free medium was added 
to the upper chamber of each well and incubated at 37˚C for 
30 min; residual liquid in the chamber was removed. GBC‑SD 
cells were seeded into the upper chamber of Matrigel‑plated 
with DMEM without serum (5x104 cells/well), and the lower 
wells contained 500 µl complete medium (DMEM and 10% 
FBS), following a routine procedure. After 48 h at 37˚C, cells 
invading into the lower chamber were collected, fixed with 5% 
glutaraldehyde for 10 min at room temperature. stained with 
0.5% crystal violet and then counted under a light microscope 
at x100 magnification.

Western blotting. Western blot analysis was performed as previ‑
ously described to determine migration‑ and invasion‑related 
protein expression (24). The samples or cells were lysed in RIPA 
buffer (cat. no. P0013K; Beyotime Institute of Biotechnology). 
The obtained proteins were quantified using BCA Protein 
Assay kit (Sangon Biotech Co., Ltd.) and 30 µg proteins were 
separated by sodium dodecyl sulfate polyacrylamide gel elec‑
trophoresis on 10% gels for 2 h. Subsequently, the separated 
proteins were transferred onto nitrocellulose membranes 
(Thermo Fisher Scientific, Inc.). These membranes were then 
immersed in 5% skimmed milk (Sangon Biotech Co., Ltd.) 
diluted with PBS‑0.1% Tween 20 at room temperature for 3 h 
to prevent nonspecific protein binding, followed by incubation 
with primary antibodies, including the endogenous refer‑
ence, overnight at 4˚C and with HRP‑conjugated anti‑rabbit 
secondary antibodies (cat. no. ab205718; dilution, 1:5,000; 
Abcam) for 1 h at room temperature. The following primary 
antibodies were used: E‑cadherin (E‑cad; cat. no. ab40772; 

dilution, 1:5,000; Abcam) and Rho associated coiled‑coil 
containing protein kinase 1 (Rock1; cat. no. ab97592; dilu‑
tion, 1:500; Abcam). Anti‑GAPDH (cat. no. ab9485; dilution, 
1:2,500; Abcam) was used as the endogenous reference. 
Finally, bound HRP‑conjugated antibodies were detected 
using Western Lightning Plus‑ECL reagents (PerkinElmer, 
Inc.). The gray level of each band was obtained using ImageJ 
software (version 1.8.0; National Institutes of Health) (25).

Statistical analysis. The results are presented as the 
mean ± SD and all experiments were repeated at least three 
times. Statistical analyses were performed using GraphPad 
Prism (version 7.0; GraphPad Software, Inc.). The miRNA 
target gene was determined using prediction databases 
[TargetScan Release 7.2 (http://www.targetscan.org/vert_72/) 
and miRDB version 6.0 (http://mirdb.org/index.html)]. 
Survival analysis was conducted using the Kaplan‑Meier 
method, and the Renyi test was used to compare the overall 
survival curves. An unpaired Student's t‑test was used for 
comparison between two groups in cell assay, while a paired 
Student's t‑test was used for comparison between two groups 
in Fig.  1, with the exception of IHC data. IHC data are 
presented as the median and range, and were analyzed used 
Wilcoxon test. One‑way ANOVA followed by Tukey's post 
hoc test was used for comparisons between multiple groups. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Expression levels of miR‑135a‑5p and ANGPT2 in patients 
with GBC. To determine the expression levels of miR‑135a‑5p 
and ANGPT2 in GBC, RT‑qPCR analysis was first performed 
for 10 GBC tissues and matched adjacent non‑tumorous 

Table I. Primer sequences for reverse transcription‑quantitative PCR.

Gene	 Forward (5'‑3')	 Reverse (5'‑3')

ANGPT2	 AACTTTCGGAAGAGCATGGAC	 CGAGTCATCGTATTCGAGCGG
miR‑135a‑5p	 CCAGGCTTCCAGTACCATTAGG	 GTTTCCGAGAGAGGCAGGTG
U6	 CTCGCTTCGGCAGCACA	 AACGCTTCACGAATTTGCGT
GAPDH	 GAGTCCACTGGCGTCTTCAC	 TGCTGATGATCTTGAGGCTGTT

miR, microRNA; ANGPT2, angiopoietin‑2.

Table II. ANGPT2 siRNA and miR‑135a‑5p mimics sequences.

Gene	 Forward (5'‑3')	 Reverse (5'‑3')

ANGPT2 siRNA	 GCATAGGAAAGAAGCAATATT	 UAUUGCUUCUUUCCUAUGCTT
si‑NC 	 UUCUCCGAACGUGUCACGUTT	 ACGUGACACGUUCGGAGAATT
miR‑135a‑5p mimics	 UAUGGCUUUUCAUUCCUAUGUGA	 ACAUAGGAAUGAAAAGCCAUAUU
mi‑NC	 UAUAUCGUGUUAUUAGCGUUCCU	 GAACGCUAAUAACACGAUAUAUU

si‑NC, scrambled siRNA NC; mi‑NC, miRNA mimics NC; siRNA, small interfering RNA; miR, microRNA; ANGPT2, angiopoietin‑2.
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gallbladder tissues. The results demonstrated that miR‑135a‑5p 
expression was significantly downregulated in GBC tissues 
(Fig. 1A). By contrast, the expression level of ANGPT2 in 
GBC tissues was significantly higher compared with that in 
normal tissues (Fig. 1B). Further TCGA survival (26) analysis 
identified that ANGPT2 expression had a significant impact 
on the prognosis of the patients with liver and biliary tumors, 
as patients with high ANGPT2 expression had a poorer prog‑
nosis (Fig. 1C). The IHC results demonstrated that the positive 
rate of ANGPT2 expression in GBC tissues was significantly 
higher compared with that in normal tissues (Fig. 1D and E). 
These results suggested that miR‑135a‑5p and ANGPT2 may 
be key biomarkers of GBC.

Overexpression of miR‑135a‑5p inhibits in vitro GBC cell 
proliferation, migration and invasion. To further investi‑
gate the effect of miR‑135a‑5p on GBC cell proliferation 
and migration, miR‑135a‑5p interference experiments were 
performed in vitro. The RT‑qPCR results identified the overex‑
pression of miR‑135a‑5p by miRNA mimics, which indicated 
that the transfection was successful (Fig. 2A). The CCK‑8 
assays demonstrated that the overexpression of miR‑135a‑5p 
significantly reduced the proliferation of GBC‑SD cells 
(Fig. 2B). Moreover, the wound healing assay identified that 
the overexpression of miR‑135a‑5p effectively inhibited the 
migration of GBC cells. (Fig. 2C and D). Transwell assays 
results also revealed that GBC cell invasion was significantly 
inhibited after miR‑135a‑5p overexpression (Fig. 2E and F). 
Furthermore, the western blotting results demonstrated that 
Rock1 expression was decreased, while E‑cad expression was 
notably increased in miR‑135a‑5p mimics group (Fig. 2G). 
These data indicated that the overexpression of miR‑135a‑5p 

could inhibit the proliferation, migration and invasion of 
GBC‑SD cells.

ANGPT2 is the target gene of miR‑135a‑5p. Analysis of 
miRNA target gene prediction databases (TargetScan Release 
7.2 and miRDB version 6.0) indicated that ANGPT2 may 
be a target gene of miR‑135a‑5p based on the putative target 
sequence ANGPT2 3'‑UTR (Fig. 3A).

RT‑qPCR analysis was performed to verify the regulatory 
relationship between miR‑135a‑5p and ANGPT2. The results 
demonstrated that ANGPT2 expression was significantly 
decreased after transfecting miR‑135a‑5p mimics in GBC‑SD 
cells. Moreover, ANGPT2 was significantly inhibited by 
siRNA, indicating that transfection was successful (Fig. 3C). 
The luciferase reporter assay demonstrated that the signal 
from WT‑ANGPT2 3'‑UTR was significantly decreased 
after transfecting miR‑135a‑5p mimics, while the signal from 
MUT‑ANGPT2 3'‑UTR showed no significant difference 
(Fig. 3B and D). These results indicated that miR‑135a‑5p 
could directly target ANGPT2.

ANGPT2 inhibits the proliferation and invasion of GBC‑SD 
cells. To investigate the effect of ANGPT2 on GBC cell prolif‑
eration and invasion, GBC‑SD cell lines were transfected 
with siRNA targeting ANGPT2. The results demonstrated 
that ANGPT2 expression was significantly decreased after 
transfection (Fig. 2C). The CCK‑8 and Transwell assay results 
indicated that the proliferation and invasion of GBC‑SD 
cells were significantly inhibited by ANGPT2 knockdown 
(Fig.  4A‑C). Western blot analysis results identified that 
Rock1 expression was inhibited, and E‑cad expression was 
notably increased in ANGPT2‑siRNA group (Fig. 4D). These 

Figure 1. Expression levels of miR‑135a‑5p and ANGPT2 in patients with GBC. Expression levels of (A) miR‑135a‑5p and (B) ANGPT2 in GBC tissues. (C) The 
Cancer Genome Atlas survival analysis of ANGPT2 on the prognosis of patients with liver and biliary tumor. (D) IHC staining and (E) score of ANGPT2 in 
patients with GBC. *P<0.05, **P<0.01 and ***P<0.001. IHC, immunohistochemistry; miR, microRNA; ANGPT2, angiopoietin‑2; GBC, gallbladder cancer.
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Figure 3. ANGPT2 is the target gene of miR‑135a‑5p. (A) Binding sites of miR‑135a‑5p on ANGPT2 3'‑untranslated region. (B) WT‑ANGPT2 and 
MUT‑ANGPT2 sequences of luciferase activity assay. (C) Relative expression level of ANGPT2 in the miR‑135a‑5p mimics and ANGPT2 siRNA groups. 
(D) Relative luciferase activity results. **P<0.01 and ***P<0.001. miR/mi, microRNA; ANGPT2, angiopoietin‑2; siRNA/si, small interfering RNA; NC, nega‑
tive control; WT, wild‑type; MUT, mutant; ns, not significant.

Figure 2. miR‑135a‑5p inhibits the proliferation, migration and invasion of GBC‑SD cells. (A) miR‑135a‑5p expression in GBC‑SD cells after transfection with 
miRNA mimics. (B) CCK‑8 cell proliferation assay results. (C) Wound healing assay image and (D) quantification of results. Magnification, x200. (E) Cell 
invasion images and (F) quantification of results. Magnification, x200. (G) Expression levels of Rock1 and E‑cad were determined using western blot analysis. 
***P<0.001. miR/mi, microRNA; ANGPT2, angiopoietin‑2; E‑cad, E‑cadherin; Rock1, Rho associated coiled‑coil containing protein kinase 1; OD, optical 
density; NC, negative control; CCK, Cell Counting Kit.
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data suggested that ANGPT2 inhibited the proliferation and 
invasion of GBC‑SD cells.

Discussion

miRNAs are involved in the occurrence of a variety of tumors. 
The regulation of miRNAs on tumor suppressor genes and 
oncogenes is a new research approach. Each miRNA has 
hundreds of target genes that are involved in the translation or 
degradation of mRNAs in a base pairing (27). Recent studies 
have shown that miR‑135a‑5p served important but contradic‑
tory roles in different cancer progression (28,29). miR‑135a‑5p 
acts as a promoter or inhibitor of cancer cell proliferation and 
invasion by regulating specific signaling pathways and target 
genes. miR‑135a‑5p also regulates epithelial‑mesenchymal 
transformation and chemoresistance in cancer cells  (30). 
Previous studies reported that miR‑135a‑5p was upregulated 
in several cancer types, such as breast cancer, bladder cancer, 
melanoma and colorectal adenocarcinomas  (31‑34). By 
contrast, other studies have revealed that miR‑135a‑5p was 
downregulated, such as in lung cancer, prostate cancer and 
pancreatic cancer (30,35‑37).

The present study demonstrated that miR‑135a‑5p expres‑
sion was downregulated in GBC tissue, which was in line 
with previous studies (13,14). Furthermore, the overexpression 
of miR‑135a‑5p significantly inhibited the proliferation and 
migration of GBC‑SD cells. The expression level of ANGPT2 
was suppressed in the miR‑135a‑5p mimics group, suggesting 
that miR‑135a‑5p can specifically regulate the expression level 
of ANGPT2 in GBC‑SD cells.

ANGPT2 is a ligand for the tyrosine‑protein kinase 
receptor Tie‑2, which functions as a vascular stabilizing mole‑
cule and is an important regulator of vascular maturation (16). 
It has previously been reported that angiogenesis serves a key 
role in the development and progression of various malignant 
tumors  (16). Vascular formation and dilation are closely 
associated with VEGFs (38). It has been shown that VEGFs 
regulate ANGPT2, and the upregulation of ANGPT2 has 
been found clinically to be one of the mechanisms of acquired 
resistance during anti‑VEGF treatment (39,40). Xu et al (41) 
revealed that ANGPT2 may be a serum marker for lung cancer 
prognosis. The present results suggested that ANGPT2 was 

a potential target gene of miR‑135a‑5p in GBC. Furthermore, 
knockdown of ANGPT2 expression significantly inhibited the 
proliferation and invasion of GBC‑SD cells.

There are several potential limitations to the present 
study; one of which was the small number of patient cases 
enrolled. Moreover, there were few GBC‑related data in the 
present study and TCGA dataset; therefore, there may be some 
sampling errors in the survival analysis. In future studies, 
additional clinical information of patients with GBC will be 
collected for relevant verification. Further verification may 
improve confidence in the present results, which indicated that 
the protein expression levels of ANGPT2 were reduced after 
miR‑135a‑5p mimics or siRNA treatment. Additional valida‑
tion experiments in future animal model experiments will help 
to provide a more detailed understanding of the relationship 
between ANGPT2 and miR‑135a‑5p.

In conclusion, the present study demonstrated that 
miR‑135a‑5p was downregulated and was negatively asso‑
ciated with malignancies in GBC. It was identified that 
miR‑135a‑5p affected GBC cell proliferation and invasion by 
targeting ANGPT2. Moreover, miR‑135a‑5p may be a poten‑
tial biomarker for GBC progression and a potential target for 
GBC therapeutic intervention.
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