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A B S T R A C T   

Reducing transportation-related carbon dioxide (CO2) emissions in China poses significant 
challenges due to the sector’s growth potential and variations among provinces and trans-
portation modes. This study utilizes the bottom-up approach and the Logarithmic Mean Divisia 
Index (LMDI) decomposition method to calculate transportation CO2 emissions and explores the 
temporal-spatial differences across Chinese provinces. The results reveal that national trans-
portation CO2 emissions increased by 50.14% from 2010 to 2019, and emissions from private cars 
present the fastest growth among all transportation modes by 254% over the decade. Spatially, 
higher emissions are found in eastern provinces, and neighboring provinces notably distinguish 
from each other in terms of the emission proportion of different modes and the factor analysis 
from LMDI. Regarding the heterogeneity of the spatial emission characteristics, a cluster-based 
evaluation method is proposed for the 31 provinces according to the emission structure and 
the LMDI decomposition. Four clusters are derived, each featuring varied emission distribution 
and driving factors. Correspondingly, policy recommendations are proposed to address the 
characteristics of each cluster, such as controlling car ownership, promoting integrated transport 
modes, improving fuel economy, and electrifying urban transportation services. The cluster-based 
analysis method can provide more specific suggestions to province targeting its emission char-
acteristics rather than its location, which is one of the major contributions of this study.   

1. Introduction 

Transportation is a significant contributor to carbon dioxide (CO2) emissions, which have adverse effects on the environment and 
human health [1,2]. According to the International Energy Agency (IEA), fuel combustion from transportation accounted for 
approximately 24.5% of global CO2 emissions in 2019, making it the second-largest sector. As a fast-growing economy and the world’s 
largest carbon emitter, China faces enormous pressure to harmonize economic growth and carbon emissions. In China, the transport 
sector contributed 9.1% of national CO2 emissions in 2019 [3]. As China’s economy continues to grow, so does its transportation 
sector, resulting in a considerable increase in CO2 emissions. 

In order to reconcile this inherent contradiction, numerous emerging studies on CO2 emissions reduction from transportation in 
China have been carried out. Despite the emergence of several studies addressing CO2 emissions reduction within China’s trans-
portation sector [4,5], there are evident gaps in the existing research that warrant further investigation. Most studies employ either 
top-down methodologies [6,7], focusing on overall or specific modes of transportation [8–10], which pose challenges when attempting 

* Corresponding author. 
E-mail address: turancoolgal@seu.edu.cn (R. Tu).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e24648 
Received 26 August 2023; Received in revised form 23 December 2023; Accepted 11 January 2024   

mailto:turancoolgal@seu.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e24648
https://doi.org/10.1016/j.heliyon.2024.e24648
https://doi.org/10.1016/j.heliyon.2024.e24648
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e24648

2

comprehensive analyses across provinces and modes. Conversely, bottom-up approaches often concentrate on specific regions or 
individual transportation modes, limiting their scope to nationwide analyses across China’s 31 provinces [11,12]. This results in a lack 
of in-depth exploration of the varied carbon emission structures among transportation modes across provinces in their decomposition 
analyses [13,14]. Furthermore, the predominant focus on historical-phase factors tends to overlook the significance of a 
provincial-level classification based on emission characteristics [15], hindering the development of precise, targeted emission 
reduction strategies. 

Addressing these constraints, this study introduces a novel three-step clustering framework to tailor emission reduction strategies 
specific to China’s transportation sector. It begins by employing a bottom-up model to compute CO2 emissions for each province, 
encompassing various transportation modes. Subsequently, the Logarithmic Mean Divisia Index (LMDI) method identifies six influ-
ential factors affecting transportation CO2 emissions. Finally, leveraging the K-means clustering algorithm, this study categorizes the 
31 Chinese provinces based on their unique emission characteristics, providing custom policy recommendations aligned with indi-
vidual emission profiles and socio-economic development. This focused approach shows promise in significantly contributing to 
China’s efforts to reduce its overall CO2 footprint and combat climate change, offering invaluable insights for policymakers and re-
searchers dedicated to climate change mitigation efforts. 

Nomenclature 

Abbreviations 
CO2 carbon dioxide 
GDP gross domestic product 
GTP gross transportation product 
IEA International Energy Agency 
LMDI Logarithmic Mean Divisia Index 
MaaS Mobility-as-a-Service 
Mt million tons 
TOD transit-oriented-development 

Symbols 
C the total transportation CO2 emissions 
C0 the total transportation CO2 emissions in 0 year 
Ct the total transportation CO2 emissions in t year 
Cownership the ownership transportation CO2 emissions 
Cturnover the turnover transportation CO2 emissions 
ci the cluster to which it belongs 
d(c,μ) the sum of the squared errors 
Dxk the relative contribution of kth influencing factor to the total transportation CO2 emission 
Di the mileage of the ith type vehicle 
EC total energy consumption of the transportation sector 
ED economic development factor 
EE energy use efficiency factor 
Ei the ith energy consumption 
EI CO2 emission intensity factor 
Fi the ith energy CO2 emission factor 
M the total number of samples 
P the scale of population development 
P population factor 
si the ith sample 
TE transportation economic share factor 
Ti the turnover for ith transportation mode 
TIij the energy intensity for ith transportation mode using the jth energy 
TS traffic CO2 emission structure factor 
Vi the holding capacity of ith type vehicle 
xk the kth influencing factor 
μci the centroid of the cluster 
ΔCxk the contribution of kth influencing factor to the change in total transportation CO2 emissions from year 0 to target year 

t  
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2. Literature review 

To establish an eco-friendly transportation network in China and mitigate the concerning rise in carbon emissions within the 
transportation sector, a myriad of studies have proposed pragmatic recommendations from diverse angles, systematically organized in 
Table 1. Understanding emission characteristics plays a pivotal role in devising targeted emission reduction strategies, which these 
studies initiate through transportation CO2 emission calculations. These models, varying in calculation scopes [16], encompass 
top-down [17,18], bottom-up [11,19], and hybrid bottom-up-top-down models [13,20]. To discern the driving factors of trans-
portation CO2 emissions, decomposition analysis methods were also employed, such as panel model [6,17], GWR-STIRPAT model [21, 
22], econometric method [23,24], and LMDI model [14,18]. Among them, LMDI model is widely used in the transportation field due to 
its residual-free decomposition, applicability, and ease of use and interpretation [14,25]. With the help of LMDI, emission factors, 
transport energy intensity, transport share effects, economic growth and population factors on transportation CO2, energy structure 
effect, industrial structure factor, and travel propensity factor, traffic CO2 structure factor were considered as major influence factors 
by various scholars [9,14,26]. 

While delving into historical-phase factors and distinct characteristics of transportation modes can inform potential policy rec-
ommendations for CO2 emission reduction, the complex emissions landscape across China’s provinces reveals significant disparities. 
Studies, such as that of Li et al., underscore the varied structure of transportation CO2 emissions and socio-economic development 
across provinces, even among neighboring regions [13]. This diversity poses a substantial challenge in formulating a comprehensive 
strategy for CO2 emission reduction across the transportation sector [7]. 

Traditionally, Chinese provinces have been categorized into east, central, and west based on their geographical and economic 
positions, guiding the formulation of emission reduction strategies for each region [18,21]. However, while cluster analysis has been 
effective in other domains such as electricity [32] and industry [15,33], its implementation in transportation, as observed in the work 
by Tian et al., didn’t significantly diversify policy recommendations due to simpler classifications [29]. Consequently, there remains a 
gap in recommending targeted provincial emission reduction strategies within the transportation sector. 

To bridge this gap, this research employs a comprehensive provincial-level model to calculate transportation-related CO2 emis-
sions. Employing the LMDI method and conducting cluster analysis across all 31 provinces, the study aims to analyze the factors 
influencing both national and provincial transportation-related CO2 emissions in-depth. The primary goal is to provide technical 
analysis and policy recommendations supporting efforts to reduce CO2 emissions within provincial transportation systems. 

Table 1 
Review of transportation CO2 emissions researches in China.  

Calculation 
methods 

Analysis Method Scale and Time Transportation modes Cluster Source 

Top-Down Laspeyres complete 
decomposition approach, PLSR 

China 1995–2006 Road freight None Wang et al. 
[8] 

Panel model 30 provinces in China 
2000–2015 

Total transportation Geographical location Lin et al. 
[17] 

Tapio, LMDI 30 provinces in China 
2006–2015 

Total transportation Geographical location Bai et al. 
[18] 

Updated emissions factors 30 provinces in China 
2000–2012 

Total transportation None Shan et al. 
[27] 

Dynamic panel quantile 
regression 

30 provinces in China 
2000–2016 

Total transportation None Huang et al. 
[6] 

Tapio, LMDI 4 cities 2000–2016 Total transportation None Wang et al. 
[14] 

Tapio Jiangsu 1995–2012 Total transportation None Wang et al. 
[10] 

STIRPAT, GTWR 30 provinces in China 
2003–2017 

Total transportation Geographical location Liu et al. 
[7] 

Bttom-up Gompertz function 31 provinces in China 
2015–2050 

9 vehicle types, 4 fuel 
types 

None Peng et al. 
[28] 

Moran’s Iindex, M-R spatial 
decomposition model 

Central Plains of China 
2019 

37 vehicle types, 3 fuel 
types 

The Moran’s Iindex Zhao et al. 
[4]  

31 provinces in China 
2000–2011 

5 freight modes Overall GHGs emission 
characteristics 

Tian et al. 
[29] 

Moran’s Iindex, GWR- STIRPAT 
Model 

31 provinces in China 
1988–2016 

4 freight modes Geographical location Lv et al. 
[21] 

LMDI Shanghai and Tokyo 
1986–2009 

8 urban transport modes None Luo et al. 
[26] 

PLSR Validation 7 cities 2000–2014 4 urban passenger 
transportation 

None Yuan et al. 
[5] 

Bttom-up and Top- 
Down 

Gini coefficient, Theil index, 
Moran index, LMDI 

341 cities in China 
2002–2013 

4 transportation modes Geographical and socio- 
economic factors 

Li et al. 
[13]  

Beijing 2002–2013 4 urban passenger 
transport modes 

None Wang et al. 
[30] 

LMDI 31 provinces in China 
1980–2007 

4 passenger transport 
modes 

Geographical location Loo et al. 
[31]  
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Fig. 1. The flow chart of the transportation CO2 emission calculation and analysis.  
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3. Methodology 

Fig. 1 delineates the procedural framework for the provincial transportation CO2 emission reduction strategy recommendation 
method, which encompasses three fundamental steps. Firstly, it involves establishing a provincial transportation CO2 emission 
calculation model using available data, allowing for the computation of transportation-related CO2 emissions across each province 
from 2010 to 2019. Secondly, the application of the LMDI model facilitates the decomposition and analysis of both national and 
provincial transportation CO2 emissions. Finally, the six factors derived from the LMDI analysis serve as cluster variables to categorize 
the 31 provinces into four clusters. Each cluster undergoes a comprehensive analysis, culminating in the formulation of targeted 
transportation emission reduction policies. The detailed methodologies for these three steps are extensively outlined in the subsequent 
sections. 

3.1. Transportation CO2 emission calculation 

Transportation CO2 emissions is a product of the total energy consumption and the relevant CO2 emission factors, as Eq. (1). 

C=
∑n

i=1
EiFi (1)  

where, C is the total transportation CO2 emissions, Ei is the energy consumption of the ith type, and Fi is the energy CO2 emission factor 
of the ith type. 

In order to analyze the inter features of the transportation CO2 emissions, the total energy consumption should be decomposed into 
various traffic modes, and thus the “bottom-up” calculation method was employed. Based on the data collected from the transportation 
statical yearbook, the transportation CO2 emission calculation can be conducted by two methods: the turnover method and the 
ownership method. 

The turnover method is applicable to intensive transport mode such as freight and railway transport, of which the CO2 emissions are 
counted per transported unit per kilometer. Turnover method calculates CO2 emissions from the corresponding sectors using Eq. (2) 

Cturnover =
∑

ij
Ti × TIij × Fj (2)  

where, Cturnover is the turnover transportation CO2 emissions, i is the traffic mode (e.g. road, waterway, air, rail, etc.); j is the energy 
type (e.g. gasoline, standard coal, electricity, etc.); Ti is the turnover for ith transportation mode (which can be obtained from annual 

Table 2 
CO2 emission calculation data source.  

Calculation of Emissions Through Turnover 

Traffic Modes Turnover Energy Consumption Per Unit of Turnover CO2 Emission Per Unit Energy 
Consumption 

Road Freight The statistical yearbooks of each province. 
(2011–2020) [35] 

The China Statistical Yearbook. (2011–2020) 
[36] 

The Guide to Provincial Greenhouse 
Gas Inventories (NDRC Climate [2011] 
No. 1041) [37] The BP China CO2 

Emissions Calculator [38]. 
Road Passenger The statistical yearbooks of each province. 

(2011–2020) [35] 
The China Statistical Yearbook. (2011–2020) 
[36] 

Water Freight The statistical yearbooks of each province. 
(2011–2020) [35] 

The China Statistical Yearbook. (2011–2020) 
[36] 

Water Passenger The statistical yearbooks of each province. 
(2011–2020) [35] 

The China Statistical Yearbook. (2011–2020) 
[36] 

Rail Freight The statistical yearbooks of each province. 
(2011–2020) [35] 

The Railway Statistical Bulletin. (2011–2020) 
[39] 

Rail Passenger The statistical yearbooks of each province. 
(2011–2020) [35] 

The Railway Statistical Bulletin. (2011–2020) 
[39] 

Urban Rail The China Transport Statistical. (2011–2020) 
[40] 

The Urban Rail Transportation Statistics and 
Analysis Report. (2011–2020) [39] 

Calculation of Emissions Through Ownership 
Traffic Modes Ownership Annual Mileage Energy Consumption Per Unit of Travel CO2 Emission Per Unit Energy 

Consumption 

Private Car The statistical 
yearbooks of each 
province. (2011–2020) 
[35] 

An updated emission 
inventory of vehicular 
VOCs/IVOCs in China 
[41] 

The China Energy Conservation and New 
Energy Vehicle Development Research Report. 
(2015–2017) [41] The Announcement of the 
Average Fuel Consumption of Chinese 
Passenger Vehicle Enterprises [42]. The China 
Mobile Source Environmental Management 
Annual Report. (2011–2020) [43] 

The Guide to Provincial Greenhouse 
Gas Inventories. (NDRC Climate [2011] 
No. 1041) [37] The BP China CO2 

Emissions Calculator [38]. 
Urban Taxi The China Transport Statistical Yearbook. 

(2011–2020) [40] 

Urban Bus The China Transport Statistical Yearbook. 
(2011–2020) [40] 

The China Statistical Yearbook. (2011–2020) 
[36]  
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statistics yearbook); TIij is the energy intensity for ith transportation mode using the jth energy; Fi is the CO2 emission factors for jth 
energy. 

For the ownership transportation CO2 emissions, the data available in the statical yearbook is the holding capacity of the vehicles. 
Consequently, the ownership transportation CO2 emission can be calculated by the vehicles holding capacity, vehicle mileages, the 
vehicles energy efficiency and the CO2 emission factors, and it can be written as Eq. (3). 

Cownership =
∑

ij
Vi × Di × Eij × Fj (3)  

where, Cownership is the ownership transportation CO2 emissions, i is the traffic mode (e.g., private cars, taxis, buses, and urban rail 
transit, etc.), j is the energy type (e.g., gasoline, aviation fuel, electricity, etc.), Vi is the holding capacity of ith type vehicle, Di is the 
mileage of the ith type vehicle, Eij is the energy efficiency for the ith type vehicle using jth type energy, and Fj is the CO2 emission 
factors for jth energy. 

Finally, the total transportation CO2 emissions can be calculated as Eq. (4): 

C=Cturnover + Cownership (4)  

3.2. Decomposition model for transportation CO2 emissions 

Based on Kaya’s extended constant equation, the transportation CO2 emissions can be decomposed into various influencing factors, 
and it can be written as Eq. (5) [34]. 

C=
∑n

i,j
Cij =

∑n

i,j

Cij

Cj
×

Cj

ECj
×

ECj

GTPj
×

GTPj

GDPj
×

GDPj

Pj
× Pj (5)  

where, EC is total energy consumption of the transportation sector; GTP is the gross transportation product; GDP is provincial gross 
domestic product; P is the scale of population development, i is transport mode, j is province. 

As the influencing factors Cij
Cj
,

Cj
ECj

,
ECj

GTPj
,

GTPj
GDPj

,
GDPj

Pj
,Pj in Eq. (5) all have physical meanings, thus, Eq. (5) can be rewritten as Eq. (6): 

C=
∑n

i,j
TSij × EIj × EEj × TEj × EDj × Pj (6)  

where TSij = Cij/Cj is traffic CO2 emission structure factor (TS), EIj = Cj/ECj is CO2 emission intensity factor (EI), EEj = ECj/ GTPj is 
energy use efficiency factor (EE), TEj = GTPj/GDPj is transportation economic share factor (TE), EDj = GDPj/Pj is economic devel-
opment factor (ED), Pj is the population factor (P). 

To identify the influence factor contribution ratio on the total transportation CO2 emission, the aggregate changes from C0 =
∑

i
x0

1,ix0
2,i...x0

n,i in year 0 to Ct =
∑

i
xt

1,ixt
2,i...xt

n,i in year t can be calculated. It can be decomposed by two methods, namely the multi-

plicative decomposition method and the additive decomposition method. In this study, we employed the additive decomposition 
method, which is written as: 

ΔCtot =Ct − C0 = ΔCx1 + ΔCx2 + · · ·+ΔCxn (7)  

In Eq. (7), the effect of the kth factor on the transportation CO2 emissions in the right side can be written as Eq. (8): 

ΔCxk =
∑

i

Ct
i − C0

i

ln Ct
i − ln C0

i
ln

(
xT

k,i

x0
k,i

)

(8)  

where, xk is the kth influencing factor, including TS, EI, EE, TE, ED and P, ΔCxk is the contribution of kth influencing factor to the total 
transportation CO2 emissions change from year 0 to target year t. 

Besides that, the relative effect of kth factor on the total transportation CO2 emissions can be calculated as Eq. (9): 

Dxk =
ΔCxk

ΔCtot
(9)  

3.3. Cluster-based analysis of CO2 emissions and socio-economic development 

The K-means method is utilized to analyze the transportation CO2 emission characters in 31 provinces and cities of China in a 
cluster base. The emission proportion of different transportation sectors (denoted as TSij), and five LMDI-derived factors, EIjEEj, TEj, 
EDj, and Pj spanning 10 years (2010–2019), were utilized as clustering feature vector for 31 provinces. Prior to clustering, the data is 
normalized to the same magnitude, and the outliers are filtered out. To determine the optimal number of clusters, K values ranging 
from 1 to 10 are tested, and the elbow method is used to determine the final K value. Finally, K-means is employed to cluster the 31 
provinces. 
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Fig. 2. Temporal distribution of provincial transportation CO2 emissions, (a) provincial transportation CO2 emissions in 2010, (b) provincial 
transportation CO2 emissions in 2015, (c) provincial transportation CO2 emissions in 2019 
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4. Date source collection and data analysis 

To accurately calculate transportation CO2 emissions, reliable traffic data is crucial, which can be classified into four main cate-
gories: transportation activity level data, energy efficiency data for various transportation modes, CO2 emissions factors data for 
various energy sources, and LMDI analysis data. To ensure the accuracy of the data, information was primarily sourced from official 
yearbooks and reports, with detailed references listed in Table 2. It’s important to note that the data in Table 2 covers the period from 

Fig. 2. (continued). 

Fig. 3. Trends in CO2 by transportation sectors during 10 years.  

L. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e24648

9

2011 to 2020 due to the typical inclusion of CO2 emission data in the statistical yearbook of the subsequent year. 
The transportation activity level data is of utmost importance for CO2 emissions calculation, which includes turnover and holding 

capacity of various transportation modes and the corresponding emission factors. Data on operational passenger and freight trans-
portation turnover for highways, waterways, and railroads, as well as private car holding capacity, were obtained from the 2011–2020 
statistical yearbooks of every province in China [35]. Meanwhile, data on operating mileage of rail transportation, buses, and taxis 
were sourced from the 2011–2020 China Transport Statistical Yearbook [40]. The annual operating mileage of private cars and taxis 
was obtained from Liu et al.’s research results [41]. 

The energy efficiency data for different transportation modes is also critical, which was obtained from various official reports. For 
example, the China Statistical Yearbook 2011–2020 [36] provides data on energy efficiency of highway, waterway passenger and 
freight transportation, and bus. For railroad passenger and freight transportation, the Railway Statistical Bulletin 2011–2020 [39] was 
used. Data on the total vehicle electric energy consumption of urban rail transportation was obtained from the 2011–2020 Urban Rail 
Transportation Statistics and Analysis Report [44]. To calculate the energy efficiency of private cars and taxis, several reports, such as 
the China Energy Conservation and New Energy Vehicle Development Research Report (2015–2017) [45], the Announcement of the 
Average Fuel Consumption of Chinese Passenger Vehicle Enterprises (2018–2020) [42], and the annual percentage of vehicles with 
different emission standards from the China Mobile Source Environmental Management Annual Report [43], were referenced. 

Data on CO2 emissions factors for various energy sources was also collected from different sources, including the BP China CO2 
Emissions Calculator [38] and the Guide to Provincial Greenhouse Gas Inventories [37]. Additionally, regional grid CO2 emission 
factors were obtained from data published by the Ministry of Environment and Ecology of the People’s Republic of China and the 
National Center for Climate Strategy [36,46]. 

Finally, to apply the LMDI decomposition model for the analysis, necessary data, such as GDP, population, GDP per capita, eco-
nomic structure, the gross transportation product (GTP), and total energy consumption in transportation, storage, and postal industry, 
were collected. These data were gathered from the 2011–2020 Provincial Statistical Yearbooks [35] and the China Statistical Yearbook 
[36]. It’s worth noting that GTP is represented as the total values of the transport, storage, and postal sector. By gathering and 
analyzing data from four categories, transportation CO2 emissions can be calculated and decomposed, and effective strategies to 
reduce them can be developed. 

Fig. 4. CO2 emission structure of transportation in Provinces from 2010 to 2019.  
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5. Results and discussions 

5.1. Temporal-spatial distribution of provincial transportation CO2 emissions 

Transportation CO2 emissions for all provinces in China from 2010 to 2019 were calculated. The total CO2 emissions from 
transportation during this period amounted to 12,755.54 million tons for the entire country, excluding Hong Kong, Macau, and Taiwan 
due to limited data availability. In Fig. 2, the spatial distribution of provincial transportation CO2 emissions is visually depicted for the 
years 2010, 2015, and 2019. Over the decade from 2010 to 2019, China observed a substantial rise in total CO2 emissions from 
transportation, fueled by the country’s rapid economic growth and burgeoning transportation demands. This surge marked an increase 
from 993.53 million tons in 2010 to 1491.67 million tons in 2019, reflecting a noteworthy 50.14% growth over the ten-year period. 

Additionally, the figure reveals a noticeable trend of transportation CO2 emissions gradually shifting from coastal areas towards 
inland regions, essentially from east to west, a pattern well-documented in prior research [18,21]. This shift predominantly roots in the 
rapid economic advancements of China’s coastal provinces, distinguished by well-established transportation infrastructure and sus-
tained high demand for transportation services, consequently resulting in elevated CO2 emissions from transportation in these coastal 
zones. Simultaneously, the implementation of China’s Western Development Strategy has triggered a rapid upswing in CO2 emissions 
from transportation in the western regions, signifying the potential for a substantial increase in China’s future transportation CO2 
emissions. 

In Fig. 3, an analysis of the evolving trends in transportation CO2 emissions across various sectors is presented. While there have 
been improvements in the energy efficiency of private vehicles due to advancements in engine technology and stricter emission 
standards, the CO2 emissions of private cars surged significantly by 254% over the decade. This growth was propelled by the rising 
living standards and increased ownership of private vehicles, constituting 41.53% of total private vehicle emissions in 2019. Urban 
transport modes such as buses, taxis, and urban rail also exhibited growth, with CO2 emissions increasing by 6.52 million tons 
(10.75%) over the decade. This rise can be attributed to accelerating urbanization and robust policies promoting public transport. 

Despite advancements in energy efficiency for high-speed trains, CO2 emissions from railway passenger transport increased by 
33.79% from 2010 to 2019. This escalation primarily resulted from the continuous enhancement and expansion of the high-speed rail 
network at a national level, alongside increased promotion of railway travel. Freight modes—water, road, and rail 
freight—contributed significantly to the total CO2 emissions, accounting for 42.37% during this period. Notably, road freight wit-
nessed a 13.09% increase in the past decade, constituting the highest proportion (44.64%) of emissions within the freight sector, 
attributable to the extensive expressway network in China and the convenience of door-to-door service. 

Fig. 4 provides a visual representation of the spatial distribution of total provincial transportation CO2 emissions over the ten-year 
period. It is evident that the provinces surrounding Beijing exhibited the highest CO2 emissions. This can be attributed to Beijing’s role 
as a fossil energy hub and its substantial demand for heavy freight transportation in China. Conversely, Tibet, Hainan, Qinghai, and 
Ningxia recorded the lowest emissions due to their abundant renewable energy resources and lower transportation demands compared 
to other provinces. 

While transportation serves as a means of connecting all provinces, the structure of transportation CO2 emissions varies 

Fig. 5. Driving Factors for Temporal-Spatial Differences in Provincial Transportation CO2 Emissions in 2010–2014 period and 2015–2019 period. 
The two periods share the same legend. 
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significantly among them, as depicted in Fig. 4. Even neighboring provinces display notable differences in their CO2 emission 
structures. For instance, Jiangsu Province and Anhui Province in the Eastern region and Yangtze River Delta area demonstrate con-
trasting emission profiles. In Jiangsu, private cars contribute the most to CO2 emissions, whereas in Anhui, road freight plays a 
dominant role. Similarly, Hebei and Shandong Provinces exhibit substantial disparities in their CO2 emission structures, with rail 
freight being prominent in Hebei, while private cars and road freight hold greater significance in Shandong. Conversely, some 
provinces exhibit similar CO2 emission structures, such as Jiangsu and Zhejiang Provinces, showing the close relationship between 
transportation CO2 emissions and economic characteristics. 

Based on these findings, it can be concluded that there is a strong correlation between transportation CO2 emissions, economic 
characteristics, and technological development. The rapid growth of the economy leads to increased transportation demand, which, in 
turn, contributes to higher CO2 emissions. While technological advancements can help reduce emissions, their effectiveness may be 
limited in offsetting the growth in demand. Therefore, additional measures and strategies are necessary to address the environmental 
impact of transportation. Furthermore, national or local policies play a crucial role in shaping transportation CO2 emissions. Policy 
interventions, such as the implementation of the “truck-to-rail" policy in 2018, can have a significant impact on reducing CO2 
emissions in the road freight sector at a national level. These policies play a crucial role in promoting sustainable transportation 
practices and mitigating the environmental impact of transportation activities. 

In summary, transportation CO2 emissions are influenced by economic growth, economic structure, technological advancements, 
and policy interventions. To effectively reduce these emissions, a comprehensive approach is required that combines sustainable 
economic development, innovative technologies, and supportive policies aimed at promoting environmentally friendly transportation 
systems. 

5.2. Driving factors for temporal-spatial differences in provincial transportation CO2 emissions 

5.2.1. LMDI analysis in different time spans 
The provincial transportation CO2 emissions in China display notable variations both temporally and spatially. By applying the 

LMDI decomposition method, insights into the temporal-spatial disparities in national transportation CO2 emissions are revealed in 
Fig. 5. Apart with the potential driving factors contributed to the total CO2 emissions, the contribution of potential driving factors on 
the CO2 emissions of various traffic modes for different periods were also calculated and illustrated in Fig. 5. Compared with the period 
of 2010–2014, although the contribution of these influencing factors followed a similar trend, the degreed of the impact varies across 
different factors for both the total emission and different transportation sectors due to the decarbonization policy and technology 
development during the period of 2015–2019. 

Fig. 6. Provincial transportation CO2 emission cluster distribution.  
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The economic development (ED) significantly impacts transportation CO2 emissions during both the 2010–2014 and 2015–2019 
periods, leading to increased emissions across various transportation modes, notably road freight, rail freight, rail passenger, and 
private cars. The expansion of high-speed rail infrastructure and the increasing living standards contribute to this effect. It is crucial to 
focus on controlling private car emissions while promoting economic development, considering the continued growth of private car 
ownership. Measures such as license control, electric vehicle promotion, and the railway and water transportation infrastructure 
improvement can be implemented. 

The population (P) and emission intensity (EI) have limited influence on transportation CO2 emissions. Both factors show a 
weakening trend from 2010 to 2019, with the declining population growth rate diminishing the role of P in emission growth. On the 
other hand, referring to EI, continuous efforts to improve vehicle emission standards have reduced CO2 emissions from private cars, 
road passenger, and freight transportation, particularly during the 2015–2019 period. Electrification of the railway system has also 
contributed to the reducing driving effect of EI. Further emission reduction can be achieved through research and development of 
energy utilization efficiency, implementation of supportive policies, and their adoption in the commercial transportation sector. 

The impact of the Traffic Structure (TS) on transportation CO2 emissions is generally minimal but varies across different trans-
portation modes. It increases CO2 emissions from private cars while reducing emissions in other sectors. Thus, enhancing public 
transportation and shifting to public commuting options are essential. TS factor played a significant role in reducing CO2 emissions 
from railway freight during the 2010–2014 period, but its effect weakened during 2015–2019. Conversely, it had a stronger reduction 
effect on road freight for 2015–2019 compared to 2010–2014. Although the TS factor contributes relatively little to the total trans-
portation CO2 emissions, its varying performance across different traffic sectors provides evidence for the development of relevant 
decarbonization policies. By optimizing the traffic structure, transportation emissions can be effectively reduced, contributing to 
overall decarbonization efforts. 

The Energy use Efficiency (EE) and Transportation Economic share (TE) are key drivers in reducing transportation CO2 emissions. 
Improving energy use efficiency through EE factor leads to emissions reduction, particularly in private cars due to the implementation 
of emission standards. Investing in research and development, supportive policies, and implementation in the commercial trans-
portation sector is recommended. TE’s inhibitory effect has diminished due to insufficient transport capacity, low organization and 
efficiency, and inadequate infrastructure. Optimization of transportation speed, information intelligence, and eco-friendly approaches 
are crucial to control CO2 emissions and counteract the weakening effect of TE. 

5.2.2. LMDI effects in different provinces 
By analyzing the trends of driving factors for transportation CO2 emissions in the Eastern, Central, Western, and Northeastern 

provinces of China, it is evident that the ED emerges as the only factor promoting emissions in all provinces in China, the details can be 
found in Supplementary Material 1. However, the promoting effect of the economic factor has declined in the northern regions due to 
recent economic growth slowdown, while the southern provinces have maintained a relatively fast growth rate. Notably, Anhui 
Province stands out for effectively controlling transportation CO2 emissions despite significant economic growth, thanks to measures 
such as optimizing transportation infrastructure and service structure. 

The factors of P, EI and TS have slight promoting or inhibiting effects on transportation CO2 emissions across different provinces. 
The population (P) inhibits emissions in most northern provinces due to population outflow, whereas active economic provinces in the 
south and developing regions in the west experience a growth effect. The EI fluctuates across the 31 provinces, primarily driven by 
regions with rapid economic growth and consequently a significant increase in private car ownership. The TS adjustment has a sig-
nificant impact on the CO2 emissions of various sectors, while its influence on overall emissions is relatively small across most 
provinces, because the overall emissions keep in stable. Adjusting transportation structures, promoting public transportation, and 
shifting towards rail or water transportation can mitigate the promoting effect of EI on transportation CO2 emissions. 

Table 3 
Features of four clusters, including emission structure and decomposition factors.  

Cluster Center National Average Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Road Freight 22.63% 18.14% 19.44% 24.63% 4.86% 
Road Passenger 3.01% 5.02% 2.85% 2.09% 2.14% 
Water Freight 4.45% 6.35% 2.24% 1.95% 30.40% 
Water Passenger 0.00% 0.00% 0.00% 0.00% 0.00% 
Rail Freight 23.62% 12.78% 29.64% 32.36% 8.64% 
Rail Passenger 10.27% 9.61% 13.37% 9.79% 6.04% 
Private Car 31.04% 41.09% 26.96% 25.61% 33.24% 
Urban Traffic 4.97% 7.01% 5.49% 3.57% 14.68% 
EI (ton/ton standard coal) 3.72 2.76 3.19 5.28 1.29 
EE (ton standard coal/ten thousand yuan) 1.44 1.35 1.84 1.14 2.47 
TE (%) 4.94 4.19 4.56 6.15 3.06 
ED (thousand yuan/person) 49.58 49.79 41.03 43.15 112.74 
P (million person) 43.22 49.93 38.62 42.78 22.82 

Note: * the cluster center contains the average CO2 shares for 2010–2019 for the eight transportation sectors in the transportation CO2 emission 
structure factor and the other five influencing factors. 
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Regarding the two main factors that inhibit transportation CO2 emissions, EE and TE, their performance varies across provinces. 
Over the past decade, most provinces have seen improvements in transportation energy efficiency, which has curbed the growth of CO2 
emissions. Among all the provinces, the most significant changes occurred in Anhui and Hebei. EE changed from a promoting effect in 
the 2010–2014 period to an inhibiting effect in the 2015–2019 period in Anhui due to the improvement of the transportation effi-
ciency, while the reverse is true for Hebei due to the industrial recovery and industry transfer. TE demonstrates a strong inhibiting 
effect in provinces where the transportation industry has already developed due to limited transportation investments. However, in 
provinces with rapidly developing transportation infrastructure, such as Shandong and Henan, promoting effect of TE is revealed. 
Therefore, as the demand for infrastructure construction decreases, the inhibiting effect of TE factor is expected to be strengthened. 

In conclusion, the driving factors for transportation CO2 emissions exhibit different trends across provinces. Economic development 
remains the primary promoting factor, but its effect varies due to provincial economic growth variations. P, TS and EI have slight 
promoting or inhibiting effects across various provinces, while EE and TE play significant roles in curbing emissions. Understanding 
these driving factors and their provincial variations is crucial for formulating effective policies and strategies to mitigate transportation 
CO2 emissions in different provinces. 

5.3. Clustering analysis and policy recommendations for provincial transportation CO2 emissions 

According to the aforementioned analysis, provinces exhibit varied characteristics in terms of transportation CO2 emissions and 
associated decomposition factors. To develop targeted decarbonization policies, provinces were classified into four clusters based on 
the similarity of their decomposition factors using the elbow method. The results were shown in Fig. 6 and Table 3. 

Cluster 1 consists mainly of developed regions or regions in a rapid development stage. This cluster is characterized by a high 
proportion of CO2 emissions from private cars (41.09%), with the population factor a significant contributor above the national 
average level. Additionally, some provinces in this cluster, such as Tibet, are constrained by natural geographic characteristics, 
limiting the development of specific transportation modes other than road traffic. Therefore, policies to improve the service of inte-
grated transport modes and restrict the use of road transport can be proposed, and the following policy recommendations are sug-
gested: first, implementing measures to control car usage, such as congestion pricing, carpooling incentives, and restrictions on vehicle 
ownership; second, improving the convenience and accessibility of greener transportation modes, including expanding and enhancing 
railway and public transit networks; in addition, encouraging the adoption of electric and hybrid vehicles through incentives, sub-
sidies, and charging infrastructure development; finally, implementing vehicle scrappage policies to improve overall fuel efficiency 
and promote the use of cleaner vehicles. 

Different from Cluster 1 featured on high emissions from private vehicles, Cluster 2 stands out for its high proportion of CO2 
emissions from railway transport, particularly railway passengers, surpassing the national average level, which attributes to the 
presence of a well-developed railway infrastructure network in these regions. The EE factor has a major negative impact on total 
transport emissions in this cluster. To reduce emissions in similar provinces of Cluster 2, actions to improve the energy efficiency of 
railway system are highly encouraged. At the same time, the following policy recommendations are suggested, including upgrading the 
fuel standard, improving railway operation efficiency, and railway electrification. 

Cluster 3 exhibits similar CO2 proportions in railway transport as Cluster 2, with rail freight reaching an even higher proportion at 
32.36%. Another noteworthy feature of Cluster 3 is the proportion of the road freight sector, contributing to 24.63% of the total 
provincial emissions and higher than the national average level by 8.82%. This may be contributed by the economic structure of these 
provinces featuring on high proportions of industry and agriculture, both requiring intensive freight resources. Regarding regions with 
similar features of Cluster 3, policies should focus on reducing the emissions of bulky freight and improving the share of integrated 
freight modes, such as 1) to improve the fuel economy standards and promote the use of cleaner energy trucks for the road freight 
sector, and 2) to encourage the shift from road freight to rail freight by investing in railway construction and optimizing scheduling. 

Cluster 4 differs from the other clusters, exhibiting extremely high CO2 emissions from the urban transport sector, representing the 
CO2 distribution in large municipalities. In this cluster, the decomposition factors of EE and ED have a significant impact on total 
emissions, exceeding the national average level. However, the effects of the other three factors are negligible compared to the other 
clusters. The electrification of urban traffic, the prioritization of public transit and the promotion of active modes can correspondingly 
lead to reduced CO2 emissions in such regions. Policy recommendations can be proposed from four aspects: 1) the electrification of 
urban transit services, including buses, taxis, and other public transportation vehicles, to reduce emissions from EI factor; 2) imple-
menting transit-oriented-development (TOD) urban planning strategies to reduce the need for long-distance commuting and to pro-
mote active transportation modes; 3) introducing mobility management initiatives, such as Mobility-as-a-Service (MaaS) [47–49], to 
provide integrated and sustainable transportation options for urban residents; and 4) incentivizing the use of green travelling behavior, 
such as the Carbon Credit program [50,51]. 

5.4. Implications of the results and limitations 

The findings of this study stand to significantly influence the landscape of provincial transportation CO2 emission policies. By 
segmenting Chinese provinces through the k-means method, a comprehensive framework has emerged, providing specific strategies 
tailored to curtail CO2 emissions within the transportation sector. This granular approach offers a sophisticated roadmap, empowering 
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policymakers and researchers to access and adapt validated strategies from provinces sharing similarities within the same cluster. This 
targeted methodology represents a promising avenue, offering a nuanced, effective means to mitigate and reduce CO2 emissions in 
transportation, presenting an invaluable resource for stakeholders actively engaged in climate change mitigation efforts. 

Nonetheless, it’s crucial to acknowledge the limitations that could affect the robustness of these conclusions. The reliance on 
national averages due to the absence of province-specific CO2 emission factors introduces a potential bias in estimating provincial 
transportation CO2 emissions. This discrepancy could significantly impact the overall characters of provincial CO2 emissions, espe-
cially if provincial factors markedly differ from national averages. To bolster the accuracy and reliability of future analyses, there’s a 
pressing need to broaden the CO2 emission factor database. By expanding this dataset, future assessments can achieve a more refined 
and precise estimation of provincial transportation CO2 emissions. 

Addressing these limitations holds paramount importance in refining future policy recommendations and strategies tailored to 
abating transportation-related CO2 emissions. By fortifying the methodology and data sources, subsequent efforts can better guide and 
support policymakers and researchers in their endeavors toward sustainable climate action. 

6. Conclusion 

This research introduces a novel clustering framework aimed at formulating province-specific strategies for reducing CO2 emissions 
within China’s transportation sector. Employing a bottom-up model for temporal-spatial analysis, the study identifies six key driving 
factors using the LMDI method to understand the intricate dynamics influencing CO2 emissions. The subsequent K-means clustering 
method categorizes China’s provinces into four clusters, each tailored to specific policy recommendations. 

The study uncovered a notable surge of 31.04% in China’s transportation CO2 emissions from 2010 to 2019, predominantly driven 
by private cars. Spatial analysis reveals distinct regional patterns, with higher emissions in the east compared to the west, showcasing 
varied emission structures among provinces. Notably, economic development emerged as a pivotal driver of CO2 emissions, especially 
prominent in coastal and riverine areas, while energy intensity played a crucial role, notably within private car segments. 

These findings underscore the significant roles of economic development and energy intensity in shaping emission trends across 
diverse transportation modes and provinces. The clustering approach, categorizing provinces into four distinct groups, suggests 
tailored strategies for emission reduction. Policymakers and researchers can leverage similarities within clusters to adapt proven 
strategies, enhancing the effectiveness of emission reduction initiatives. 

To further validate and refine these findings, future research will concentrate on evaluating proposed policies through scenario 
simulations. Analyzing the economic and social impacts of these policies, alongside exploring innovative technological solutions 
within the transportation sector, will offer a comprehensive assessment of the feasibility of specific policy actions. 
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