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ABSTRACT

Computationally identifying effective biomarkers for
cancers from gene expression profiles is an import-
ant and challenging task. The challenge lies in
the complicated pathogenesis of cancers that
often involve the dysfunction of many genes and
regulatory interactions. Thus, sophisticated classifi-
cation model is in pressing need. In this study, we
proposed an efficient approach, called ellipsoidFN
(ellipsoid Feature Net), to model the disease com-
plexity by ellipsoids and seek a set of hetero-
geneous biomarkers. Our approach achieves a
non-linear classification scheme for the mixed
samples by the ellipsoid concept, and at the same
time uses a linear programming framework to effi-
ciently select biomarkers from high-dimensional
space. ellipsoidFN reduces the redundancy and
improves the complementariness between the
identified biomarkers, thus significantly enhancing
the distinctiveness between cancers and normal
samples, and even between cancer types.
Numerical evaluation on real prostate cancer,
breast cancer and leukemia gene expression
datasets suggested that ellipsoidFN outperforms
the state-of-the-art biomarker identification
methods, and it can serve as a useful tool for
cancer biomarker identification in the future. The
Matlab code of ellipsoidFN is freely available from
http://doc.aporc.org/wiki/EllipsoidFN.

INTRODUCTION

Computationally identifying cancer biomarkers that
can indicate specific cancer types is an important and
challenging topic in the current biomedical research
because it can not only provide insightful clues into the
cancer pathogenesis but also can help accurate diagnosis
and prognosis. With the development of high-throughput
technologies, e.g., microarrays and the next generation
sequencing technologies, more than thousands of genes
can be measured simultaneously. How to select the most
meaningful biomarkers from the large number of genes
forms a common question that scientists and clinicians
often come across.
The most straightforward method for identifying cancer

biomarkers is to calculate the fold changes of gene expres-
sions in different classes of samples, given that the gene
expression data is used to characterize the biological
states. The larger the fold change is, the more likely
the gene is a biomarker. However, this method does not
consider the variations among samples of the same classes.
Hence, the methods based on or similar to the Student’s
t-test or Wilcoxon rank-sum test are introduced to elim-
inate the irrelevant or noisy features (1,2). Owing
to the multiple testing issues, methods such as SAM
that provides fine false discovery rate control were
invented (3). All these methods score genes one by one
based on their expression levels and can generate many
redundant biomarkers. Peng et al. (4) propose a criterion
based on mutual information (MI) to find a set of
biomarkers that have the maximal relevancy to the class
labels but minimal redundancy within themselves.
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But the underlying assumptions of this method are not
very clear.
In nature, biomarker identification is intrinsically linked

to class assignment to samples (5–7). From a machine
learning viewpoint, biomarker identification is a feature se-
lection problem, given the biological states of samples (e.g.,
cancer or normal). The aim of feature selection is to find a
set of features that can maximize the prediction accuracy of
a classifier (8,9).With different classifiers, the identified bio-
markers may be different. Many supervised or
semi-supervised machine learning methods, such as
support vector machines and Bayesian networks, can be
exploited as the classifiers to guide the identification of bio-
markers (1,10–14). Support vector machines provide a
model assuming that biological states were linearly
separated in the feature space, whereas Bayesian networks
use graphs to model the complicated relationships among
features. However, biomarker identification is not explicitly
embedded in these methods. Amodel for simultaneous bio-
marker identification, especially non-redundant biomarker
identification, and classification is needed to explicitly
model the properties of biological states.
In this study,we explicitly considered the heterogeneity of

cancers and proposed a novel model based on linear
programming. In the gene expression space, we used ellips-
oids to model cancers and normal samples and tried to
identify a minimal set of genes to maximize the distinctive-
ness between cancers and normal samples and between
cancer types. Different from the general biomarker identi-
fication approaches, it produces a set of non-redundant but
complementarybiomarkers thatmaintain themaximal clas-
sification ability. Computational results on prostate cancer,
breast cancer, and leukemia gene expression datasets sug-
gested that our method significantly outperformed the
state-of-the-art biomarker identification methods.

MATERIALS AND METHODS

Overview of ellipsoidFN

We construct our method based on two assumptions:
(i) Cancer and normal samples are stable biological
states in the gene expression space; (ii) The differences
of cancers from normal samples or from another cancer
type are sample heterogeneous, i.e. one patient develops
cancer because of the dysfunction of one gene, but another
patient may develop cancer due to the dysfunction of a
second gene. We try to seek a minimal set of genes such
that cancers and normal samples are represented by dif-
ferent ellipsoids and that the distances between ellipsoids
are maximized (Figure 1).
Given a gene expression data set Xm�n, in which

the expression of n genes is measured for m samples, and
xij denotes the expression level of gene j in sample i, we set
wi, i ¼ 1, . . . ,n, denoting the weight for each gene to be
determined. Supposing that there are in total c sample
classes, the formulation of our method can be described
as follows:

min
Xn

i¼1

wi+�
Xc

i¼1

ðzi1 � zi2Þ+C
Xm

i¼1

Xc

j¼1

�ij ð1Þ

Subject to

Xn

i¼1

wiðxij � xai Þ
2
� za1+�ja for j 2 Ia,a 2 f1 � � � cg ð2Þ

Xn

i¼1

wiðxij � xai Þ
2
� za2 � �ja for j =2 Ia,a 2 f1 � � � cg ð3Þ

0 � za1 � za2 for a 2 f1 � � � cg ð4Þ

0 � wi � 1 for i 2 f1 � � � ng ð5Þ

�ij � 0 for i 2 f1 � � �mg and j 2 f1 � � � cg ð6Þ

Where xai is the average/median expression level of gene
i in class a. Ia is the set of samples belonging to class a. za1
and za2 are variables defining the inner and outer radius
of the ellipsoid representing class a. �ij are slack variables
to tolerate the data errors. Equation (1) presents the
objective function for the optimization problem. It
consists of three terms.

Pn
i¼1 wi denotes the weight sum-

marization of selected genes. By minimizing it, we aim
to select a few of genes as biomarkers to enhance the inter-
pretability. The second term

Pc
i¼1 ðz

i
1 � zi2Þ is minimized to

enlarge the difference of inner and outer radiuses of ellips-
oid for perfect separation for each class. The third termPm

i¼1

Pc
j¼1 �ij denotes the total classification errors for all

the samples. It should be minimized to achieve high classi-
fication accuracy. Here a and C are two parameters
introduced to balance the above three goals and unify
them into a single objective function. Equation (2) imple-
ments the assumption (1), i.e., samples from the same cancer
type are enclosed by one ellipsoid, which minimizes the
distance of a sample from its class center. Equation (3) im-
plements the assumption (2), i.e., every sample from the
other cancers locates outside of the ellipsoid representing
the current cancer. The divergence of one cancer from
another cancer or normal samples is measured by the
weighted sum of the divergence of gene expressions such
that heterogeneity is modeled. The goal is to identify a
minimal set of genes that maximize the distances between
ellipsoids. We used the quadratic function in constraints (2)

Figure 1. The schematic diagram of ellipsoidFN. ellipsoidFN tries to
represent each cancer type by ellipsoids in the gene space and maxi-
mizes the distance between ellipsoids. A meta-ellipsoid (black) can be
added to represent the relationship between cancer types.
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and (3).Other non-negative functional forms, e.g., the abso-
lute values used in (15), can also be applied in a similar way.

We tuned two parameters, a and C, by grid search in
the parameter space. For a, we tested 0.1, 0.5, 1, 2, 5, 10
and 100. For C, we tested 10, 100, 1000 and 10 000. The
model will generate a trivial zero solution when a is small
enough or C is large enough. Smaller a means the fewer
biomarkers, whereas larger C means less classification
errors. Thus, the parameter pair, which leads to non-
trivial solution and at the same time has smaller a and
larger C, was finally selected as our optimal parameter.
a can be further decomposed into two separate parameters
for za1 and za2, respectively. In this situation, the weights of
za1 and za2 can be tuned separately. Here, we used the same
parameters for za1 and za2 to reduce the total number of
parameters in the model.

We name our method as ellipsoidFN (ellipsoid Feature
Net). Different from the one-by-one biomarker identifying
methods (like fishing by a fishing rod), ellipsoidFN simul-
taneously identifies a minimal set of genes that represent
different cancer types and normal samples as discrete
ellipsoids (like fishing by a fishing net). Altering the par-
ameters can adjust the number of identified biomarkers
(like adjusting the size of the fishing net grid).
Mathematically, ellipsoidFN is a linear programming
model that can be solved efficiently in polynomial time.
Thus, it can be applied to high-dimensional datasets.

ellipsoidFN is flexible. It can deal with any number of
classes that have any relationship (unordered, linearly
ordered, tree-ordered, etc.) as long as the computer
memory and processor allows. For unordered multiple
classes, the formulation is just illustrated as above. For
cases where there are complicated relationships among
classes, additional ellipsoids can be added into the model
to represent meta-class denoting the class relationship.

Data sets and metrics for evaluation

We compared ellipsoidFN with the start-of-the-art bio-
marker identifying methods, which are widely used. For
two-class cases, we compared ellipsoidFN with mRMR
(4) and t-test. For multiple classes, we compared
ellipsoidFN with minimum Redundancy Maximum
Relevance Feature Selection (mRMR) and F-test-based
gene weighting scheme. Evaluations were done on three
different cancers (prostate cancer, breast cancer, and
leukemia). The prostate cancer gene expression data set
(16) was downloaded from the National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) database (17) with accession number
GDS3289. The breast cancer gene expression data set
(18) was downloaded from the NCBI GEO database
with accession number GSE10797. The leukemia gene ex-
pression data set was from (19). Four metrics were used to
compare the results of ellipsoidFN and the state-of-the-art
methods. One metric is the mean redundancy score
between the identified biomarkers. Given two genes, the
score of their redundancy was measured by the Pearson
correlation coefficients (PCC) and MI of two genes’
expression profiles. The second and third metrics are the
inter-class and intra-class similarity scores (measured by

the PCCs and MI of two samples’ gene expression
profiles). The fourth metric is the leave-one-out cancer
classification error rate based on the identified biomarkers
(naı̈ve Bayes classifier). The smaller the redundancy, the
inter-class similarity and the error rate are, the better the
method is. The larger the in-class similarity is, the better
the method performs. All the calculations were conducted
in Matlab 7.13 on a computer with a 2.26GHz Inter
Core 2 Due CPU and 3GB memory. For a two-class
data set with 72 samples and 1000 genes, ellipsoidFN
took <1min to identify the optimal biomarker set.

RESULTS

Comparisons on prostate cancer data set

There are totally 104 samples and 9483 genes in the
prostate cancer dataset. The 104 samples consist of
22 normal samples and five different stages of prostate
cancer samples. When we got the raw data, we filtered
out those genes with missing values and those genes with
low information content (measured by entropy of the gene
expression distribution, <0.5). The normal and metastatic
prostate cancer samples were extracted to evaluate
the performances of ellipsoidFN, mRMR, and t-test.
The normal, metastatic prostate cancer, and localized
prostate cancer samples were extracted to assess the per-
formances of ellipsoidFN, mRMR, and F-test. For each
situation, the top 50 genes were selected as the most po-
tential biomarkers in comparison.
For two-class case, the biomarker redundancy of

ellipsoidFN was lower than those of mRMR and t-test
(Figure 2 and Table 1). The mean biomarker redundancy
score (measured by PCC) of ellipsoidFN was 0.2350,
whereas the mean redundancy score of mRMR was
0.2530 (PCC). The difference was significant
(P=0.0012, Student’s t-test). The mean biomarker redun-
dancy score of t-test was 0.4952 (PCC), much larger than
that of ellipsoidFN (P< 10�20, Student’s t-test). If MI was
used to measure the biomarker redundancy, ellipsoidFN
still identified the most heterogeneous biomarkers.
Randomly sampling 1000 sets of biomarkers (50 genes
per set), all the 1000 biomarker redundancy scores were
smaller than those of ellipsoidFN (except two random
biomarker sets for PCC), mRMR (no exception) and
t-test (no exception) with regards to both PCC and MI,
suggesting that ellipsoidFN identified a set of more het-
erogeneous biomarkers than mRMR and t-test.
Exploiting the complementariness among the identified

biomarkers, ellipsoidFN improved the in-class similarity
and reduced the inter-class similarity of normal and
prostate cancer samples (Figure 3 and Table 1). The
in-class similarity of ellipsoidFN was 0.3632 (PCC),
whereas the in-class similarity of mRMR was 0.2849
(PCC). The difference was statistically significant
(P< 10�8, Student’s t-test). The in-class similarity of
t-test was similar to that of ellipsoidFN (0.3483, PCC).
The inter-class similarity of ellipsoidFN was �0.1733
(PCC) whereas those of mRMR and t-test were �0.0788
(P< 10�20, Student’s t-test) and �0.1274 (P< 10�5,
Student’s t-test), respectively. MI still supports the
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highest in-class similarity of ellipsoidFN. But mRMR and
t-test got the lowest MI inter-class similarity.
To evaluate the predictive power of the identified bio-

markers, we used the Naı̈ve Bayes classifier to predict the
sample types by leave-one-out cross-validation. The error
rates of ellipsoidFN, mRMR, and t-test were 0 (0/42),
0.0238 (1/42), and 0.0238 (1/42), respectively, suggesting
the effectiveness of ellipsoidFN. We also plotted the
receiver operating characteristic (ROC) curve to evaluate
the true positive rate and false positive rate
(Supplementary Figure S1). The ROC curve suggested
that ellipsoidFN and mRMR are almost the same and
both better than t-test.
For multiple-class case, ellipsoidFN also showed excel-

lent performance, compared with mRMR and F-test. The
biomarker redundancy of ellipsoidFN was 0.1895 (PCC),
whereas those ofmRMRandF-test were 0.2284 (P< 10�13,

Student’s t-test) and 0.3247 (P< 10�20, Student’s t-test), re-
spectively (Figure 4 and Table 2). Randomly sampling 1000
sets of biomarkers (50 genes per set), 426 biomarker sets had
redundancy scores smaller than that of ellipsoidFN,
whereas 996 had scores smaller than that of mRMR, and
no set smaller than that of t-test with regards to PCC.
Measuring by MI, four random biomarker sets had redun-
dancy scores larger than that of ellipsoidFN, but all random
biomarker sets had redundancy scores smaller than those of
mRMR and t-test. The in-class similarity of ellipsoidFN
was 0.2520 (PCC), whereas that of mRMR was 0.1852
(P< 10�11, Student’s t-test). The in-class similarity of
F-test was 0.3109 (P< 10�9, Student’s t-test), larger than
that of ellipsoidFN (Figure 5 and Table 2). This is reason-
able because more redundant biomarkers were selected by
F-test, and ellipsoidFN is designed to handle the sample
heterogeneity. The inter-class similarity of ellipsoidFN is
smaller than that of mRMR (P< 10�9, Student’s t-test)
but larger than that of F-test (P< 10�7, Student’s t-test).
The error rates of ellipsoidFN, mRMR and F-test in
leave-one-out experiment by Naı̈ve Bayes classifier are
0.0135, 0.1351 and 0.0946, respectively. This further
proves the effectiveness of ellipsoidFN.

We compared the biomarkers identified by different
methods (Figure 6). For two-class case, ellipsoidFN
had 12 biomarkers overlapped with t-test and 10 with
mRMR. There were three biomarkers shared by all
the three methods. Most biomarkers identified by the
three methods were method specific. Among the
30 ellipsoidFN-specific biomarkers (see Supplementary
Data Sets 1–9 for the full lists of the biomarkers identified
by ellipsoidFN on all the three data sets), PCBP1 regulates
the expression of the androgen receptor (20). ALDH1A1
is demonstrated to be a marker for malignant prostate
stem cells and predictor of prostate cancer patients’
outcome (21). RPL15 is observed to be a frequent aberra-
tion in multiple tumor samples including prostate cancer
(22). Overexpression of NCOR2 is demonstrated to
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Figure 3. The sample similarity based on biomarkers identified by
ellipsoidFN, mRMR, and t-test on the prostate cancer dataset when
only two classes were considered. Red means high similarity. Blue
means the opposite.
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Figure 2. The biomarker redundancy heatmap of ellipsoidFN, mRMR,
and t-test on the prostate cancer dataset when only two classes were
considered. Red means high redundancy. Blue means no redundancy.

Table 1. Comparison of ellipsoidFN, mRMR, and t-test for two-class

situations

ellipsoidFN mRMR t-test

Prostate cancer
Bredundancy 0.235

a
/0.0021 0.253/0.0059 0.4952/0.0066

Sin-class 0.3632/0.1494 0.2849/0.0064 0.3483/0.0028
Sinter-class �0.1733/0.1037 �0.0788/0.0013 �0.1274/0.0013
Error rate 0 0.0238 0.0238

Breast cancer
Bredundancy 0.2136/0.0526 0.2097/0.0271 0.3462/0.0837
Sin-class 0.3586/0.1552 0.7328/0.3433 0.4893/0.2164
Sinter-class 0.3576/0.1726 0.6962/0.3459 0.4401/0.2179
Error rate 0.0303 0.0152 0.0455

Leukemia
Bredundancy 0.322/0.0058 0.4912/0.0158 0.5804/0.0196
Sin-class 0.7249/0.0532 0.5537/0.0347 0.6778/0.0557
Sinter-class 0.3396/0.0150 �0.2819/0.0184 �0.0765/0.0122
Error rate 0.0139 0.0278 0.0417

aBold font indicates the best performer. Values in cells are PCC/MI,
where PCC is Pearson correlation coefficient and MI is mutual
information.
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activate the activity of the androgen receptor in a cell
type-specific context (23). Targeting JunD is suggested as
a potential strategy to counteract hormone-refractory
prostate cancer (24). MDM2 is proved to mediate the
interaction between USP2a and MYC in prostate cancer
(25). SPRY1 is a potential tumor suppressor in prostate
cancer (26). For multiple-class case, ellipsoidFN, mRMR
and F-test identified two common biomarkers, TCN2 and
C5orf13. TCN2 is associated with reduced risk of prostate
risk (27). TP53BP2, ALDH1A3, RPL15, ANXA1, COMP
and IGF2 in the 32 ellipsoidFN-specific biomarkers are
reported to associated with cancers (22,28–32).

Comparisons on breast cancer and leukemia data set

We further evaluated ellipsoidFN on a breast cancer and
a leukemia data set. The breast cancer data set consists

of 22 277 probes and 66 samples, including five normal
stromal samples, five normal epithelial samples,
28 stromal samples of breast cancers and 28 epithelial
samples of breast cancers. After removing the probes
with missing values and low information-content, we
retained 1000 informative probes for biomarker identifica-
tion. Then, we applied ellipsoidFN, mRMR, and t-test to
identify biomarkers distinguishing the 10 normal samples
from the 56 breast cancer samples. F-test, mRMR, and
ellipsoidFN were applied to identify biomarkers discri-
minating normal stromal, normal epithelial, breast cancer
stromal and breast cancer epithelial samples. For each
method, the top 50 biomarkers were extracted for
comparison.

For the two-class case of the breast cancer data set
(Table 1), the biomarker redundancy of ellipsoidFN is
smaller than that of t-test (P< 10�20, Student’s t-test,
PCC) but larger than that of mRMR (P=0.4481,
Student’s t-test, PCC). The in-class sample similarity of
ellipsoidFN is lower than those of mRMR (P< 10�20,
Student’s t-test, PCC) and t-test (P< 10�20, Student’s
t-test, PCC), maybe owing to the in-class heterogeneity
because we mixed stromal and epithelial samples in the
same pseudo classes. The inter-class sample similarity of
ellipsoidFN is lower than those of mRMR (P< 10�20,
Student’s t-test, PCC) and t-test (P< 10�12, Student’s
t-test, PCC). Based on the three identified biomarker sets,
we evaluated the leave-one-out prediction accuracy by
Naı̈ve Bayes classifier. The error rates of ellipsoidFN,
mRMR and t-test are 0.0303, 0.0152 and 0.0455, respect-
ively. The ROC curve suggested that ellipsoidFN and
mRMR are almost the same and better than t-test
(Supplementary Figure S2). Randomly sampling 1000
sets of biomarkers (50 genes per set), only 1 of the 1000
redundancy scores measured by PCC was smaller than
those of ellipsoidFN and mRMR. In all, 997 scores were
smaller than that of t-test. Measured by MI, no random
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Figure 5. The sample similarity based on biomarkers identified by
ellipsoidFN, mRMR, and t-test on the prostate cancer dataset when
three classes were considered. Red means high similarity. Blue means
the opposite.
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Figure 4. The biomarker redundancy heatmap of ellipsoidFN, mRMR,
and F-test on the prostate cancer dataset when three classes were con-
sidered. Red means high redundancy. Blue means no redundancy.

Table 2. Comparison of ellipsoidFN, mRMR, and F-test for

multiple-class situations

ellipsoidFN mRMR F-test

Prostate cancer
Bredundancy 0.1895

a
/0.0013 0.2284/0.0053 0.3247/0.0036

Sin-class 0.252/0.0028 0.1852/0.0054 0.3109/0.0036
Sinter-class �0.1096/0.0013 �0.0774/0.0023 �0.1396/0.0015
Error rate 0.0135 0.1351 0.0946

Breast cancer
Bredundancy 0.1924/0.0457 0.3386/0.0709 0.5047/0.1075
Sin-class 0.4461/0.2335 0.5901/0.2100 0.7914/0.4279

Sinter-class 0.3833/0.1975 0.4219/0.1361 0.7047/0.3576
Error rate 0.1818 0.2121 0.2121

Leukemia
Bredundancy 0.2645/0.0048 0.4127/0.0173 0.4391/0.0164
Sin-class 0.7188/0.0496 0.6775/0.0522 0.8038/0.0855
Sinter-class 0.3276/0.0142 �0.0459/0.0086 0.1442/0.0093
Error rate 0.0417 0.0694 0.0417

aBold font indicates the best performer. Values in cells are PCC/MI,
where PCC is Pearson correlation coefficients and MI is mutual
information.
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biomarker set had redundancy score smaller than that of
mRMR, and no random biomarker set had redundancy
score larger than that of t-test. In all, 519 of the 1000
random biomarker sets had redundancy score smaller
than that of ellipsoidFN.
For multiple-case of the breast cancer data set (Table 2),

the biomarker redundancy of ellipsoidFN was still signifi-
cantly lower than those of mRMR (P< 10�20, Student’s
t-test) and F-test (P< 10�20, Student’s t-test). The in-class
sample similarity of ellipsoidFN was lower than those of
mRMR (P< 10�20, Student’s t-test) and F-test (P< 10�20,
Student’s t-test), may be owing to the intrinsic in-class
heterogeneity. The inter-class sample similarity of
ellipsoidFN is lower than those of mRMR (P< 10�20,
Student’s t-test) and F-test (P< 10�20, Student’s t-test).
The leave-one-out prediction error rates of ellipsoidFN,
mRMR and F-test are 0.1818, 0.2121 and 0.2121, respect-
ively. Randomly sampling 1000 sets of biomarkers
(50 genes per set), no PCC redundancy score was
smaller than that of ellipsoidFN; 990 were smaller than
that of mRMR, and no score was larger than t-test.
The leukemia data set is composed of 7129 probes and

72 samples including 25 acute myeloid leukemia samples,
38 B-cell acute lymphoblastic leukemia (ALL) samples
and nine T-cell ALL samples. After removing probes
with missing values, three preprocessing steps including
flooring/ceiling, filtering and log10-transformation were
applied to select informative probes (33). Finally, 1000
of the most informative probes were retained for evalu-
ation. First, ellipsoidFN, mRMR and t-test were applied
to discriminate acute myeloid leukemias from ALLs
(Table 1). The redundancy of the top 50 biomarkers of
ellipsoidFN is lower than those of mRMR (P< 10�20,
Student’s t-test, PCC) and t-test (P< 10�20, Student’s
t-test, PCC). The in-class sample similarity of
ellipsoidFN is larger than those of mRMR (P< 10�20,
Student’s t-test, PCC) and t-test (P< 10�20, Student’s
t-test, PCC). The inter-class sample similarity of
ellipsoidFN was larger than those of mRMR (P< 10�20,
Student’s t-test, PCC) and t-test (P< 10�20, Student’s
t-test, PCC). The leave-one-out prediction error rates of

ellipsoidFN, mRMR and t-test are 0.0139, 0.0278 and
0.0417, respectively. The ROC curve suggested that
ellipsoidFN reached the highest true positive rate at a
low false positive rate (Supplementary Figure S3).
Randomly sampling 1000 sets of biomarkers (50 genes
per set) suggested that no random redundancy score
(PCC or MI) was larger than those of ellipsoidFN,
mRMR, and t-test.

For multiple-class case of the leukemia data set
(Table 2), the biomarker redundancy of ellipsoidFN is
smaller than those of mRMR (P< 10�20, Student’s
t-test, PCC) and F-test (P< 10�20, Student’s t-test,
PCC). The in-class sample similarity of ellipsoidFN is
larger than that of mRMR (P< 10�20, Student’s t-test,
PCC) but smaller than that of F-test (P< 10�20,
Student’s t-test, PCC). The inter-class sample similarity
of ellipsoidFN was larger than those of mRMR
(P< 10�20, Student’s t-test, PCC) and F-test (P< 10�20,
Student’s t-test, PCC) because ellipsoidFN included bio-
markers that B-cell ALLs and T-cell ALLs shared. The
leave-one-out prediction error rates of ellipsoidFN,
mRMR and F-test are 0.0417, 0.0694 and 0.0417, respect-
ively. Randomly sampling 1000 sets of biomarkers (50
genes per set) suggested that no random redundancy
score (PCC or MI) was larger than those of ellipsoidFN,
mRMR, and t-test.

DISCUSSIONS

Identifying effective biomarkers for cancers is a
challenging task because of the complexity of cancer
pathogenesis. As many genes and gene interactions are
involved in the cancer progression, it is especially
challenging to identify cancer biomarkers through a
small number of samples (34). Samples of the same
cancer type may carry different aberrations. Thus, effect-
ive cancer biomarkers need to be addressed from a gene
set view. Peng et al. firstly introduced mRMR to identify a
biomarker set with minimum redundancy and maximum
relevance. But the underlying assumptions of the method
are not clear. We modeled the heterogeneity of cancer

ellipsoidFN

mRMR

2

6

3 13

39 29

32

A BellipsoidFN

mRMR

3

8

7 9

32 30

31

t-test F-test

Figure 6. (A) biomarkers identified by ellipsoidFN, mRMR, and t-test on the prostate cancer dataset when two classes were considered;
(B) biomarkers identified by ellipsoidFN, mRMR, and F-test on the prostate cancer dataset when three classes were considered.
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samples and tried to identify a minimal biomarker set,
resulting in a more non-redundant and relevant biomarker
set than mRMR in most cases. Thus, the assumptions in
ellipsoidFN may correctly reflect, at least partially, the
truth of caner generation and progression, and the imple-
mentation of ellipsoidFN may be more efficient.

We modeled the stable state of cancer types and normal
samples by the average gene expressions of samples in
ellipsoidFN. This is a little arbitrary, but facilitates the
solving of ellipsoidFN. A future work is to optimize the
representation of cancer types and normal samples.
Besides, ellipsoids maybe cannot model the classes in
some data sets perfectly, e.g. non-convex shapes in the geo-
metric space. These situations may be solved by other
modeling functions or be approximated by ellipsoids.

We demonstrated the performance of ellipsoidFN in
two-class cases and multiple-class cases in this study. We
observed that the biomarkers it identified are robust, in
some ways, to the labels assigned to samples. For example,
in the leukemia data set, we merged the B cell ALLs and T
cell ALLs to test the performance of ellipsoidFN in
two-class situations. In the sample similarity heatmap
(Supplementary Figure S1), the distinctiveness between
B cell ALLs and T cell ALLs was still obvious, revealed
by ellipsoidFN. However, the distinctiveness became very
weak in the sample similarity heatmaps revealed by
mRMR and t-test (Supplementary Figure S1). The
reason may lay in the inclusion of B cell ALL-specific
and T cell ALL-specific biomarkers. Thus, ellipsoidFN is
capable of reflecting the substructures of cancer types.
Actually, ellipsoidFN is very flexible to incorporate
complicated relationships among cancer types by
introducing meta-ellipsoids (not demonstrated).

Actually, the solution to the cancer biomarker identifi-
cation problem is not unique. There are many combin-
ations of genes to distinguish cancer types and normal
samples (33) because of curse of dimensionality (small
number of samples but large number of genes). Different
from those biomarkers identified by t-test or F-test, which
were statistically significant, ellipsoidFN can identify bio-
markers that may be not statistically significant but can
enhance the explanation power of the identified biomarker
set. This is very useful to identify new oncogenes and
cancer suppressor genes (as demonstrated in the prostate
cancer example).

The rapid development of cancer research has elucidated
more and more details of cancer pathogenesis that can be
organized as dynamic biological networks. ellipsoidFN
was built solely based on the gene expression profiles of
samples. A promising direction to extend ellipsoidFN is
to integrate the current knowledge of cancer pathogenesis.
Also, integrating biomolecular network to identify
network biomarkers (34) or further dynamical network
biomarkers (35) is an important future topic.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–3 and Supplementary Data
Sets 1–9.
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