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Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly and has become a growing global
health problem causing great concern. However, the pathogenesis of AD is unclear and no specific therapeutics are available to
provide the sustained remission of the disease. In this study, we used comprehensive bioinformatics to determine 158 potential
genes, whose expression levels changed between the entorhinal and temporal lobe cortex samples from cognitively normal
individuals and patients with AD. Then, we clustered these genes in the protein-protein interaction analysis and identified six
significant genes that had more biological functions. Besides, we conducted a drug-gene interaction analysis of module genes in
the drug-gene interaction database and obtained 26 existing drugs that might be applied for the prevention and treatment of
AD. In addition, a predictive model was built based on the selected genes using different machine learning algorithms to identify
individuals with AD. These findings may provide new insights into AD therapy.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease among the elderly and has become a growing
global health problem of great concern [1]. The most typical
clinical manifestations of AD are progressive memory loss
and cognitive function decline. Currently, there are approxi-
mately 47 million individuals who suffer from dementia
across the globe, and the number is expected to increase to
100 million by 2050 [2]. AD is undoubtedly the most preva-
lent form of dementia. The significant development among
societies, the increased rate of ageing, and the increased life
expectancy of the population have contributed to the steady
increase in the prevalence of AD.

At the early stage, the most characteristic symptoms of
AD are mild memory loss and fatigue, anxiety, or negative
emotions. Then, the memory impairment is aggravated and
the logical thinking and comprehensive analysis abilities
decrease. As the condition worsens, the cognitive impair-

ment becomes more serious and widespread, making the per-
son incapable of simple daily life tasks such as dressing and
eating; at this time, the individual may be diagnosed with
AD dementia. Later in the disease, patients suffer from
impaired mobility, hallucinations, and seizures. The average
duration from symptom onset to death is 8.5 years [3]. At
present, the underlying mechanism of AD is unclear and
may be associated with pathological processes such as the
deposition of extracellular amyloid-β (Aβ) plaques and
intracellular neurofibrillary tangles in the brain [4, 5]. AD
pathology is confirmed in the entorhinal and temporal cor-
texes. A previous study identified that the expression of genes
highly correlates with AD tau pathology and is most signifi-
cantly increased in the entorhinal cortex, followed by the
temporal cortex [6]; tau pathology usually begins in the
medial temporal lobe (entorhinal cortex and hippocampus)
in the allogeneic cortex. It is generally believed that the ento-
rhinal cortex is the earliest brain structure with pathological
changes in AD, while layer II of the entorhinal cortex is one
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of the most severely affected structures in AD [7, 8]. Further-
more, the brains of AD patients also show greater volume
loss in the entorhinal cortex [9]. However, no specific thera-
peutics are currently available to provide the sustained remis-
sion of AD.

Traditionally, the glutamatergic system is considered the
major factor affecting AD progression. All currently
approved clinical drugs for AD are modulators, targeting
cholinergic and glutamatergic systems, but they do not lead
to the sustained remission of AD. Evidence suggests that
modifying risk-added lifestyles and initiating drug and non-
drug therapies in the early stage of the disease help maintain
self-care ability and significantly reduce the burden of disease
management. However, these changes do not alter the out-
come of the disease [10]. Therefore, early AD identification
and intervention are top priorities worldwide. As revealed
in recent years, bioinformatics plays an important role in dis-
ease diagnosis and treatment [11].

In this study, we used comprehensive bioinformatics to
determine the potential genes whose expression levels were
different between the entorhinal and temporal lobe cortex
samples from cognitively normal individuals and patients
with AD. Then, we clustered these genes for the protein-
protein interaction (PPI) analysis and identified significant
genes that had more biological functions. Besides, we con-
ducted the drug-gene interaction analysis of module genes
using the drug-gene interaction database (DGIdb), which
might contribute towards matching some existing drugs
and subsequently finding alternatives for the prevention
and treatment of AD. In addition, a predictive model
was built based on the selected genes using different
machine learning algorithms to identify individuals with
AD. The workflow of the analysis is schematically shown
in Figure 1.

2. Materials and Methods

2.1. Microarray Data Analysis. GSE118553 expression pro-
files and related clinical information data were retrieved
and obtained from the NCBI-GEO website (https://www
.ncbi.nlm.nih.gov/geo/) [6]. Entorhinal tissue samples (37
AD and 24 control samples) and temporal tissue samples
(52 AD and 31 control samples) were included in the dataset.
The corresponding GPL10558 platform annotation file
included more than 31,000 annotated genes with more than
47,000 probes that were applied to convert the probes into
target gene samples. If the target gene was annotated with
two or more probes, the mean value was calculated. Among
the targeted genes, the protein-coding genes were selected
by referring to the human genome assembly GRCh38. Then,
the Limma package [12] for the R environment was used to
detect the differentially expressed genes (DEGs) between
the AD and control samples of both entorhinal and temporal
cortex tissues. DEGs were screened with the following cut-off
criteria: ½log2 fold change ðFCÞ� > 0:5 and P value < 0.05.
Overlapping DEGs between two brain regions were obtained
using the Venn diagram packages [13, 14] in the R
environment.

2.2. DEG Functional Enrichment Analysis. Gene enrichment
analysis of DEGs was performed on the web-based portal
Metascape (http://metascape.org/) [15], using the Gene
Ontology biological process and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway. The top ten enrich-
ment terms were visualized using ggplot2 [16] package in R.

2.3. Protein-Protein Interaction Enrichment Analysis. For all
the DEGs, PPI network analysis was conducted on Metas-
cape using the following databases: BioGrid [17], InWeb_
IM [17], and OmniPath [18]. In addition, if the network con-
tained 3–500 proteins, the Molecular Complex Detection
(MCODE) algorithm was applied to identify densely con-
nected network components [18]. Pathway and process
enrichment analyses were applied to each MCODE compo-
nent independently, and the three best-scoring terms (based
on the P value) were retained as the functional description of
the corresponding components. Genes in each MCODE
analysis were identified as potential target genes in AD prog-
nosis and used for drug-gene interaction analysis and predic-
tive model construction.

2.4. Drug-Gene Interaction Analysis. To explore the potential
applications of the existing AD drugs, we designed an inter-
active model to identify interactions between genes and the
existing drugs. Module genes were substituted into the
drug-gene database (DGIdb: https://www.dgidb.org) [19] as
potential targets to search for existing agonists or inhibitors.
The FDA-approved drugs with antagonist or agonist func-
tions were screened, and the interactions between the
selected drugs and corresponding target genes were visual-
ized in Cytoscape (version 3.7.1) [20].

2.5. Model Prediction. To explore whether MCODE genes
have a function in the identification of AD samples, we built
a prediction model using several machine learning algo-
rithms depending on MCODE genes. Support Vector
Machines (SVM) [21], Decision Tree [22], Random Forest
[23], K-Nearest Neighbors (KNN) [24], and Naïve Bayes
[25] were used. Considering the small sample size of this
study, dividing the data into a training set, test set, and vali-
dation set was not appropriate. Therefore, to make the best
use of the data, we applied a fivefold cross-validation method,
which divided the data into five mutually exclusive subsets of
similar size [26]. One of the subsets was selected as the test set
and the other four subsets were used as the training set. Sub-
sequently, five different results were obtained; finally, the
average of the five test results was obtained. We used model
evaluation indexes, such as accuracy, precision, recall, F1
score, and area under the curve (AUC) which were calculated
as the evaluation matrices for the model. The model with the
best performance was selected and deemed to have the ability
to predict individuals with AD; if the performance of any two
models was similar, the model with the larger AUC was con-
sidered as the best one. The AUC was used as a quantitative
measure of the model quality, which was classified as poor
(0.5–0.6), average (0.6–0.7), good (0.7–0.8), very good (0.8–
0.9), and excellent (0.9–1). A better model was indicated with
a higher AUC value, and a perfect model was indicated by an
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AUC value of 1 [1, 27]. Both model building and model per-
formance assessment were performed using the Scikit-Learn
library, which contains multiple machine learning algorithms
in Python.

3. Results

3.1. DEG Identification. The differential expression analysis
showed 691 upregulated and 636 downregulated genes in
the entorhinal cortex that were detected based on the follow-
ing cut-off criteria: ∣log2 fold change ðFCÞ ∣ >0:5 and P value
< 0.05, as well as 116 upregulated and 243 downregulated
genes that were identified in the temporal lobe cortex.
Among the DEGs, 158 overlapping DEGs present in both
regions of the brain were obtained using the Venn diagram
package, including 73 upregulated and 85 downregulated
genes (Figure 2, Table 1).

3.2. Functional Enrichment Analysis of DEGs. To outline GO
and functional enrichments of overlapping DEGs, we applied
Metascape and executed BP annotation and KEGG analysis
of 73 overlapping and upregulated and 85 overlapping and
downregulated DEGs, respectively. The top ten most signifi-
cant results are shown in Figure 3, except for the downregu-
lated DEGs only enriched in eight terms of the pathways. In
the BP category, downregulated genes were mainly involved
in anterograde transsynaptic signaling, chemical synaptic

transmission, and transsynaptic signaling; upregulated genes
were enriched in epithelial cell differentiation involved in
kidney development, blood vessel development, and extracel-
lular matrix organization. With regard to KEGG signaling
pathway enrichment, downregulated genes were mainly
related to nicotine addiction, GABAergic synapse, and mor-
phine addiction; upregulated genes were significantly
involved in ECM-receptor interaction, focal adhesion, and
Hippo signaling pathways.

3.3. Protein-Protein Interaction Enrichment Analysis. PPI
analysis of DEGs was performed in Metascape [15], and
two significant gene modules were selected using the
MCODE application; each module consisted of three
MCODE genes (Table 2). The genes in MCODE_1 were sig-
nificantly enriched in peptide ligand-binding receptors, class
A/1 (rhodopsin-like receptors), and G alpha (i) signaling
event processes. The MCODE_2 genes were significantly
enriched in the GABA-A receptor and cellular response to
histamine processes. The expression of the six MCODE
genes in the entorhinal and temporal cortexes is displayed
in Figure 4; it contained two upregulated (FPR3 and APLNR)
and four downregulated genes (CXCL3, gamma-
aminobutyric acid type A receptor subunit beta 2 (GABRB2),
gamma-aminobutyric acid type A receptor subunit gamma 2
(GABRG2), and gamma-aminobutyric acid type A receptor
subunit alpha 1 (GABRA1)).

AD samples Control samples

Entorhinal cortex
(37 cases)

Temporal cortex
(52 cases)

Entorhinal cortex
(24 cases)

Temporal cortex
(31 cases)

(Limma package)

73 up
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Figure 1: An overview workflow of this study.
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3.4. Drug-Gene Interaction Analysis. The six MCODE genes
clustered in the significant gene module were selected to per-
form drug-gene interaction analysis, which was aimed at
looking for FDA-approved agonists and antagonists in the
DGIdb database. We found that there were four target genes
to 29 potential existing drugs. Moreover, 3 undefined drugs
were removed, and 26 drugs that were agonists or antagonists
were obtained, including two for formyl peptide receptor 3
(FPR3), 23 for GABRA1, two for GABRB2, and two for
GABRG2. Psychiatric drugs with known indications
accounted for the majority. We found that among the
obtained drugs, ethchlorvynol and flumazenil act on
GABRB2 and GABRG2, respectively; both also act on
GABRA1. Meprobamate acts on both GABRB2 and GABRG2
(Figure 5, Table 3).

3.5. Model Prediction. In total, 144 results for the gene
expression in brain tissues were selected for the model con-
struction using five algorithms and tested using fivefold
cross-validation. The performance of the models is displayed
in Table 4 and Figure 6. The fivefold cross-validation test
showed that the SVM, Naïve Bayes, and Random Forest algo-
rithms performed well. Then, we compared the uniformity of
each algorithm’s AUC in its category and chose the best per-
forming model. The Naïve Bayes predictive model showed
the highest AUC (82.45%) compared to the other two models

(SVM: 81.15%, Random Forest: 77.25%), indicating that it
had a good capability of predicting individuals with AD.

4. Discussion

AD is a common dementia with the highest fatality among
the elderly, and the incidence of this disease shows a positive
correlation trend with the patient’s age. Age, gender, and
genetics are unregulated factors that affect the occurrence
of AD. Genetics plays an important role in the occurrence
of AD. Presenilin 1, presenilin 2, and the amyloid precursor
protein were identified to contribute or to be responsible
for family AD [28]. Amyloid plaques, tau tangles, and neuron
loss are characteristics of the AD brain [4], but the molecular
changes underpinning these pathological features have not
been fully elucidated. In recent years, transcriptomics has
played an important role in revealing the pathogenesis of
the disease and finding targeted drugs. Revealing the charac-
terization of transcriptional alterations of the brain during
disease development might offer some insights into the path-
ogenesis of AD. The purpose of this study was to discover
potential mechanisms and hub genes in AD prognosis
through the analysis of the transcriptional alteration in the
entorhinal and temporal cortexes between AD and normal
samples using bioinformatics methods.

In this study, according to the gene-drug interaction
analysis, we found 26 potential drugs for AD treatment,

Upregulated DEGs

618 73 43
Entorhinal Temporal 

(a)

Downregulated DEGs

15885351
Entorhinal Temporal 

(b)

Figure 2: Overlapping DEGs across the entorhinal cortex and the temporal cortex. (a) 73 overlapping upregulated DEGs across the
entorhinal cortex and the temporal cortex. (b) 85 overlapping downregulated DEGs across the entorhinal cortex and the temporal cortex.

Table 1: 158 DEGs both in the entorhinal cortex and the temporal cortex.

DEGs Gene name

Upregulated DEGs
(73)

C1QTNF5, ITGB4, SYTL4, LAMB2, ANTXR2, COLEC12, TNS3, PPIC, C4B, INS-IGF2, ABCC4, SLC15A3, YAP1,
DUSP1, FAM89A, ITPKB, NWD1, ASCL1, NOTCH2, AEBP1, CHST6, QPRT, DDIT4L, AKR1C3, IPO8, EPS8,
WWTR1, PCDH18, GAS1, DSE, DCN, DST, EZR, SCARA3, TEAD2, BACE2, APLNR, COL6A3, LTBP1, IL13RA1,
ITGB8, NOTCH3, FPR3, CDC14A, PLXNB1, RASL12, EMP3, ACTA2, PGR, CD44, PIPOX, HEPH, SLC13A4,
BDH2, GEM, MT1F, HHAT, ERMAP, ITGA10, CCL2, RIN2, SERPINA3, GPR4, GFAP, EDNRA, KLF2, CAV1,

TTR, SRGN, MYH11, SALL3, FOXQ1, MT1H

Downregulated DEGs
(85)

GAS7, TAGLN3, RPH3A, SYNGR1, PRKCZ, RASGRF1, KLC1, MICAL2, NEFM, SEZ6L2, VSNL1, COQ4, CRYM,
NEFL, GABRB2, SVOP, RPRML, PJA1, SULT4A1, BBS9, DOT1L, ABCC8, TSPY3, ITIH3, TNKS2, PIGV,

ATP6V1G2, TMEM174, HPRT1, CXCL3, CORO6, CLMN, RPL36A, PDIA2, DYRK2, GRK4, FGF12, GABRA1,
CYP4X1, SCN2A, CDKN2C, UBE2J2, MDK, SNAP25, CKMT1B, GAK, GABRG2, ARRDC2, SCN2B, R3HDM1,
CAMTA1, PCDH10, TUBB3, FBXO2, FOXE3, C10orf82, USP20, KRT32, CLEC2L, SH3GL2, CYP1A1, PAK1,
KLK11, NRXN3, FGF9, PCSK1, PNMA3, VIP, RGS7, OPCML, INA, ADCYAP1, RGS4, NUDT10, SPHKAP,

ST8SIA3, MYT1L, GAD1, ANO3, GPR26, GABRD, NCALD, EIF1AY, CHGB, SYT1
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Figure 3: Top 10 BP and KEGG analysis terms of overlapping DEGs. BP: biological process; KEGG: Kyoto Encyclopedia of Genes and
Genomes.

Table 2: Three best-scoring pathway and process enrichment analysis terms of each MCODE component.

MCODE Genes GO Description log10 Pð Þ

MCODE_1
FPR3
CXCL3
APLNR

R-HSA-375276 Peptide ligand-binding receptors -6.3

R-HSA-373076 Class A/1 (rhodopsin-like receptors) -5.6

R-HSA-418594 G alpha (i) signaling events -5.3

MCODE_2
GABRB2
GABRG2
GABRA1

CORUM:7461 GABA-A receptor (GABRA1, GABRB2, and GABRG2) -12.4

CORUM:5809 GABA-A receptor (GABRA1, GABRB2, and GABRG2) -12.4

GO:0071420 Cellular response to histamine -10.6
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which target four genes (FPR3, GABRB2, GABRG2, and
GABRA1). FPR3, also known as FPRL2, is a member of the
FPR family localized within the cytoplasm [29]. Human
FPRs belong to the G protein-coupled chemoattractant
receptors, which are expressed in blood innate immune cells,
including neutrophils, monocytes, and natural killer (NK)
cells, playing an important role in infection and inflamma-

tion. Interestingly, it has been reported that another subtype
of the FPR family, FPRL1, can be specifically activated by
Αβ42, suggesting that FPRL1 may be involved in the patho-
logical process of neurodegenerative diseases such as AD
[30]. GABRB2 encodes the β2 subunit of the gamma-
aminobutyric acid type A (GABA-A) receptor, which regu-
lates the intracellular Ca2+ concentration and plays an
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Figure 4: Expression of 6 MCODE genes in the entorhinal cortex and the temporal cortex, respectively (∗P < 0:05).
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important role in the nervous system [31]. Some researchers
believe that GABRB2 is related to schizophrenia [32, 33], but
this view is widely controversial. GABRG2 encodes the
GABA-A receptor subunit γ2. Mutation of this gene contrib-
utes to the pathogenesis of both febrile seizures and child-
hood absence epilepsy [34]. GABRA1 encodes the GABA-A
receptor subunit α1. It is confirmed that GABRA1 mutation
predisposes humans towards a common idiopathic general-
ized epilepsy syndrome [35].

GABA is the main inhibitory neurotransmitter in the
mammalian brain, while the GABA-A receptor is the multi-
subunit chloride channel that mediates the fastest inhibitory
synaptic transmission in the central nervous system. The
genes selected through our research are closely related to
the GABA-A receptor. β2, γ2, and α1 subunits, which are
encoded by GABAB2, GABAG2, and GABRA1, respectively,
are the most abundant receptor forms (α1β2γ2) in the brain.
Patients with AD exhibit nonamnestic manifestations, such
as depression, anxiety, and sleep disorders, which may be
attributed to GABAergic dysfunction [36]. The balance of
excitatory and inhibitory signaling governs the function of
the nervous system. The destruction of GABAergic neurons
and GABA receptors disrupts the excitatory/inhibitory (E/I)

balance, which is a crucial mechanism involved in epilepsy
and seizures. The seizure rate of patients with AD signifi-
cantly increases compared with that of normal people [37],
and the stability of the neural network in the AD brain is
decreased, suggesting that the E/I imbalance is strongly
related to the pathogenesis of AD. Researchers have studied
the pathogenic factors Aβ, BACAE1, and APOEε4 [38] and
hyperactive glial cells [39] and concluded that all result in
GABAergic dysfunction and E/I imbalance in AD mouse
models [40]. More importantly, correcting the E/I imbalance
improves the cognitive dysfunction in mice with AD. Besides,
ageing is the strongest risk factor for AD and is related to
GABAergic damage, which may lead to cognitive decline in
rodents and primates. The prevalence of AD in females is
higher than that in males; further, there are obvious sex-
based differences in GABAergic signaling and progression
of AD. These findings indicate that GABAergic dysfunction
may be involved in AD pathogenesis and our work supports
this view.

Traditionally, the GABAergic system is believed to be rel-
atively conserved throughout AD progression, while the dys-
function of the glutamatergic system is considered as the
major factor responsible for AD. Currently approved clinical
drugs for AD are modulators of the cholinergic and gluta-
matergic targets, but their effects are limited, suggesting that
other drugs are needed to restore the E/I imbalance. Pres-
ently, the GABAergic dysfunction is thought to be a signifi-
cant cause of E/I imbalance and pathogenesis in the AD
brain, making it a potential therapeutic target. The GABA-
A receptor has already been identified as a prolific target for
some therapeutic drugs, including benzodiazepines, barbitu-
rates, anesthetics, and ethanol [41]. It has been found that a
low dose of benzodiazepine clonazepam (0.05mg/kg) is ben-
eficial to AD [42], and a daily peritoneal injection of the
GABA-A receptor potentiator pentobarbital sodium rescues
the learning and memory impairment in ApoE4-Ki mice,
while the GABA-A receptor antagonist reverses this rescue

Table 3: Gene-drug interaction information by mapping in the DGIdb database.

Gene Drugs Interaction Gene Drugs Interaction

FPR3 Propanol Agonist GABRA1 Prasterone Antagonist

FPR3 Pyrazinamide Agonist GABRA1 Butethal Antagonist

GABRB2 Ethchlorvynol Antagonist GABRA1 Mephobarbital Antagonist

GABRB2 Meprobamate Agonist GABRA1 Clobazam Antagonist

GABRG2 Meprobamate Agonist GABRA1 Sevoflurane Agonist

GABRG2 Flumazenil Antagonist GABRA1 Methohexital Antagonist

GABRA1 Topiramate Agonist GABRA1 Metharbital Antagonist

GABRA1 Halazepam Antagonist GABRA1 Alcohol Antagonist

GABRA1 Amoxapine Antagonist GABRA1 Primidone Antagonist

GABRA1 Butalbital Antagonist GABRA1 Ergoloid mesylates Agonist

GABRA1 Talbutal Antagonist GABRA1 Nitrazepam Antagonist

GABRA1 Quazepam Antagonist GABRA1 Butabarbital Antagonist

GABRA1 Glutethimide Agonist GABRA1 Flumazenil Antagonist

GABRA1 Prazepam Antagonist GABRA1 Barbital Antagonist

GABRA1 Ethchlorvynol Antagonist

Table 4: Prediction results based on different algorithms.

Algorithms
Accuracy

(%)
Precision

(%)
Recall
(%)

F1 score
(%)

AUC
(%)

Naive
Bayes

77.14 80.41 83.33 81.45 82.45

SVM 77.07 78.11 87.71 82.42 81.15

Random
Forest

75.71 78.46 84.38 81.07 77.25

KNN 74.29 81.59 77.65 78.72 74.77

Decision
Tree

57.04 64.45 66.54 65.26 54.18
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[30]. To restore the E/I balance, five agonists (meprobamate,
topiramate, glutethimide, sevoflurane, and ergoloid mesy-
lates) targeting the GABA-A receptor are useful in AD, while
the rest of the antagonists may be related to the aggravation
of the cognitive impairment. Therefore, our work may have
important indications in the use of these drugs from a new
perspective.

To detect the predictive function in identified AD sam-
ples based on the selected MCODE genes and build the pre-
dictive model, five different algorithms usually used in
machine learning to solve supervised binary classification
problems were applied. In total, results from the expression
of 144 genes in brain tissues were used for model establish-
ment. According to the 5-fold cross-validation method
results, the SVM, Naïve Bayes, and Random Forest algo-
rithms performed well. Among the models, the AUC of the
Naïve Bayes algorithm in AD classification was superior to
that of the other methods, indicating that this model may
be applied in AD diagnosis. It also implied that the MCODE
genes might play a critical role in AD prognosis.

5. Conclusions

In conclusion, we obtained six hub genes (FPR3, CXCL3,
APLNR, GABRB2, GABRG2, and GABRA1) and 26 FDA-
approved existing drugs through the application of an inte-
grated bioinformatics approach. These findings may provide
new insights into AD therapy. The risk prediction model we
have established can be applied to the early screening of high-
risk populations and provide disease management and drug
intervention in the early stage. This strategy may significantly
delay the development of AD, improve the quality of life of
AD patients, and reduce the social burden associated with

such conditions. We expect to conduct molecular experi-
ments and clinical trials to confirm the results of this
research.
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