
REVIEW

Strategies for inducing effective neutralizing antibody responses against HIV-1
Iván del Moral-Sánchez and Kwinten Sliepen

Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands

ABSTRACT
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available
against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at
inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains.
All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce
neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.
Areas covered: We describe the different strategies that have been explored to improve the breadth
and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engi-
neered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination
strategies, nanoparticles and nucleic acid-based vaccines.
Expert opinion: A combination of the strategies described in this review and future approaches are
probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting
NAb responses.
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1. Introduction

The last two decades have brought tremendous progress in
the fight against HIV-1: the development of effective antire-
troviral therapy (cART) has significantly decreased the number
of new infections and HIV-related deaths in most parts of the
world [1]. However, the pandemic continues to expand in
other regions, such as Central Asia and Russia, and still poses
one of the biggest threats to global health [2]. Furthermore,
cART does not provide a cure for HIV-1 infection and eradica-
tion of HIV-1 will likely require an effective and broad-
spectrum prophylactic vaccine.

The most important correlate of protection for antiviral
vaccines are neutralizing antibodies (NAbs) [3]. Several lines
of evidence suggest that a prophylactic HIV-1 vaccine needs to
induce NAbs to be effective. First, the immune system cannot
clear an established HIV-1 infection and only NAbs could
provide the sterilizing protection that would be needed for
effective protection against HIV-1. Second, passively adminis-
tered NAbs protect non-human primates (NHPs) and huma-
nized mice against HIV-1 infection and their protective effect is
directly correlated with their neutralizing potency [4,5]. Finally,
a recent immunization study demonstrated that an immuno-
gen that is aimed at inducing NAbs could protect NHPs
against infection and identified NAbs as the prime correlate
of protection [6]. Other immune mechanisms, such as T-cell
mediated immunity and antibody-dependent cytotoxicity
(ADCC) might also play some role in protection against HIV1
infection, including the weak and short-lived protective effect
observed in the RV144 clinical trial [7]. However, these subjects
are beyond the scope of this review.

All HIV-1 NAbs target the envelope glycoprotein (Env),
which is the only viral protein on the surface of the virus.
Env is required at the initial stages of infection for attaching
to the host CD4 receptor and CCR5 or CXCR4 co-receptors
[8–11]. This glycoprotein consists of a trimer of heterodimers
of gp120 and gp41 subunits, which are generated after the
cleavage of a gp160 precursor by cellular proteases. The
three gp41 subunits anchor the complex to the membrane
and the three gp120 are linked by non-covalent interactions
to the gp41 anchor. Gp120 is the most exposed moiety and
contains five flexible variable loops and five relatively con-
served regions.

HIV-1 is a rapidly evolving virus and this has resulted in an
enormous sequence diversity between Envs of different iso-
lates [12,13]. Furthermore, the virus has developed strategies
to hide essential Env regions from recognition by the immune
system [14–16]. These strategies include shielding of con-
served epitopes by flexible loops that are highly sequence
diverse. Thus, the most conserved epitopes are hidden inside
the Env core and are only exposed after CD4 receptor engage-
ment [14]. Moreover, Env has a dense shield of glycans that
cover most of the more immunogenic protein epitopes [17].

Despite all of the above, the immune systems of many HIV-
1 infected individuals are able to overcome these hurdles and
develop NAbs with a significant level of cross-neutralization,
called broadly neutralizing antibodies (bNAbs). These bNAb
responses fall in a continuum of breadth and potency, and
50% of infected individuals are able to neutralize more than
50% of HIV-1 circulating strains and some individuals develop
bNAbs that neutralize even more than 98% of strains [18].
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Most bNAbs target exposed but hard-to-reach conserved
regions, such as the CD4 binding site, or recognize conserved
epitopes in the glycan shield and/or on variable loops. This
select group of antibodies are potent and broad enough to
neutralize most of the circulating isolates of HIV-1 and have
been shown to provide protection against viral challenge
when passively transferred to NHPs [4]. Hundreds of bNAbs
have now been isolated and characterized and they can target
a wide range of Env epitopes. The first identified HIV-1 bNAbs
targeted a limited subset of epitopes: the CD4 binding site
(CD4bs) (e.g. b12), the glycans on the variable loop 3 (V3) (e.g.
2G12) and the membrane-proximal external region (MPER)
(e.g. 2F5 and 4E10) [19,20]. In the last decade, the develop-
ment of sophisticated single B cell cloning and isolation tech-
niques have greatly expanded the number of bNAbs, which
are more broad and potent and target additional epitopes: the
glycans on the variable loops 1 and 2 (V1V2) on the trimer
apex, the glycans on the variable loop 3 (V3) region, the
gp120-gp41 interface, the fusion peptide and the ‘silent’ face
of gp120, demonstrating that the whole Env trimer surface
could be a potential target for bNAbs [21–23]. The identifica-
tion of the different bNAbs, their epitopes and binding
mechanisms have been extensively reviewed by others [5,24].

Several studies have dissected the virus-antibody co-
evolution pathways of several bNAbs. These studies have greatly
enhanced our understanding of the often tortuous pathways
that B cell lineages undergo before developing into bNAb-
producing B cells [21,25–27]. This is mainly due to the uncom-
mon features associated with HIV-1 bNAbs. For instance, many
bNAbs contain long heavy complementary determining region 3
(HCDR3) loops, which are needed to penetrate Env’s densely
packed glycan shield [28,29]. Other bNAbs (such as the CD4bs-
targeting VRC01 bNAb) have undergone high levels of somatic
hypermutation [30,31]. Moreover, many (precursors to) bNAbs
are reactive to host proteins [32–38] and these B cells are usually
depleted during B cell maturation [39–41]. Apart from the fact
that germline paratopes are usually related to higher malleability
that can result in polyreactivity [42], it has been observed that
mutations incorporated during the process of affinity maturation
are associated with strong (and sometimes de novo) poly-/auto-
reactivity [43–45]. These properties provide major obstacles for

an HIV-1 vaccine to induce bNAbs and partially explain why such
a vaccine has not been developed yet.

Here, we will discuss the different immunogens and strate-
gies that are being employed to induce bNAb-like responses
using vaccination and, in some cases, might improve the
durability of these responses. These strategies are schemati-
cally represented in Figure 1.

2. HIV-1 Env immunogen forms

Several types of subunit immunogens have been developed as
potential vaccine candidates (extensively reviewed in [46]). The
first Env-based immunogen designs were peptides and gp120
monomers. Initially, peptides based on the V3-loop were hailed
as promising vaccine candidates because they efficiently induced
anti-HIV-1 NAbs [47,48]. However, the initial enthusiasm waned
after it became apparent that these NAbs only neutralized lab-
adapted and neutralization-sensitive (‘Tier 1’ [49]) viruses. The Tier
1A viruses represent mostly lab-adapted strains and are highly
neutralization sensitive, while Tier 1B viruses represent mostly
circulating, but neutralization sensitive strains. Tier 1 viruses
seem to harbor Envs with a more ‘open’ structure and this might
explainwhy these viruses are efficiently neutralized by patient sera
[50,51]. In contrast, most circulating HIV-1 strains harbor a more
compact Env and, based on their higher neutralization resistance
to patient sera, are categorized as ‘Tier 2’ strains [49,50]. Strains
that are highly resistant to serum neutralization are categorized as
Tier 3 viruses. A vaccine that is capable of inducing NAbs that
neutralize most Tier 2 strains is a major goal for HIV-1 vaccinology.
Other peptide immunogens are those based on the Env mem-
brane-proximal external region (MPER), which is located at the
base of gp41. Some of the broadest bNAbs, such as 10E8 and
DH511, target the MPER [52,53]. This, together with the high
sequence conservation of MPER bNAbs epitopes, suggests that
MPER peptides are attractive vaccine candidates. However, simi-
larly to V3 peptide immunizations, MPER peptide-based immuno-
gens havemostly induced binding Abs or Tier 1 NAbs only [54,55].
Recently, immunization strategies based on fusion peptides have
shown promising results and this will be discussed separately (see
section: ‘Epitope-focused vaccination’).

Gp120-based immunogens are being applied in a number of
strategies. First, as gp120 monomers, but these immunogens
usually do not induce Abs that neutralize Tier 2 strains [56]. This
was confirmed when some of the participants in the Phase
I Vaxgen AIDSVAX clinical trial became infected despite having
developed NAb titres against the lab-adapted strains [56]. The
lack of neutralization of Tier 2 strains is possibly because gp120
monomers do not engage the precursors of bNAbs nor does
gp120 recapitulate the structure of the complete Env trimer.
The gp120 monomer displays epitopes on the non-neutralizing
face of Env and the neutralizing epitopes present on gp120,
such as the CD4 binding site, can be engaged frommany angles
of approach [57–59]. On viral Env, the same non-neutralizing
epitopes are occluded and the possible angles of approach for
the same neutralizing epitopes are much more restricted
[58,60,61]. The second gp120-based immunogens are trun-
cated gp120 monomers that lack non-NAb epitopes, such as

Article highlights

● An effective vaccine against HIV-1 should probably induce broadly
neutralizing antibodies (bNAbs);

● The HIV-1 envelope glycoprotein (Env) is the only target of bNAbs,
but thus far no vaccine has been able to induce bNAbs in humans or
relevant animal models;

● Most Env immunogens induce narrow NAb responses that usually
wane quickly after immunization;

● Stabilized soluble Envs, epitope masking, artificial consensus
sequences and sequential lineage-based vaccines are promising stra-
tegies that could improve or even broaden NAb responses;

● Nanoparticle presentation and genetic vaccination could be used to
increase the potency and durability of the NAb responses;

● Approaches that combine these and other novel strategies will
probably be needed for an effective HIV-1 vaccine that induces
bNAbs.
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the inner domains [62–64] or the V3 loop [65]. However, gp120
monomers without these immunogenic non-neutralizing epi-
topes have only elicited binding Abs or Tier 1 NAbs. Third,
gp120 outer domains (eOD) have been engineered that interact
with specific precursor B cell receptors [66,67]. These promising
immunogens are now being applied in immunization strategies
aimed at activating inferred germline versions of bNAbs and are
discussed in detail later (see section 7: ‘Targeting the precursors
of bNAb producing B cells’).

The Env complex is highly metastable and removing the
transmembrane domain causes the complex to fall apart in
gp120 and gp41 subunits. Therefore, the first trimeric soluble
Env designs consisted of gp140 subunits that included inacti-
vated furin cleavage sites that kept the gp120 associated with
the gp41 ectodomain and/or contained heterologous trimer-
ization domains, such as foldon and isoleucine zipper, fused to

gp41 to stabilize the trimeric conformation [68,69]. However,
these uncleaved Env trimers do not resemble the typical
propeller shape of viral Env [70], but instead have a splayed
open non-native Env conformation with gp120 monomers
loosely tethered to gp41 ectodomains that are mostly in
a postfusion conformation [71]. Moreover, these non-native
trimers present epitopes in the Env core and the heterologous
trimerization domain that are usually hidden (or absent) on
neutralization-resistant viruses and that induce potentially dis-
tracting and unwanted non-NAbs (see section 4: ‘Epitope
masking’) [57,69,72,73].

3. Native-like Env trimers

A different approach toward generating soluble Env trimers
encompasses the so-called SOSIP.664 design, whichwas iteratively

Figure 1. Strategies for increasing the breadth, potency and longevity of NAb responses against HIV-1 Env. The different immunological challenges that HIV-1 poses
are indicated in the red outer sectors. The corresponding green sectors show potential strategies to overcome these challenges, as detailed in this review. Env
antigens, antibodies and epitopes colored in green are related to broad, potent and/or long-lived neutralizing responses. Envs and epitopes in blue, orange and
magenta are related to narrow, weak and/or short-lived responses.
(A) Mosaic antigens: natural HIV-1 isolates present strain-specific T cell epitopes that will attract narrow CD4 T cell help (red), while mosaic-based HIV-1 Envs will attract a broader range of
CD4 T cells (green).
(B) Centralized Env antigens: consensus sequence-based Envs are more closely related to most Envs (green) than most random natural isolates to each other (red) and thus contain less
strain-specific antigenic determinants.
(C) Epitope masking: many Envs contain immunodominant strain-specific epitopes that are not suitable for broadening NAb responses (red). By covering or hiding these epitopes (e.g.
with glycans), one might focus the responses to more relevant, but subdominant cross-neutralizing epitopes (green).
(D) Sequential vaccination strategies: randomly selected Env trimers usually do not engage the unmutated common ancestor (UCA) B cell receptors (BCRs) of bNAb lineages (red).
A series of specifically designed or isolated Env immunogens that engage UCA BCRs and recapitulate the antibody maturation process could be administered sequentially to induce bNAb
responses (green).
(E) Genetic vaccination: protein subunit immunogens are processed by antigen presenting cells (APCs) and presented on major histocompatibility complex (MHC) molecules, but attract
only a limited CD4 T cell help (red). However, nucleic acid encoded antigens usually induce longer-lasting responses due to increased CD4 T cell help (green).
(F) Multimerization: soluble Envs do not activate cognate B cells efficiently, possibly due to low avidity interactions or lack of BCR cross-linking (red). The higher valency of multimerized
Envs increases avidity and BCR crosslinking, thus increasing B cell activation (green).
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generated over the years. First efforts started almost two decades
ago by covalently linking gp120 and gp41 using a disulfide bond
(‘SOS’) [74]. Thereafter, an I559P mutation (‘IP’) was introduced in
gp41 to stabilize Env in its pre-fusion conformation [75] and
gp120/gp41 cleavage was increased by enhancing the furin clea-
vage site [76]. Lastly, gp140 was truncated at position 664 to
prevent unwanted aggregation [77]. Combining this set of
‘SOSIP.664’mutations with the clade A BG505 viral isolate resulted
in the first native-like Env trimer (BG505 SOSIP.664) [78]. The
BG505 SOSIP.664 provided the first high-resolution structures of
the complete Env trimer [79,80], paving the way for structure-
based Env trimer design. Later, it was shown that the SOSIP trimer
structure is virtually indistinguishable from that of membrane-
anchored HIV-1 Env [81]. Importantly, BG505 and the clade
B B41 SOSIP.664 trimers were the first soluble immunogens to
induce consistent and moderate to strong autologous NAb
responses against a Tier 2 virus in rabbits and macaques [57].
However, these responses did not show neutralizing activity
against heterologous Tier 2 viruses [57], as they were primarily
targeting BG505- and B41-specific epitopes accessible because of
the lack of glycosylation at positions 241 and 289 of the BG505
and B41 envelope protein [82,83].

The developments with SOSIP trimers have encouraged struc-
ture-based improvements and alternative native-like Env designs
[69,84], such as uncleaved Env trimers that contain a long linker
between gp120 and gp41 ('single-chain' or 'native flexibly linked
(NFL)' trimers) [85,86] or a redesigned heptad repeat 1 in gp41 as
an alternative to the I559P mutation (‘uncleaved prefusion-
optimized (UFO)’ design) [87]. Subsequent studies have shown
that these designs also present a native-like structure [88,89] and
can induce autologous NAbs efficiently [90,91].

During the last years, these Env designs have facilitated the
generation of a considerable collection of native-like soluble Env
trimers from different isolates and clades [88,90,92–94].
Nevertheless, monovalent immunization regimes with these
immunogens have never induced bNAbs in relevant animal mod-
els [84], which is not surprising, considering the intricate pathways
that bNAbs need to undergo before developing breadth. Thus,
more targeted designs and vaccination strategies are needed to
optimally exploit the potential of these immunogens for vaccines.

4. Epitope masking

During the co-evolution history of HIV-1 with its hosts, the
virus has developed several immune escape mechanisms,
which include the incorporation of a glycan shield that covers
most of the surface of the Env protein [15,17]. Generally, the
most essential and conserved epitopes have evolved into
subdominant determinants by glycan masking. On the other
hand, strain-specific non-essential determinants are some-
times left exposed and might act as immunodominant ‘epi-
tope-baits’ that hinder the development of broad-spectrum
responses. In line with these concepts, it has been found that
patients infected by transmitter/founder (T/F) viruses with
holes in their glycan shield induce narrower responses than
those infected by T/F viruses with intact glycan-shields [95].
Furthermore, detailed characterization of the humoral
responses elicited in animals immunized with native-like Env

trimers identified several of these immunodominant determi-
nants responsible for the elicitation of strain-specific or nar-
row-neutralizing antibodies [82,91,94,96,97]. Moreover, trimer
immunogens with artificially created glycan holes induce
potent neutralization, but these NAbs are usually only reactive
with the autologous glycan-deleted virus [98]. Finally, site-
specific glycan analyses have shown that glycan occupation
of Env is highly heterogeneous [99–101]. Taken together, this
suggests that HIV-1 has evolved a dynamic glycan shield that
could open to ‘lure’ highly specific strain-specific NAbs that
provide little or no protection against other strains.

Furthermore, virtually all engineered soluble HIV-1 Env
immunogens present (neo-)epitopes that induce strain-
specific or non-neutralizing Abs. First, many soluble Env tri-
mers induce non-neutralizing Abs to the V3-loop and/or the
Env core, but these epitopes are hidden on closed viral Env
trimers of Tier 2 viruses [51,57]. However, in vitro experiments
show that many of the engineered Env trimers do not expose
the V3-loop and/or Env core prior to administration, which
suggests that these epitopes become exposed due to (partial)
degradation or opening up of Env trimers post-administration
[102]. Second, heterologous protein scaffolds that are some-
times used to present soluble Env trimers are highly immuno-
genic [73]. Third, the underside of soluble Env trimers is highly
exposed, but this epitope does not exist on membrane-
bound viral Env [103]. Polyclonal antibody mapping suggests
that a majority of early Ab responses target this non-
neutralizing epitope on soluble Env trimer immunogens [104].

These observations open the door to an ‘epitope masking-
based design’ strategy in which strain-specific or non-
neutralizing epitopes are artificially covered to redirect the
responses to other, potentially cross-neutralizing, epitopes
[105,106]. Several studies have successfully used stabilizing
mutations (reviewed in [84]), interdomain-locking mutations
[107] and glycan shielding to decrease the immunogenicity of
unwanted non-neutralizing epitopes without compromising
the desired Ab responses [73,106–109]. B cell immunology
suggests that decreasing the immunogenicity of undesired
epitopes should increase the competitive advantage of
desired lower affinity bNAb epitopes [110]. However, thus far
no in vivo study has directly demonstrated that dampening
unwanted Env-responses redirects and increases Ab responses
toward the desired epitopes [108,109]. Furthermore, infected
individuals that develop bNAbs also induce non-NAbs and this
suggests that the induction of bNAbs is not necessarily com-
promised when non-NAbs are also induced. Still, immunogens
lacking most non-neutralizing epitopes will likely be important
in cocktail or sequential vaccines in order to subdue responses
to immunodominant non-NAb epitopes and to bolster the
responses to subdominant cross-neutralizing epitopes.
Furthermore, future immunization studies will need to demon-
strate the influence of the highly exposed bottom epitope on
soluble Env trimers on the induction of NAbs.

5. Centralized and mosaic immunogens

Due to the high diversity of env sequences among HIV-1
strains, Env trimers present strain-specific antigenic
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determinants that are not likely to induce broad-spectrum
responses. One approach to circumvent these strain-specific
responses is the use of so-called centralized immunogens
[12,111–114], which encompass the variability from several
viral strains in a single sequence. In theory, this could result
in broader NAb responses by setting the immunological
target(s) on the most conserved epitopes or, at least, on
epitopes that are shared among a significant percentage of
isolates. Two types of centralized sequences are distinguished
according to the algorithm used to gather the variability of the
viral population: consensus sequences, constructed by the
concatenation of the most common amino acid at each posi-
tion of the protein alignment, and ancestral sequences, which
account for the predicted sequence of the common ancestor
[12,113].

Despite their artificial origin, several examples of func-
tional immunogens based on centralized env sequences
were reported prior to the emergence of soluble native-like
Env trimers [115–120]. However, these immunogens were
focused on enhancing T-cell responses and only elicited low
NAb titres [115–118,120], probably because they were deliv-
ered by genetic vaccination or did not present a native-like
conformation. Liao et al. compared transmitter/founder (T/F),
consensus and chronic Envs from different clades in immu-
nization experiments in guinea pigs. Although all the trimers
from the three classes showed a similar antigenic profile, the
T/F Env induced the least potent but also the broadest
neutralizing responses. The consensus Envs elicited higher
NAb titres to both Tier 1 and a subset of Tier 2 viruses (albeit
at very low titres) than chronic Envs [121].

Advances in Env trimer protein design have boosted the
generation of new consensus sequence-based Env immuno-
gens. For instance, a soluble native-like Env trimer was pro-
duced by combining a number of stabilizing mutations with
the consensus env sequence of clade C (conC) [122]. Another
construct, based on a consensus sequence of all env
sequences in group M (conS) [119], which was stabilized by
the UFO design [87], showed a favorable antigenic profile and
elicited autologous NAb responses in a DNA-protein vaccina-
tion experiment in rabbits [90]. The ConM SOSIP, also based
on a group M consensus sequence, was structurally indistin-
guishable from other native-like Env trimers and induced
apex-directed antibodies that neutralized the autologous
conM virus and related conS virus at relative high NAb titres
[123]. These and other consensus-based Env immunogens
might be useful additions to NAb-based vaccine strategies,
because they should contain less isolate-specific antigenic
determinants.

A slightly different approach aimed at maximizing the
coverage of an Env-based vaccine is the use of mosaic immu-
nogens, which present as many cross-reactive T- or B- cell
epitopes as possible while resembling natural sequences
[124,125]. The presence of cross-reactive epitopes represent-
ing the whole population of epitope variants should increase
the probability of recruitment of more individual lineages of
immune cells than those based on single isolates.

T-cell mosaic immunogens have been repeatedly shown
to improve the depth and breadth of the CD4 and CD8
cellular immune responses compared to consensus or

natural HIV-1 antigens, in DNA- and vectored-based vaccina-
tion experiments [126–131]. This is the result of their opti-
mization to include potential T-cell epitopes (PTE), which are
nine-amino-acid peptides and thus present the optimal
length to be presented on major histocompatibility complex
(MHC) molecules [132,133]. There are two types of T-cell
epitope mosaic vaccines. First, HIVconsv vaccines that
include one or several isolated PTEs corresponding to func-
tionally and structurally conserved subdominant regions of
the viral proteins [131,134]. In clinical trials, these immuno-
gens re-focused T cell immune responses to conserved epi-
topes [135,136]. Other mosaic sequences encode for viral
proteins that contain as many PTEs as possible while trying
to preserve a native-like conformation. A heterologous gag,
pol and env-based mosaic antigen called mosaic M delivered
by an adenoviral vector 26 (AdV26) induced higher antigen-
specific CD4 T-cell responses than counterparts based on
consensus M and clade C natural sequences [126]. Env tri-
mers based on T cell mosaic sequences have been gener-
ated, but these are non-native trimers and did not elicit
consistent Tier 2 NAb responses [137,138]. On the other
hand, the structural complexity of most B cell epitopes
[139] has probably hampered the design of B-cell mosaic
immunogens, which remains an elusive goal and will prob-
ably require intensive protein engineering efforts.

Centralized and mosaic sequence-based immunogens can
be useful for suppressing isolate-specific responses and stimu-
late more universal Env immune responses. However, none of
these immunogens have induced bNAbs and a successful vac-
cination strategy will probably require multiple different Env-
based immunogens, as discussed below.

6. Combination vaccines

An obvious approach to increase the breadth of NAb
responses is to administer Env antigens from different strains
in combination, either simultaneously or sequentially. The
rationale behind a combination vaccine is that B cell lineages
targeting conserved cross-neutralizing epitopes present in
most immunogens of the combination will be selected over
the ones that target strain-specific epitopes present only in
one or few of the immunogens. This hypothesis is reinforced
by observations that show that increased viral diversity in HIV-
1 infected patients correlates with neutralization breadth
[140–142]. Furthermore, several in silico simulation studies
have predicted that combination vaccines would activate
cross-neutralizing B cells more efficiently, because these
B cells would be able to internalize and present a higher
amount of antigen and thus outcompete the strain-specific
B cells [143–145].

The first HIV-1 Env-based cocktail or sequential immuniza-
tion experiments were conducted with DNA vaccines, non-
native like trimers or gp120 monomers. In general, these
studies showed that such regimens were superior in inducing
broader Tier 1 NAb responses compared to monovalent vacci-
nation [36,146–149]. However, consistent NAb responses
against Tier 2 viruses were not induced. Two independent
studies used native-like Env trimers based on diverse env
sequences to assess the potential of sequential and cocktail
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strategies for eliciting Tier 2 NAbs [83,94]. However, neither
simultaneous nor sequential administration of native-like Env
trimers elicited bNAbs. Interestingly, both studies found that
a clade C Env trimer could cross-boost responses to clade
A and B trimers that were administered earlier [83,94].
Furthermore, Tier 1A V3-directed responses were higher in
the combination vaccine groups compared to the monovalent
vaccine groups [94]. The combination groups also induced less
potent autologous NAb responses against the individual Envs
in the cocktail than those from the monovalent groups. These
results suggested that immune interference might have
played a role, since the most immunodominant component
in the cocktail, the BG505 SOSIP trimer, seemed to reduce the
autologous responses against the other strains [94].

More recently, epitope-focused combination vaccine
approaches were described [150,151]. Voss et al. first screened
for viral Envs that were neutralized by V2-apex-targeting NAbs.
Subsequently, SOSIP trimer versions of these Envs were gener-
ated and administered as monovalent or as combination vac-
cines. Again, the combination groups showed less potent and
consistent NAb responses against the individual components,
but one rabbit immunized with the cocktail displayed weak
heterologous Tier 2 NAb responses, while none of the rabbits
in the monovalent groups showed any breadth [151]. Similarly,
Bricault and colleagues found that themagnitude and breadth of
the NAb responses induced by a cocktail of trimers with opti-
mized V2 epitopes were improved over those of the monovalent
vaccines [150]. Together, these studies suggest that combination
vaccines can indeed steer responses toward shared epitopes
when the appropriate Env trimers are mixed. However, none of
the above-mentioned studies induced the level of breadth and
potency that would be needed for an effective vaccine and thus
more sophisticated strategies are required.

6.1. Sequential vaccines based on natural infection

Longitudinal studies that finely dissected the co-evolutionary
pathway between bNAbs and the infecting virus in patients
have helped to understand the crucial steps in the development
of some bNAbs lineages as well as to elucidate the viral
sequences that drove their evolution [27,152–154]. The viral
env sequences from these patients are now being turned into
soluble immunogens for vaccination strategies that try to reca-
pitulate the virus-antibody co-evolutionary pathways that pro-
duced bNAbs. One of the first studies that used viral quasispecies
sequences in vaccines was published by Malherbe et al. The
authors administred a collection of viral env quasispecies
sequences from a SHIV-infected macaque as DNA vaccines to
rabbits. These animals developed responses that targeted similar
epitopes as those targeted by the macaque [147]. These natural
lineage-based vaccination approaches now benefit from the
advances in Env protein engineering to design protein immuno-
gens that might be more suitable for guiding bNAb develop-
ment. The evolutionary pathways of the CD4bs bNAb lineages
CH103 and CH235 have been mapped in great detail and viral
sequences have provided templates for Env-based sequential
vaccines [154,155]. In an effort to raise CH103 or CH235 bNAbs
by vaccination, knock-in (KI) mice carrying the unmutated

common ancestor of the heavy chain of CH103 (CH103 UCA)
and wild-type (WT) NHPs were immunized with immunogens
based on Env sequences isolated from the patient who induced
CH103 bNAbs [36,156]. Surprisingly, the Tier 2 NAbs induced in
both animal models targeted the V1V2 region and not the CD4bs
[36,156]. The authors found that the CH103 UCA in the KI mice is
polyreactive and that the maturing B cell stemming from this
lineage were partially depleted and as a result, other epitope
specificities, i.e. V1V2, were being selected by vaccination
[36,156]. Together, these and other studies show that inducing
certain CD4bs bNAbs with (lineage-based) vaccines can be
impeded by tolerance mechanisms [37] and that other epitopes
might be more suitable for inducing bNAbs using lineage-based
vaccines. As such, studies on the VRC26 and PCT64 bNAb
lineages, which target quaternary epitopes on the Env V2-apex,
provide interesting avenues for vaccine design
[27,152,153,157,158]. Thus far, vaccine studies using immuno-
gens that are based on viral sequences from the individuals
who developed the VRC26 and/or PCT64 lineages have been
proposed, but their outcomes have not yet been published [159].

7. Targeting the precursors of bNAb producing
B cells

A slightly different approach is the use of Env immunogens
that are specifically designed to activate specific bNAb pre-
cursors, followed by subsequent boosts with tailored immuno-
gens that could shepherd the desired lineage toward breadth
[26]. For most bNAbs, the genuine naïve B cell precursors,
called unmutated common ancestors (UCA), are not known
and therefore these sequences are computationally inferred
from the mature bNAb sequence or, ideally, from the early
precursor sequences in a bNAb lineage. In theory, these
inferred sequences correspond to the naïve (or germline)
B cell receptors that were initially engaged by the transmit-
ter/founder virus and later developed into bNAbs. Thus, Env
immunogens that bind to the inferred germline bNAb (igl-
bNAb) would be potential candidates to prime such bNAb
B cell lineages. The observation that most Envs do not effi-
ciently bind to igl-bNAbs [160,161] fueled the design of germ-
line targeting (GT) immunogens, such as engineered outer
domain of gp120 (eOD.GT) [66], engineered 426c Env [67]
and SOSIP trimers (BG505.SOSIP.GT1 and MD39-11MUTB)
[162,163]. These engineered proteins show improved binding
to igl-bNAbs that target several epitopes: the CD4 binding site
(CD4bs) (e.g. VRC01, 3BNC60) [66,67,162], variable region 2
(V2) apex epitopes (e.g. PG9/16, CH01) [162] and/or the V3
glycan epitope (e.g. PGT121) [163].

Several of these immunogens were tested in knock-in mice
that carry the inferred germline versions of 3BNC60, PGT121 or
VRC01 [37,66,162,164]. Initially, these studies showed that the
germline B cells could be selectively activated and expanded,
but none of those mice developed broad neutralization, as
expected from these early responses. Follow-up experiments
in germline VRC01 and PGT121 KI mice showed that it was
possible to shepherd these initial responses with appropriate
boosts to induce Abs that neutralize wild-type or near native
viruses [165–167]. These studies represent a significant
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milestone, but these bNAb(-like) responses were elicited in
model animals with a controlled and favorable B cell reper-
toire. How would similar germline-targeting strategies fare
when physiologically relevant amounts of germline bNAb
B cells are present and have to compete with non-bNAb
B cells? Recently, two elegant studies have started to address
this question by transferring different amounts of (partly)
germline bNAb B cells into WT mice. Subsequently, these
mice were immunized with antigens with different affinities
for the transferred germline B cells [168,169]. In both studies,
the authors found that the activation of the antigen-specific
B cells was dependent on B cell frequency and antigen-
binding affinity. Moreover, a recent study showed that an
engineered variant of the MD39-11MUTB trimer [163] could
induce antibodies that resemble the precursors of V3 glycan
bNAbs in mice, rabbits and macaques [170]. However, none of
the humoral responses induced in the animals of the latter
three studies had any neutralizing activity against WT viruses.
A next step would be to determine which strategies are
needed to guide the responses of these animals toward neu-
tralization potency and breadth.

8. Epitope-focused vaccination

The germline- and lineage-based approaches seem very pro-
mising, but they rely on activating the correct B cell lineage
and the ability to shepherd these responses toward breadth.
An epitope-focused vaccination strategy is B cell agnostic and
would potentially be a less complicated strategy for inducing
broader NAb responses. However, most conserved neutraliz-
ing epitopes are buried or hidden by glycans, or involve
conformational epitopes consisting of non-linear peptides.
Until recently, it was thought that the linear fusion peptide
(FP) was hidden inside the Env protein. Identification of sev-
eral bNAbs (PGT151, VRC34 and ACS202) that target the
N-terminus of the FP [171–174] revealed that this epitope is
actually exposed on viral Env. The FP is a promising candidate
for epitope-focused vaccination for several reasons: it is essen-
tial for the fusion machinery of HIV-1 [175], it is only partially
shielded by glycans, it is a linear peptide stretch and its amino
acid sequence is highly conserved.

The Kwong research group has used structure-guided
design to create several scaffolds that present a FP that is
recognizable by FP-specific bNAbs [176]. By immunizing with
FP-scaffolds followed by trimer boost, the authors showed
that FP-specific NAb responses could be induced. The sera
responses were relatively broad: 1-20% of the viruses were
neutralized by the polyclonal sera and individual antibodies
isolated from immunized mice could even neutralize 31% of
a panel of 208 primary isolates [176]. These NAb responses
were broader than those achieved before and future studies
will reveal whether this strategy will yield similar NAb
responses in humans. However, the fusion peptide is highly
flexible [177] and not all viruses seem to expose the FP so that
it is recognized by NAbs [178]. These features could be poten-
tial roadblocks for developing a broadly applicable FP-focused
immunization strategy to target HIV-1.

9. Nanoparticle presentation

The immune system has evolved to effectively recognize and
mount responses toward bacterial and viral antigens when they
are presented in repetitive and continuous arrays on the surface
of pathogens [179]. The fact that the only antiviral subunit
vaccines licensed to date (hepatitis B, hepatitis E and human
papillomavirus) are based on virus-like particle (VLP) formula-
tions signifies the importance of multimerization for immuno-
genicity [180]. The key immunological concepts underpinning
the immunogenicity of multimerized antigens have been exten-
sively reviewed [181,182]. Several of these immunological
mechanisms are especially important for vaccines aimed at indu-
cing HIV-1 NAbs. First, multimerization improves B cell activation
by increasing the B cell receptor (BCR) cross-linking [181,182-
,182]. Second, multimerization increases avidity which could
compensate for low affinity antigen-BCR interactions, such as
those between naïve precursor B cells and Env antigen
[168,183,184]. Third, it has recently been shown that multimer-
ized HIV-1 Env immunogens are more efficiently trafficked to
germinal centres by components of the innate immune system
[185]. Fourth, presenting soluble HIV-1 Env trimers on nanopar-
ticles hides the non-neutralizing epitopes on the bottom of these
trimers [103,104]. Fifth, repetitive display can break immunolo-
gical tolerance checks that block the maturation of some bNAb
lineages [37,186,187].

The physicochemical properties of nanoparticles, such as
shape, size and surface chemistry, can affect their effectivity
(reviewed in [181]), thus representing important features to be
fine-tuned. A number nanoparticle platforms have been used for
displaying Env antigens [188,189]. VLPs based on the HIV-1 virion
carry native Env spikes, but the intrinsic low density of spikes on
the surface of HIV-1 virions negates some of the important
immunological benefits of nanoparticle presentation.
Furthermore, depending on their manufacturing process, HIV
VLPs still present an abundance of misfolded Env, such as gp41
stumps or post-fusion Env, that present non-neutralizing epi-
topes [190]. An interesting strategy is to enzymatically remove
the unwanted Envs, leaving only well-folded Env trimers on the
surface [191–193]. These virions still carry a low density of Envs,
but they present a potentially more favorable antigenic profile
since they display MPER epitopes in a native lipid environment.
When immunizing rabbits with these VLPs, two out of eight
induced potent Tier 2 autologous NAbs that targeted a hole in
the glycan shield near the CD4bs [96].

The use of artificial lipid-based vesicles called liposomes
enables controlled immobilization of Env antigens on their
surface. However, conventional immobilization procedures
are rather stringent and lead to presentation of a percentage
of non-native antigenic species. Therefore, His-tagged Env
trimers were immobilized on NiNTA-functionalized liposomes
for non-covalent, but nondestructive Env-liposome coupling.
Such nanoparticles have shown some success in increasing
binding [194,195] and neutralizing antibody titres [91,196].
However, it was found that NiNTA-coupled trimers completely
dissociate in less than one day [197]. Cobalt coupling and
NiNTA-assisted covalent coupling by terminal cysteines [198]
have allowed more stable immobilization of Env trimers. These
liposomal nanoparticles induced increased Env-specific
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binding responses in mice [197,198]. Future studies will teach
us whether similar approaches can also be used in animals
that induce NAbs [199].

Multimerization of Env glycoproteins on viral-resembling
particles has also been achieved by their fusion to bacterial
self-assembling proteins, like ferritin from Helicobacter pylori,
E2 protein from Geobacillus stearothermophilus and lumazine
synthase from Aquifex aeolicus [200,201]. BG505.SOSIP anti-
gens presented on ferritin nanoparticles induced stronger
neutralizing responses than their soluble trimer counterparts
in rabbits [202,203]. The autologous Tier 2 responses were not
significantly increased, but the Tier 1A responses were, prob-
ably due to the presentation of linear V3 epitopes on non-
native Env forms on ferritin particles [202]. However, a next
generation of synthetic two-component nanoparticles can be
used to present only well-folded Env trimers [204]. Using
a two-component system, one could first purify the soluble
Env trimers using specific quaternary specific bNAbs followed
by addition of a second component to induce nanoparticle
formation in vitro. This system has recently been used with
success for generating RSV F nanoparticle vaccines and is thus
a promising platform for HIV-1 Env trimers as well [204–206].

10. Genetic vaccination

Classical vaccinology has relied on the administration of live-
attenuated pathogens or, later, recombinant protein antigens for
the induction of immune responses. A more recent approach
called genetic vaccination, which was pioneered almost 30 years
ago [207], consists of the administration of nucleic acids encoding
for oneor several target antigens thatwill be expressedby the cells
of the vaccinee to elicit an immune response [208–210]. This
approach has been explored to fight various diseases, including
tuberculosis [211] and cancer [212]. Recently, a DNA-based vaccine
against Zika virus showed promising immunogenicity and safety
profiles both in mice and humans [213,214], with 70% of vacci-
nated volunteers showing 90% inhibition of Zika virus infection in
neuronal-cell assays.

Gene-based vaccines are attractive because, compared to pro-
tein immunogens, nucleic acids are easier to design and manu-
facture at large scale and they require less strict storage conditions
due to their higher stability and structure-independent activity.
Furthermore, they usually present minimum side effects and in
most cases the adjuvant is already contained within the sequence
(i.e. unmethylated cytosine-guanine (CpG) motifs) or the adjuvat-
ing effect is carried out by the delivery method itself, e.g. in the
case of DNA electroporation [215,216]. Nonetheless, the most
important benefit of genetic vaccination is its ability to cast both
humoral and cellular actors to the immunological play. Protein
subunit antigens produced ex vivo elicit mostly antibody-based
responses, as they are canonically presented on MHC class II after
being processed by host cells. On the other hand, nucleic acid-
derived antigens expressed by host antigen presenting cells
(APCs) follow both MHC class I and class II pathways, thus stimu-
lating both CD4 helper and CD8 cytotoxic T cell responses [217].
Contrary to protein immunogens, genetic vaccines have also been
shown to elicit long-term immune responses derived from the
induction of strong effector and memory T follicular helper (Tfh)
cells and thus might help to induce more durable NAb responses

[218–220]. The expression of the antigen by host cells also allows
host-specific modifications important for immunogenicity, such as
N-linked glycosylation [221]. Thus, Env antigens expressed by host
cells present these modifications exactly as how these would be
presented in the context of natural infection. The main drawback
of genetic vaccination is that it usually induces lower antibody
responses compared to adjuvanted protein subunit vaccines and
that there is no control over the quality of the protein antigen
being produced within the host.

Genetic vaccination englobes a wide variety of strategies
depending on the type of nucleic acid used and the delivery
platform. Both DNA and RNA have been widely used as anti-
gen coding molecules. The most common delivery methods
include electroporation of the naked nucleic acid, or the use of
nanoparticles or viral vectors to deliver them to target cells, as
reviewed in [216,222].

10.1. Non-viral vectored genetic vaccines

Current technologies have made it possible to efficiently deli-
ver non-viral-vectored molecules to non-human primates and
humans [223–228]. These immunogens present thus compara-
tive benefits compared to viral-vectored ones, as they are not
associated with preexisting immunity that can affect viral
vector platforms [229]. This is especially important if the
approach is to be used as a therapeutic vaccine for seroposi-
tive individuals with a pre-mounted immune response [221].

Since the dawn of genetic vaccine development, this approach
has shown notable success in the protection of small animals and
macaques against diverse pathogens, resulting in the licensure of
several DNA vaccines to prevent veterinary infections such asWest
Nile virus in horses and infectious hematopoietic necrosis factor
disease in salmon [230,231]. However, DNA immunogens usually
induce suboptimal humoral responses in humans [230]. Thus, DNA
vaccines have been mainly explored in DNA prime-protein boost
studies, in which DNA kick-starts both humoral and cellular
responses that are then boosted by protein-based immunogens
to induce higher titre Ab responses [149,232–236]. Other immuni-
zation experiments have used DNA and protein co-immunization
mixtures to increase the durability of humoral responses [237–
239]. Jalah et al. used a SIVmac239 DNA construct and a sequence-
matched protein immunogen to compare DNA only (D), DNA
prime-protein boost (D-P) and DNA-protein co-immunization
(D&P) regimens in rhesus macaques. The DNA only scheme
induced no detectable antibody responses after two vaccinations.
Both D-P and D&P strategies elicited robust Env-specific antibody
responses. However, while the D-P titres showed a decay of 2.4
logs over 6 months, D&P induced Ab titres that showed no decay
over a period of 8 months [237]. DNA has also been successfully
combined in prime-boost regimens withmodified vaccinia Ankara
(MVA) for HIV-1 vaccination experiments [240,241].

A relatively recent development are the lipid-nanoparticle-
encapsulated nucleoside modified mRNAs (LNP-mRNAs) as
vaccine candidates [242,243]. The marginal use of RNA until
recently was related to its instability and rejection by anti-RNA
innate immune mechanisms. However, LNP-mRNA immuno-
gens include stabilizing groups as well as modified nucleo-
sides that prevent immune sensing, and they are encapsulated
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for an increased and more durable protein expression. Thus,
a single dose of LNP-mRNA encoding for Zika virus glycopro-
teins induced significantly higher NAb titres than DNA, which
provided robust protection of vaccinated NHPs [243]. Further
characterization revealed that LNP-mRNA immunogens
induced stronger Tfh cell responses, resulting in long-lived
and high-affinity neutralizing antibody responses [244].
Obviously, these LNP-mRNA immunogens could be also useful
if they are applied to HIV-1 env vaccination. A first proof-of-
concept HIV-1 Env LNP-mRNA vaccine candidate induced anti-
body responses in both rabbits and NHPs. However, the anti-
bodies elicited could not neutralize the autologous Tier 2 virus
in most animals [245]. Furthermore, durable persistent expres-
sion of gene-based immunogens has been achieved by new
delivery platforms, such as self-amplifying RNAs (saRNAs)
[246,247]. The ability of these non-viral based molecules to
replicate intracellularly allows for the sustained expression of
high amounts of protein antigen. For instance, saRNA immu-
nogens have been recently used to elicit long-lived T-cell
responses using HIV-1 mosaic vaccines [248].

10.2. Viral-vectored vaccines

Viral-vectored vaccines take advantage of genetically attenuated
pathogen-based platforms that can be modified to display an
antigen on their surface and/or deliver the genetic material
encoding for it. Despite being attenuated to not cause disease,
their natural capacity to infect cells of the vaccinee will help to
assure that the antigen-encoding gene is delivered to the host
cells and is expressed therein [249,250]. Moreover, viral-vectored
vaccines are known to induce robust CD4 and CD8 T-cell
responses [249,251–254] . The major challenge for the use of
these platforms is posed by preexisting immune responses, as
humans are common hosts of the viral vectors, which is espe-
cially the case for some adenoviruses (AdV) serotypes [255,256].
Anti-Adenovirus 5 (AdV5) preexisting immunity forced the inter-
ruption of the STEP clinical trial after it was found that AdV5
seropositive vaccinees had an increased probability of HIV-1
infection [257–259]. However, the mechanism behind this phe-
nomenon has not been completely elucidated yet [259–263].

Nonetheless, heterologous combinations of chimpanzee ade-
novirus Oxford 1 (ChAdOx1) [264] and modified vaccinia Ankara
(MVA) [265] viral vectors have shown a good safety and immu-
nogenicity profile [266–268]. Capucci et al. showed that
a sequential regimen of ChAdOx1, MVA and soluble BG505
SOSIP trimer protein induced similar binding-antibody titres to
the protein-only regimen, while only the sequential regimen
induced cytotoxic T cell responses [269]. These antibody titres
also declined faster after immunization for the protein-only
group. However, the homologous protein regimen induced
more robust Tier 2 NAb titres than the ones that included
ChAdOx1 and MVA [269].

Integrase-defective lentiviral vectors (IDLV) are also very safe
and have several advantages, such as induction of strong and
long-lasting antigen-specific responses related to long DNA per-
sistence in tissues [270]. A single dose of IDLV encoding for HIV-1
transmitter/founder (T/F) 1086c Env induced specific Ab titres
that waned by less than four-fold in a one-year period [271].

Another dose after one year notably boosted both cellular and
humoral responses [271]. However, NAb titreswere not detected.

All in all, genetic vaccination could play an important role
in inducing long-lasting immune responses against HIV-1 Env,
especially in conjunction with other immunogen forms, such
as proteins. However, it is important to note that preexisting
immunity against vectors can have detrimental effects.
Furthermore, it is obviously not possible to control the quality
of the Env antigens in vivo and probably a significant amount
of Envs that is produced after genetic vaccination are low-
quality non-native Envs that present potentially distracting,
non-neutralizing epitopes. The next important challenge
would be to generate an immunogen that is expressed as
a fully native-like Env trimer after genetic vaccination in vivo.

11. Conclusion: an effective HIV-1 vaccine needs
a combinatorial approach

Although the last decade has seen great progress with the
discovery of potent bNAbs, there is no vaccine that is able to
induce these bNAbs yet. The strategies described in this
review could help to overcome the most important hurdles
of HIV-1 Env vaccinology. Most conserved Env epitopes are
subdominant and consensus, mosaic and epitope-focusing
antigens are useful for directing NAb responses to these
essential subdominant conserved epitopes. Recently, sequen-
tial immunization strategies have been developed that employ
bNAb-lineage-based optimized antigens to guide specific
naïve B cells toward breadth. Furthermore, multimerization
of Env is an effective strategy to increase B cell activation
and to stimulate more potent NAb responses. Lastly, genetic
vaccination strategies induce stronger T cell responses that
could help elicit more durable humoral responses. Obviously,
none of these approaches are mutually exclusive and an
effective combination is probably needed to elicit broad,
potent and durable NAb responses against HIV-1.

Some of the strategies and immunogens aimed at inducing
(b)NAbs have made it past laboratory experiments and animal
testing and are currently being evaluated in human clinical
trials. The immunogens being tested in humans include
native-like Env trimers (BG505 and ConM SOSIP), germline-
targeting immunogens (eOD-GT8 and BG505.SOSIP.GT1.1)
and sequential immunogens (HVTN115 trial). The outcome of
these clinical trials will inform the HIV-1 vaccinology field on
the effectivity of these approaches and on the directions for
the rest of the field.

12. Expert opinion

The generation of the first native-like Env trimers brought
optimism to the HIV-1 vaccinology field and boosted struc-
ture-based design of different Env trimers that mimic the
structure, antigenicity and biochemical properties of viral
Env. Moreover, they have been useful for the discovery of
a wide panel of bNAbs and the characterization of their
developmental pathways. These virus-antibody coevolution
studies, together with the repeated failures in inducing
broad-spectrum NAb responses, taught us that a sole Env
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immunogen will probably never induce bNAb responses.
A shepherding vaccine approach is therefore needed to
guide the right B cells from naïve B cells to bNAb-
producing B cells. However, only a small percentage of
naïve germline precursor B cells in our repertoire have the
potential to develop into mature bNAb-producing B cells and
most Envs do not engage these germline B cells. Designed
immunogens can effectively stimulate bNAbs B cell precur-
sors in vitro and in knock-in mice that harbor the targeted
germline BCR. Recent results of the adoptive transfer experi-
ments and in non-human primates suggest that it is possible
to activate the desired germline precursors when these are
present in physiologically relevant numbers. The moment of
truth has arrived to show that it is possible to steer these
germline B cell responses toward breadth. Here, multimeriza-
tion on nanoparticles is probably essential to provide enough
affinity to specifically activate the sought bNAb cell lineages.
Moreover, immunization schedules for guiding the B cell
evolution to neutralization breadth involve different immu-
nogens and these should not present potentially distracting
non-neutralizing epitopes. Consensus sequence-based Env
trimers are promising candidates for this, since these immu-
nogens harbor less strain-specific epitopes that are poten-
tially distracting. In this regard, our increased ability to
modify and control Env glycosylation will help in focusing
the responses to the selected epitope targets, by covering
the non-interesting immunodominant native epitopes.

HIV-1 NAb responses wane quickly and this might be
solved or mitigated by several of the above-mentioned stra-
tegies, such as genetic vaccination. However, the scarcity of
studies directly testing effectivity of genetic vaccination is
remarkable. Strategies described here, such as DNA-protein
co-immunization [237], LNP-mRNA immunogens [244] and
IDLV-vectored immunization [271] provide long-lasting Ab
responses compared to the ones usually observed after pro-
tein immunization. However, none of these studies directly
compared the durability of these responses to standard pro-
tein immunization schedules. Furthermore, while most immu-
nization studies assesses the breadth and/or potency of NAb
responses, only very little attention is given to evaluating the
durability of NAb responses. Thus, more studies are needed
that systematically assess different strategies for inducing
long-lived NAb responses and other elements involved in
new candidate vaccines, such as adjuvants. Furthermore,
extensive research on the immune mechanisms induced by
successful and long-lasting antiviral vaccines (i.e. hepatitis
B virus vaccine) [272] might help to design vaccination strate-
gies that provide durable protection against HIV-1.

HIV-1 is an escape artist and it poses one of the greatest
challenges in vaccinology. This challenge forces the field to
develop new strategies, combine the existing ones or adopt
approaches used by other vaccinology fields. These integration
efforts can only be beneficial for our future potential to gen-
erate new vaccines and will probably be the key to defeat HIV-
1. Thus, it is vital that the HIV-1 vaccine field is open to new
advances, since the necessary toolbox for an HIV-1 vaccine
might not be complete yet. For instance, Kanekiyo et al. per-
formed immunization experiments with ferritin nanoparticles
co-displaying the conserved receptor-binding domains (RBDs)

from multiple influenza hemagglutinin (HA) molecules on the
same nanoparticle [273], effectively combining the cocktail and
epitope-focusing strategies with nanoparticle-presentation. The
avidity effect of nanoparticle-presentation provided an even
stronger advantage to the B cell lineages that targeted cross-
neutralizing epitopes on the co-displayed RBDs, which led to
broader NAb responses. Other recently developed or future
technologies that we have not discussed, such as CRISPR/Cas9
genetic editing to produce bNAb-producing B cells for trans-
plantation [274–277] or the use of osmotic pumps for the slow
delivery of Env immunogens [278], might also be key for the
development of the long-sought HIV-1 vaccine.
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