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Abstract: Ethyl acetate Nepenthes extract (EANT) from Nepenthes thorellii × (ventricosa × maxima)
shows antiproliferation and apoptosis but not necrosis in breast cancer cells, but this has not been
investigated in oral cancer cells. In the present study, EANT shows no cytotoxicity to normal oral cells
but exhibits selective killing to six oral cancer cell lines. They were suppressed by pretreatment of
the antioxidant inhibitor N-acetylcysteine (NAC), demonstrating that EANT-induced cell death was
mediated by oxidative stress. Concerning high sensitivity to EANT, Ca9-22 and CAL 27 oral cancer
cells were chosen for exploring detailed selective killing mechanisms. EANT triggers a mixture
of necrosis and apoptosis as determined by annexin V/7-aminoactinmycin D analysis. Still, they
show differential switches from necrosis at a low (10 µg/mL) concentration to apoptosis at high
(25 µg/mL) concentration of EANT in oral cancer cells. NAC induces necrosis but suppresses annexin
V-detected apoptosis in oral cancer cells. Necrostatin 1 (NEC1), a necroptosis inhibitor, moderately
suppresses necrosis but induces apoptosis at 10 µg/mL EANT. In contrast, Z-VAD-FMK, a pancaspase
inhibitor, slightly causes necrosis but suppresses apoptosis at 10 µg/mL EANT. Furthermore, the
flow cytometry-detected pancaspase activity is dose-responsively increased but is suppressed by
NAC and ZVAD, although not for NEC1 in oral cancer cells. EANT causes several oxidative stress
events such as reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane
depolarization. In response to oxidative stresses, the mRNA for antioxidant signaling, such as nuclear
factor erythroid 2-like 2 (NFE2L2), catalase (CAT), heme oxygenase 1 (HMOX1), and thioredoxin
(TXN), are overexpressed in oral cancer cells. Moreover, EANT also triggers DNA damage, as detected
by γH2AX and 8-oxo-2′-deoxyguanosine adducts. The dependence of oxidative stress is validated by
the evidence that NAC pretreatment reverts the changes of cellular and mitochondrial stress and
DNA damage. Therefore, EANT exhibits antiproliferation involving an oxidative stress-dependent
necrosis/apoptosis switch and DNA damage in oral cancer cells.
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1. Introduction

Oral cancer shows high morbidity and mortality worldwide [1]. In addition to surgery,
chemo-radiotherapy is an alternative treatment, but it is widely associated with side
effects [2]. It may partly attribute to the adverse impact of harming normal cells, which
limits its application for cancer therapy. Therefore, it is crucial to identify preferentially
killing drugs against cancer cells with a low side effect on normal cells.

Multi-target cancer therapies have become a common strategy. Natural products
containing several bioactive components exhibit a multiple targeting potential [3–5]. For
example, Nepenthes plants, the traditional herbal medicine in Southeast Asia [6], con-
tain several bioactive compounds, including flavonoids [7], naphthalene glucosides [8],
naphthoquinones [9], steroids [10], triterpenoids [10], and polyphenol [11].

Anticancer effects of extracts of the pitcher plant Nepenthes were recently reported. For
example, the methanol extract of N. alata Blanco exhibits an anti-breast cancer effect [12].
The ethyl acetate extract of N. thorellii × (ventricosa × maxima) (EANT) also shows antipro-
liferation to breast cancer cells [13]. However, the antiproliferation of oral cancer cells
remains unclear.

Several modes of cell death may attribute to apoptosis, necrosis, and necroptosis.
Apoptotic cells are characterized by cell shrinkage, membrane blebbing, formation of
apoptotic bodies, chromatin condensation, and DNA fragmentation [14]. Necrotic cells are
characterized by cell swelling and poor plasma membrane integrity [14]. Necroptosis is a
programmed type of necrosis [15]. Although they exhibit distinct mechanisms, apoptosis
and necrosis are partly interrelated [16]. Moreover, drug-induced cell death is sometimes
confusing, and the cell death types may vary with cell line or dose.

In the present study, the preferential killing effects and mechanisms of ethyl acetate
extract EANT were investigated. Moreover, the interchange of cell death mechanisms
(necrosis and apoptosis), oxidative stress, and DNA damage responses by different doses
of EANT were also examined.

2. Materials and Methods
2.1. EANT Preparation and Reagents

The EANT preparation and its HPLC fingerprint profile were described in our previ-
ous study [13]. Briefly, EANT was prepared from the methanol soaking and water/ethyl
acetate partition of the aerial parts of N. thorellii × (ventricosa × maxima), containing several
bioactive components such as plumbagin, cis-isoshinanolone, quercetin 3-O-(6′′-n-butyl
β-D-glucuronide), and fatty acids [13]. EANT was immediately dissolved in dimethyl
sulfoxide (DMSO) before treatment.

The impacts of oxidative stress, apoptosis, and necroptosis were assessed by pretreat-
ing for 1 h with 2 mM N-acetylcysteine (NAC) (Sigma-Aldrich; St. Louis, MO, USA) [17–20],
1 h with 50 µM necrostatin-1 (NEC1) (TargetMol; Wellesley, MA, USA) [21], and 2 h with
100 µM Z-VAD-FMK (ZVAD) [22] (Selleckchem.com; Houston, TX, USA).

2.2. Cell Lines and Cell Viability Assay

ATCC cell lines (Manassas, VA, USA) including oral cancer (CAL 27, OC-2, and SCC9)
and normal (HGF-1) cell lines, as well as RIKEN BioResource Research Center cell lines
(Tsukuba, Ibaraki, Japan) including oral cancer cells (HSC-3 and Ca9-22) were used. In
addition, another oral cancer cell line (OECM-1) [23] was kindly provided by Dr. Wan-
Chi Tsai in Kaohsiung Medical University, Taiwan. All detailed culture conditions were
previously described [24]. Cell viability was assessed by the mitochondrial metabolism-
based MTS kit (Promega Corporation, Madison, WI, USA) [25].
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2.3. Cell Cycle Assay

Following fixation, cells were stained with 7-aminoactinmycin D (7AAD) (1 µg/mL,
30 min) (Biotium; Hayward, CA, USA) [26] for measuring cellular DNA content. This
content was applied to cell cycle phase determination by performing Accuri C6 flow
cytometry (Becton-Dickinson, Mansfield, MA, USA).

2.4. Apoptotic and Necrotic Flow Cytometry Assays

Apoptosis and necrosis were assessed by annexin V/7AAD [27–29] (Strong Biotech;
Taipei, Taiwan), and apoptosis signaling was detected by the generic pancaspase (caspases-
1 and 3 to 9) activity methods [25] (Abcam, Cambridge, UK) according to their commercial
protocols. In addition, their intensities were monitored by Accuri C6 flow cytometry. For
the annexin V/7AAD method, the criterion to determine the necrosis and apoptosis was
described as follows: necrosis: 7AAD (+)/annexin V (−); early/late apoptosis: 7AAD
(−)/annexin V (+) and 7AAD (+)/annexin V (+). Moreover, apoptosis was also detected
by the Caspase-Glo® 3/7 system (Promega; Madison, WI, USA) as described [30].

2.5. Oxidative Stress-Detected Flow Cytometry Assays

Oxidative stresses were assessed by increasing reactive oxygen species (ROS)/mitochondrial
superoxide (MitoSOX) and decreasing mitochondrial membrane potential (MMP).
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA; Sigma-Aldrich) [31] is the ROS detecting
probe, and the optimal condition is 10 µM for 30 min. MitoSOX™ Red [32] (50 nM, 30 min) is
the mitochondrial superoxide-specific detecting probe. DiOC2(3) (5 nM, 30 min) [33] (Invitrogen;
San Diego, CA, USA) is a MMP detecting probe. In addition, their intensities were monitored by
Accuri C6 flow cytometry.

2.6. Antioxidant Gene Expression Assay

Trizol solution (Invitrogen) and OmniScript RT kit (Qiagen, Valencia, CA, USA)
were respectively applied to extract RNA and convert it to cDNA [34]. A real-time PCR
performing touch-down program [35] was used to quantitate the mRNA expressions for a
panel of antioxidant genes [36,37] in reference to the internal control, which was the GAPDH
gene. The primer information for nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT),
heme oxygenase 1 (HMOX1), and thioredoxin (TXN) was described in detail [38].

2.7. DNA Damage-Detected Flow Cytometry Assays

Both γH2AX and 8-hydroxy-2-deoxyguanosine (8-OHdG) were chosen as cellular
DNA damage markers. Following fixation, the γH2AX [39] and 8-OHdG [40] expres-
sions were detected by antibody-based methods. For γH2AX measurement, Santa Cruz
Biotechnology γH2AX antibody (Santa Cruz, CA, USA) (4 ◦C, 1 h) and Alexa Fluor®488-
linked secondary antibody (Cell Signaling Technology) were sequentially applied to fixed
cells, and counterstained with 7AAD (5 µg/mL, 30 min). For 8-OHdG measurement, the
8-OHdG-FITC antibody (Santa Cruz Biotechnology) (4 ◦C, 1 h) was applied. In addition,
their intensities were monitored by Accuri C6 flow cytometry.

2.8. Statistical Analysis

Except for the NAC effect on EANT-treated cells, for which a 24 h MTS assay was
compared applying a Student’s t-test), the remaining experiments were analyzed by one-
way analysis of variance (ANOVA) with a post hoc test for multiple comparisons. Data
top-labeled with different letters show significant differences (p < 0.05). The examples for
illustrating the statistical analysis are provided in some figure legends.

3. Results
3.1. EANT Induces Selective Killing of Oral Cancer Cells via Oxidative Stress

EANT shows high cytotoxicity to several oral cancer cell lines (Ca9-22, CAL 27,
OECM-1, SCC9, HSC-3, and OC-2), but it shows no cytotoxicity to a normal oral cell line
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(HGF-1) (Figure 1A). NAC pretreatment (Figure 1B) recovered these cytotoxicities in oral
cancer cells, demonstrating that EANT induces selective killing in oral cancer cells via
oxidative stress. Here, Ca9-22 and CAL 27 cells showed here high sensitivity, and they
were chosen for the following experiments.
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Figure 1. Cell viability. (A) Cell viability for several oral cancer cell lines and normal oral (HGF-1) cell lines in EANT
treatments for 24 h MTS assay. (B) NAC (2 mM) pretreatment outcome of EANT treatments (0 and 25 µg/mL) for 24 h MTS
assay. The cell viability of untreated controls for each oral cancer cell line was adjusted to 100%, which is not shown here.
Data (means ± SD, n = 3) showing * differ in significance for paired comparisons (p < 0.05).

3.2. EANT Induces SubG1 Accumulation in Oral Cancer Cells Depending on Oxidative Stress

EANT increases the subG1 population of two oral cancer cell lines (Figure 2A,B).
Furthermore, the subG1 accumulations in oral cancer cells in a time-dependent manner
were reduced by NAC (Figure 2C,D), revealing that EANT induces subG1 accumulation in
oral cancer cells mediated by oxidative stress.
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patterns and statistical analysis in EANT treatments (0 and 25 µg/mL) for 12 and 24 h. Data (means
± SD, n = 3) with different letters on-top indicate significant differences for multiple comparisons
(p < 0.05). One-way analysis of variance (ANOVA) with a post hoc test was applied to multiple
comparisons. For example (Ca9-22 cells in Figure 2B), the EANT 0, EANT 10, EANT 15, and EANT 20
show “b and ba”, indicating nonsignificant differences between each other because they overlap with
the same lowercase letter “b”. Similarly, the EANT 20 and EANT 25 show “ba” and “a”, indicating
nonsignificant differences between each other because they overlap with the same lowercase letter
“a”. In contrast, EANT 0, EANT 10, and EANT 15 show “b” and EANT 25 shows “a” indicating
significant differences among each other because they do not overlap with the same lowercase letter.

3.3. EANT Differentially Induces Necrosis and Apoptosis in Oral Cancer Cells Depending on
Oxidative Stress

The apoptosis and necrosis of oral cancer cells following EANT treatment were as-
sessed using the flow cytometry-based annexin V/7AAD method [28,41,42] (Figure 3A).
For Ca9-22 and CAL 27 cells, EANT at a low concentration (10 µg/mL) induces a mixture of
necrosis (Q1 in annexin V/7AAD) and apoptosis (Q2/Q3 in annexin V/7AAD) (Figure 3B).
EANT at a high concentration (25 µg/mL) mainly induces apoptosis (Q2/Q3). Accordingly,
EANT at higher concentration partly induces the switch of necrosis to apoptosis.

NAC [17–20] and ZVAD [22] are inhibitors for oxidative stress and apoptosis. NEC1,
the receptor-interacting with the serine/threonine-protein kinase 1 (RIPK1) inhibitor, can
suppress necroptosis [21]. To elucidate the contribution of oxidative stress, necroptosis,
and apoptosis, these inhibitors were applied in EANT treated oral cancer cells.

At low and high concentrations of EANT, the NAC effect to EANT-treated oral can-
cer cells (Ca9-22 and CAL 27) shows that NAC pretreatment and EANT post-treatment
(NAC/EANT) can induce necrosis (NAC/EA-NE (EANT-necrosis) vs. EA-NE) and sup-
press apoptosis (NAC/EA-AP (EANT-apoptosis) vs. EA-AP) (Figure 3, top). Accordingly,
EANT at low and high concentrations differentially triggers necrosis and apoptosis in oral
cancer cells mediated by oxidative stress.

For the NEC1 effect in Ca9-22 and CAL 27 cells at low concentrations of EANT
(Figure 3, middle), NEC1/EANT moderately suppresses necrosis (NEC1/EA-NE vs. EA-
NE) and induces apoptosis (NEC1/EA-AP vs. EA-AP). In Ca9-22 and CAL 27 cells at high
concentrations of EANT, NEC1/EANT shows no or only a slight change to necrosis and
apoptosis. Accordingly, NEC1 switches EANT-induced necrosis to apoptosis in oral cancer
cells at low concentrations of EANT.

For the ZVAD effect in Ca9-22 cells at low concentrations of EANT (Figure 3, bottom),
ZVAD/EANT slightly induces necrosis (ZVAD/EA-NE vs. EA-NE) and suppresses apoptosis
(ZVAD/EA-AP vs. EA-AP). In CAL 27 cells at low concentrations of EANT, ZVAD/EANT mod-
erately induces necrosis (ZVAD/EA-NE vs. EA-NE) and suppresses apoptosis (ZVAD/EA-AP
vs. EA-AP). In Ca9-22 and CAL 27 cells at high concentrations of EANT, ZVAD/EANT
shows no or only a slight change to necrosis and apoptosis. Accordingly, ZVAD switches
EANT-induced apoptosis to necrosis in oral cancer cells at low concentrations of EANT.
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Figure 3. Annexin V/7AAD analysis. Q1, Q2, Q3, and Q4 marked in each panel indicate the necrosis, late apoptosis,
early apoptosis, and lived cells, respectively. EA, EANT; NE, necrosis; AP, apoptosis (Q2 + Q3). For example, EA-NE and
NAC/EA-NE indicate the necrosis (NE) status for EANT (EA) treatment in the absence and presence of NAC, respectively.
EA-NE and NEC1/EA-NE indicate the NE status for EA treatment in the absence and presence of NEC1, respectively.
EA-NE and ZVAD/EA-NE indicate the NE status for EA treatment in the absence and presence of ZVAD, respectively.
(A,B) Annexin V/7AAD pattern and statistical analysis. With the inhibitor pretreatments for oxidative stress, necrosis, and
apoptosis (10 mM NAC for 1 h, 50 µM NEC1 for 1 h, and 100 µM ZVAD for 2 h), or not, oral cancer cells (Ca9-22 and CAL 27)
were treated with EANT (control, 10, 25 µg/mL) for 24 h. Data (mean ± SD, n = 3) showing different letters on top differ
significantly for multiple comparisons (p < 0.05). One-way analysis of variance (ANOVA) with a post hoc test was applied to
multiple comparisons. For example (Ca9-22 cells in Figure 3B), the EN-NE (red color) at 0, 10, and 25 µg/mL show “fg, b,
and c”, indicating significant differences among each other because they do not overlap with the same lowercase letter.
Similar to 25 µg/mL EANT, EA-NE, NAC/EA-NE, EA-AP, and NAC/EA-AP show “g, c, a, and e”, indicating significant
differences. In contrast, EA-NE, NAC/EA-NE, EA-AP, and NAC/EA-AP at the control (0 EANT) show “fg”, indicating
nonsignificant differences between each other because they overlap with the same lowercase letter “fg”.

3.4. EANT Induces Pancaspase Activation for Apoptosis to Oral Cancer Cells Depending on
Oxidative Stress

The pancaspase activation for apoptosis in oral cancer cells following EANT treatments
was assessed by the flow cytometry-based pancaspase method (Figure 4A). For Ca9-22 and
CAL 27 cells, EANT moderately induces apoptosis at a low concentration (10 µg/mL) and
dramatically induces apoptosis EANT at a high concentration (25 µg/mL).
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cer cells (Ca9-22 and CAL 27) shows that the combination of NAC pretreatment and 
EANT post-treatment (NAC/EANT) suppresses apoptosis compared to EANT alone (Fig-
ure 4B). Accordingly, EANT triggers pancaspase activation in oral cancer cells mediated 
by oxidative stress. 

For the NEC1 effect (Figure 4B), NEC1/EANT does not change pancaspase activity 
compared to EANT alone at low and high concentrations of EANT in both Ca9-22 and 
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and CAL 27 cells. For a high concentration of EANT, ZVAD/EANT does not change the 
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3.5. EANT Induces Selecitve ROS Generation in Oral Cancer Cells via Oxidative Stress 

Figure 4. Pancaspase activation analysis. (A,B) Pancaspase flow cytometry and statistics. With the inhibitor pretreatments
for oxidative stress, necrosis, and apoptosis (10 mM NAC for 1 h, 50 µM NEC1 for 1 h, and 100 µM ZVAD for 2 h), or not,
oral cancer cells (Ca9-22 and CAL 27) were treated with EANT (control, 10, 25 µg/mL) for 24 h. Data (mean ± SD, n = 3)
showing different letters on-top differ significantly for multiple comparisons (p < 0.05).

At low and high concentrations of EANT, the NAC effect to EANT-treated oral can-
cer cells (Ca9-22 and CAL 27) shows that the combination of NAC pretreatment and
EANT post-treatment (NAC/EANT) suppresses apoptosis compared to EANT alone
(Figure 4B). Accordingly, EANT triggers pancaspase activation in oral cancer cells me-
diated by oxidative stress.

For the NEC1 effect (Figure 4B), NEC1/EANT does not change pancaspase activity
compared to EANT alone at low and high concentrations of EANT in both Ca9-22 and
CAL 27 cells. For the ZVAD effect (Figure 4B), ZVAD/EANT moderately suppresses pan-
caspase activity compared to EANT alone at low concentrations of EANT in both Ca9-22
and CAL 27 cells. For a high concentration of EANT, ZVAD/EANT does not change
the pancaspase activity of Ca9-22 cells, while ZVAD/EANT moderately suppresses the
pancaspase activity of CAL 27 cells.

3.5. EANT Induces Selecitve ROS Generation in Oral Cancer Cells via Oxidative Stress

EANT shows a high ROS-positive population in two oral cancer cell lines (Figure 5A,B).
The ROS generation in oral cancer cells was recovered by NAC (Figure 5C,D), suggest-
ing that EANT induces ROS in oral cancer cells via oxidative stress. In contrast, EANT
does not induce ROS generation for normal oral cells (Figure 5E) at the same conditions
(concentration and time) as it does in oral cancer cells.
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3.6. EANT Induces MitoSOX Generation Depending on Oral Cancer Cells

EANT shows a high percentage of MitoSOX-positive population (Figure 6A,B) in
two oral cancer cell lines. This MitoSOX generation (Figure 6C,D) in oral cancer cells was
recovered by NAC, suggesting that EANT induces MitoSOX generation in oral cancer cells
mediated by oxidative stress.
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3.7. EANT Induces MMP Depletion Depending on Oral Cancer Cells

EANT shows a high proportion of MMP negative population (Figure 7A,B) in two oral
cancer cell lines. This MMP destruction (Figure 7C,D) in oral cancer cells were recovered
by NAC, suggesting that EANT induces MMP destruction in oral cancer cells mediated by
oxidative stress.
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Figure 7. MMP analyses. (A,B) MMP patterns and statistical analysis for EANT treated oral cancer cells (CAL 27 and
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3.8. EANT Upregulates mRNA Expression for Antioxidant Genes in Oral Cancer Cells

The antioxidant system commonly changes in response to oxidative stress [43,44]. The
mRNA expressions of antioxidant genes such as NFE2L2, CAT, HMOX1, and TXN, were
tested. EANT differentially induces these mRNA expressions (Figure 8).
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Figure 8. Antioxidant gene expression in EANT treated oral cancer cells. Cells were treated with
EANT (control and 25 µg/mL (EANT 25) for 24 h), respectively. Several antioxidant genes were
chosen for real-time RT-PCR analysis as indicated. Data (mean ± SD, n = 3) showing different letters
on-top differ significantly for multiple comparisons (p < 0.05).

3.9. EANT Induces γH2AX in Oral Cancer Cells Depending on Oxidative Stress

EANT shows a high percentage of γH2AX positive populations in two oral cancer cell
lines (Figure 9A,B). These γH2AX in oral cancer cells were recovered by NAC (Figure 9C,D),
suggesting that EANT induces γH2AX DNA damage in oral cancer cells mediated by
oxidative stress.
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Figure 9. γH2AX analysis. (A,B) γH2AX pattern and statistical analysis for EANT treated oral cancer cells (CAL 27 and
Ca9-22) for 24 h. (C,D) NAC (2 mM) pretreatment outcome on γH2AX patterns and statistical analysis in EANT treatments
(0 and 25 µg/mL) for 12 and 24 h. Data (means ± SD, n = 3) showing non-overlapping alphabets differ significantly for
multiple comparisons (p < 0.05).

3.10. EANT Induces 8-OHdG in Oral Cancer Cells Depending on Oxidative Stress

EANT shows a high percentage of the 8-OHdG-positive population in two oral cancer
cell lines (Figure 10A,B). This 8-OHdG induction in oral cancer cells was recovered by NAC
(Figure 10CD), suggesting that EANT induces 8-OHdG DNA damage in oral cancer cells
mediated by oxidative stress.
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(0 and 25 µg/mL) for 12 and 24 h. Data (means ± SD, n = 3) showing different letters on top differ significantly for multiple
comparisons (p < 0.05).

4. Discussion

The antiproliferation effect of ethyl acetate extract of EANT has been reported in breast
cancer cells [13] but not for oral cancer cells. The cell death modes, such as necrosis and
apoptosis, maybe partly be interrelated [16]. However, necrosis does not appear in EANT-
treated breast cancer cells. Therefore, necrosis and apoptosis changes in EANT-treated oral
cancer cells were examined in the present study. The preferential killing effects and mech-
anisms for the interchange of cell death mechanisms (necrosis and apoptosis), oxidative
stress, and DNA damage responses by different doses of EANT are discussed below.

4.1. EANT Inhibits Proliferation of Oral Cancer Cells but Not of Normal Oral Cells

Previously, we reported that EANT inhibited the proliferation of breast cancer cells, i.e.,
IC50 values for MCF7 (15 µg/mL) and SKBR3 (25 µg/mL) during an 24 h MTS assay [13].
In the current study, oral cancer Ca9-22, CAL 27, OECM-1, and HSC-3 cells show IC50
values of 9.27, 11.05, 13.2, and 24 µg/mL, respectively, following a 24 h EANT treatment
by MTS assay. However, this result was based on the short-term exposure (24 h). It
warrants detailed investigation for the MTS assays of long-term exposures to Ca9-22 and
CAL 27 cells following the 72 and 96 h EANT treatment in the future.

In general, EANT demonstrates a more sensitive antiproliferation effect in oral cancer
cells than breast cancer cells. Moreover, EANT shows selective killing to breast [13] and
oral cancer cells (Figure 1) but offers little or no cytotoxicity to normal breast [13] and oral
cells, showing that EANT has drug safety. This selective killing effect of antiproliferation in
oral cancer cells may be helpful for anticancer therapy, but it still lacks the in vivo evidence.
It warrants in vivo experiments to confirm the effects of EANT on oral cancer treatment in
the future.

Three main compounds, such as plumbagin, cis-isoshinanolone, and quercetin 3-O-(6′′-
n-butyl β-D-glucuronide), were identified from EANT by HPLC fingerprinting, [13]. These
compounds may contribute to the cell-killing effect of EANT on several types of cancer cells.
For example, plumbagin shows IC50 values for 0.26 and 0.2 µg/mL to leukemia HL-60
and K-562 cells in 24 h trypan-blue assays [45], but provides IC50 values of 1.16 µg/mL to
breast cancer MCF7 cells in a 24 h MTT assay [12]. cis-isoshinanolone [46] and quercetin
3-O-(6′′-n-butyl β-D-glucuronide) [47] exhibit an IC50 of 15.76 and 61.4 µg/mL, respectively,
to breast cancer MCF-7 cells in 72 h MTT and sulphorhodamine-B assays.
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4.2. EANT Produces Oxidative Stress and Triggers an Antixodant Response in Oral Cancer Cells

Anticancer drugs with an oxidative stress-modulating function commonly induce
preferential anticancer effects [48]. For example, sinularin generates oxidative stress and
exhibits selective killing of breast cancer cells [28]. EANT produces cellular and mito-
chondrial stress in breast cancer cells [13], but the changes for antioxidant signaling and
MMP have not been investigated. Oxidative stress and mitochondrial dysfunction (MMP
destruction) occur in EANT-treated oral cancer cells (Figures 5 and 6). Moreover, EANT
does not increase or induce oxidative stress in noncancer cells (Figure 5E). Therefore, EANT
selectively induces oxidative stress in oral cancer cells.

In response to oxidative stress, the antioxidant CAT was activated [43]. In UVC-
irradiated mice, oxidative stress was generated, and both mRNA and protein expressions
for CAT and HMOX1 genes were upregulated [49]. Moreover, oxidative stress can activate
NFE2L2 to target and activate TXN expression [50].

In the present study, EANT generates oxidative stress (Figures 5 and 6), which is
accompanied by mRNA overexpression for antioxidant genes (NFE2L2, CAT, HMOX1,
and TXN) (Figure 7) in oral cancer cells. Accordingly, EANT induces antioxidant gene
expression but is unable to reduce oxidative stress in oral cancer cells.

4.3. EANT Triggers Concentration-Dependant Necrosis and Apoptosis Switches in Oral
Cancer Cells

The dysregulation between oxidants and antioxidants can cause necrosis and apopto-
sis [51,52]. Apoptosis and necrosis are interrelated, although they have different underlying
mechanisms. Necrosis and apoptosis switches were reported in several studies. For ex-
ample, apoptosis and necrosis in pancreatic acinar cells are interchangeable during acute
pancreatitis [16]. Pancreatic acinar cells in the acute pancreatitis model trigger apoptosis,
but switch to necrosis by apoptosis inhibition [53–55]. Prothymosin-α1 inhibits necrosis
and induces apoptosis in cultured neurons. PKCβII knockdown suppresses this cell death
(necrosis/apoptosis) switch [56]. Ionizing radiation (IR) shows a dose-dependent effect on
differentially induced apoptosis and necrosis, i.e., a low-dose IR induces apoptosis, while a
high-dose IR causes necrosis [57,58].

Similar to the present study, EANT induces a mixture of necrosis and apoptosis at a
low concentration, but it generates dominant apoptosis at a high concentration. During the
concentration changes, the necrosis and apoptosis switches happen in EANT-treated oral
cancer cells.

Since EANT induces oxidative stress, the role of oxidative stress needs to be validated.
Following a pretreatment with the oxidative stress inhibitor NAC, the annexin V-detected
apoptosis is switched to necrosis at both low and high concentrations of EANT in oral
cancer cells (Figure 3). Similarly, NAC suppresses apoptosis-related pancaspase activity
at low and high concentrations of EANT (Figure 4), suggesting that NAC suppresses
apoptosis. Therefore, EANT differentially regulates necrosis and apoptosis in an oxidative
stress-dependent manner.

Necrostatin-1 (NEC1) is the receptor-interacting serine/threonine-protein kinase 1
(RIPK1) inhibitor and is, therefore, commonly used to suppress necroptosis [21]. The
annexin V/7AAD-defined necrosis is changed after NEC1 treatment. At low and high con-
centrations of EANT, the necrosis population (%) in the mixture of necrosis and apoptosis
is decreased after NEC1 treatment. These results suggest that this observed necrosis may
be the necroptosis type. It warrants a detailed investigation of the detection of necroptosis
expression and signaling in the future.

As expected, the apoptosis inhibitor ZVAD slightly decreased the annexin V-detected
apoptosis population (Figure 3) and pancaspase activity (Figure 4) in oral cancer cells,
following a low concentration of EANT treatment. While at high concentration, EANT
induced dominant annexin V-detected apoptosis and could not be decreased by ZVAD.
However, the pancaspase activity of CAL 27 cells but not of Ca9-22 cells was suppressed
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by ZVAD at a high concentration of EANT. Therefore, different cell types show differential
regulation of caspase activation.

4.4. EANT Triggers DNA Damages in Oral Cancer Cells

In addition to apoptosis, drugs with the oxidative stress-generating ability also show
the potential for inducing DNA damage [48]. For example, withaferin A causes ox-
idative stress and DNA damage (γH2AX and 8-OHdG) [59]. Similarly, EANT shows
γH2AX and 8-OHdG inductions in oral cancer cells in a time- and dose-dependent man-
ner (Figures 8 and 9). γH2AX is the phosphorylated form of H2AX. It is noted that these
DNA damage detections were based on specific antibodies to these γH2AX and 8-OHdG
targets. However, the non-phosphorylated H2AX cannot be measured for observation the
total H2AX protein level to detect the interchange between non-phosphorylated H2AX
and γH2AX. It warrants further examination of these two DNA damage markers using
different methods such as ELISA and Western blotting analysis to provide a comprehensive
investigation for EANT-induced DNA damage.

4.5. The Role of Oxidative Stress as an Anti-Oral Cancer Mechanism of EANT

The role of oxidative stress for necrosis and apoptosis switches was discussed in
Section 4.3. NAC recovers the EANT-induced antiproliferation and inhibits subG1 accumu-
lation, oxidative stress generation (ROS, MitoSOX, and MMP), and DNA damage (γH2AX
and 8-OHdG). These results suggest that oxidative stress plays a central role in regulating
necrosis and apoptosis switches and DNA damage to antiproliferation of EANT in oral
cancer cells.

5. Conclusions

The anti-oral cancer effect of ethyl acetate Nepenthes extract (EANT) was investi-
gated here for the first time. We report in this study that EANT exhibits oxidative stress-
dependent selective killing in several oral cancer cell lines without showing cytotoxicity
to normal oral cells. EANT induces several oxidative stress changes and DNA damage,
triggers a mixture of necrosis and apoptosis, and partly switches to each other depending
on the EANT concentrations. EANT also upregulates antioxidant signaling in response
to EANT-induced oxidative stresses in oral cancer cells. Modulating oxidative stress
can differentially regulate necrosis and apoptosis switches in oral cancer cells. EANT-
induced oxidative stress, DNA damage, and necrosis/apoptosis switches are suppressed
by NAC pretreatment. Therefore, EANT selectively kills oral cancer cells by oxidative
stress-dependent necrosis/apoptosis switches and DNA damage in oral cancer cells.
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