
fmicb-12-679671 June 18, 2021 Time: 16:11 # 1

ORIGINAL RESEARCH
published: 23 June 2021

doi: 10.3389/fmicb.2021.679671

Edited by:
Steffen Kolb,

Leibniz Center for Agricultural
Landscape Research (ZALF),

Germany

Reviewed by:
Paolina Garbeva,

Netherlands Institute of Ecology
(NIOO-KNAW), Netherlands

Murali Gopal,
Central Plantation Crops Research

Institute (ICAR), India

*Correspondence:
Junhyeong Kim

rlawnsgud20@berkeley.edu
Eoin L. Brodie

elbrodie@lbl.gov

†Present address:
Pawel K. Misztal,

Department of Civil, Architectural
and Environmental Engineering,

University of Texas at Austin, Austin,
TX, United States

Specialty section:
This article was submitted to

Terrestrial Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 12 March 2021
Accepted: 31 May 2021

Published: 23 June 2021

Citation:
Kim J, Goldstein AH,

Chakraborty R, Jardine K, Weber R,
Sorensen PO, Wang S,

Faybishenko B, Misztal PK and
Brodie EL (2021) Measurement

of Volatile Compounds for Real-Time
Analysis of Soil Microbial Metabolic
Response to Simulated Snowmelt.

Front. Microbiol. 12:679671.
doi: 10.3389/fmicb.2021.679671

Measurement of Volatile Compounds
for Real-Time Analysis of Soil
Microbial Metabolic Response to
Simulated Snowmelt
Junhyeong Kim1* , Allen H. Goldstein2, Romy Chakraborty1, Kolby Jardine1,
Robert Weber2, Patrick O. Sorensen1, Shi Wang1, Boris Faybishenko1,
Pawel K. Misztal2† and Eoin L. Brodie1,2*

1 Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley,
CA, United States, 2 Department of Environmental Science, Policy and Management, University of California, Berkeley,
Berkeley, CA, United States

Snowmelt dynamics are a significant determinant of microbial metabolism in soil
and regulate global biogeochemical cycles of carbon and nutrients by creating
seasonal variations in soil redox and nutrient pools. With an increasing concern that
climate change accelerates both snowmelt timing and rate, obtaining an accurate
characterization of microbial response to snowmelt is important for understanding
biogeochemical cycles intertwined with soil. However, observing microbial metabolism
and its dynamics non-destructively remains a major challenge for systems such as soil.
Microbial volatile compounds (mVCs) emitted from soil represent information-dense
signatures and when assayed non-destructively using state-of-the-art instrumentation
such as Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-TOF-MS)
provide time resolved insights into the metabolism of active microbiomes. In this study,
we used PTR-TOF-MS to investigate the metabolic trajectory of microbiomes from a
subalpine forest soil, and their response to a simulated wet-up event akin to snowmelt.
Using an information theory approach based on the partitioning of mutual information,
we identified mVC metabolite pairs with robust interactions, including those that were
non-linear and with time lags. The biological context for these mVC interactions
was evaluated by projecting the connections onto the Kyoto Encyclopedia of Genes
and Genomes (KEGG) network of known metabolic pathways. Simulated snowmelt
resulted in a rapid increase in the production of trimethylamine (TMA) suggesting that
anaerobic degradation of quaternary amine osmo/cryoprotectants, such as glycine
betaine, may be important contributors to this resource pulse. Unique and synergistic
connections between intermediates of methylotrophic pathways such as dimethylamine,
formaldehyde and methanol were observed upon wet-up and indicate that the initial
pulse of TMA was likely transformed into these intermediates by methylotrophs.
Increases in ammonia oxidation signatures (transformation of hydroxylamine to nitrite)
were observed in parallel, and while the relative role of nitrifiers or methylotrophs cannot
be confirmed, the inferred connection to TMA oxidation suggests either a direct or
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indirect coupling between these processes. Overall, it appears that such mVC time-
series from PTR-TOF-MS combined with causal inference represents an attractive
approach to non-destructively observe soil microbial metabolism and its response to
environmental perturbation.

Keywords: global change biology, soil microbiome, microbial volatile compounds, soil biogeochemistry, non-
destructive sampling, soil metabolomics

INTRODUCTION

Soil is a major compartment of the Earth system and
its constituent organisms are central contributors to global
biogeochemical cycles. Accurate characterization of the activity
of soil microbiomes is key to understanding how the soil
compartment functions and responds to chronic and acute
perturbations (Bardgett and van der Putten, 2014; Delgado-
Baquerizo et al., 2019). Snowpack dynamics for example are
strongly influenced by climate driving forces such as atmospheric
warming and precipitation patterns, and in turn regulate both
plant and microbial activity (Brooks et al., 1998; Lipson et al.,
2002; Steltzer et al., 2009; Wipf, 2010; Sorensen et al., 2019). Our
prior work observed that snowmelt induced a significant shift in
soil water potential, dynamic biomass growth and turnover that
corresponded to a reassembly of the soil microbiome (Sorensen
et al., 2020). During this critical phase of the water year in snow
dominated systems, nitrogen retention and release by microbial
biomass is dynamic and associated with snowmelt dynamics
(Brooks et al., 1998). This response to snowmelt infiltration
is similar to the Birch Effect that has been observed as the
respiration response of a dry soil to wet-up (Birch, 1958).
This response is rapid with turnover of microbial biomass,
community composition, gene expression and metabolism being
highly dynamic over a period of a few hours to days (e.g.,
Placella et al., 2012; Placella and Firestone, 2013; Barnard
et al., 2020; Blazewicz et al., 2020). Capturing such microbial
metabolic trajectories in heterogeneous systems like soils remains
challenging due to problems associated with destructive sampling
and low time resolution.

Although the characterization of soil microbial metabolism
has become much more convenient and effective due to
the development of sequence-based and mass spectrometry
approaches to interrogate biomolecular processes, most
approaches require destructive sample retrieval and processing.
This limits analyses to sequential snapshots rather than more
continuous time-series and results in important information loss.
Non-destructive approaches such as the continuous monitoring
of trace gases can be considered “information-rich,” although
not “information-dense,” and therefore provide more limited
insight into mechanistic processes underlying their fluxes.
While sequence-based or metabolomics approaches requiring
extraction excel at delivering broad snapshots of soil microbiome
function, alternative and non-destructive approaches to monitor
microbial metabolic dynamics are needed.

Microbial volatile compounds (mVCs) represent a range
of organic and inorganic compounds that can exist in
both aqueous and gaseous phases under standard conditions.

Together with recent advances in measurement techniques,
mVCs show great promise in non-destructive representation
of microbial metabolism across multiple disciplines, including
soil microbiology and epidemiology (McNeal and Herbert, 2009;
Palma et al., 2018). mVCs can diffuse through cell membranes
and circulate through and from soil (Stotzky et al., 1976). The
high mobility of soil mVCs allows them to act as substrates and
inhibitors of microbial metabolism (Tyc et al., 2017; Netzker
et al., 2020) as well as signaling molecules over large distances
(Schulz-Bohm et al., 2017). Proton transfer reaction time of
flight mass spectrometer (PTR-TOF-MS) is a state-of-the-art
instrument for real-time mVC measurement and can be used
to quantify mVC composition and dynamics over timescales
of seconds to days, providing the opportunity to observe
these moderately information-dense signatures of microbial
metabolism in real-time (Seewald et al., 2010).

This combination of information-rich time series and
information-dense measurements may provide opportunities
to explore mVC interactions in a metabolic network context.
These metabolic networks are dynamic in terms of interaction
strength and connectivity including both linear and non-linear
relationships (Goodwell and Kumar, 2017). Approaches based on
information theory have shown promise to identify robust and
potentially causal interactions in applications with similar data
properties (Goodwell and Kumar, 2017; Jiang and Kumar, 2019;
Goodwell et al., 2020).

In this study, we evaluate the potential of using mVCs
to follow the dynamics of microbial metabolic pathways in
microcosm experiments where soils from a subalpine conifer
forest in Colorado, USA were subjected to a wet-up akin
to snowmelt. First, we measured mVC profiles of microcosm
headspace in a continuous flow system via PTR-TOF-MS and
used these mVC time-series to establish directed connections
between various mVCs. Using an information theory approach,
we inferred the directed connections as causal (Goodwell and
Kumar, 2017). Subsequently, we created a reaction network of
mVCs mapped onto the existing KEGG (Kyoto Encyclopedia of
Genes and Genomes) reaction network to explore the biological
relevance of observed connections based on prior knowledge
(Kanehisa and Goto, 2000). The observed metabolic connections
are interpreted in the context of snowmelt and its impact on
soil microbial metabolism. We expected to see the emergence
of biological pathways in VC-based molecular networks upon
wet-up. These pathways would include degradation of microbial
metabolites that are closely related to osmotic regulation, as well
as litter-derived substrates that become incorporated into central
metabolism. Biological reactions with multiple intermediates
were hypothesized to display not only strong unique (U), but
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also synergistic (S) information to more accurately reflect the
complexity of observed metabolic pathways.

MATERIALS AND METHODS

Soil Properties and Microcosm
Preparation
Soils were sampled on February 19th, 2019 from a Spruce
pine dominated hillslope located at Snodgrass Mountain, CO
(38◦55′55.60′′N 106◦59′9.82′′W) in parallel with snow excavation
for snow water equivalent analyses. Snow depth was 163 cm
at the time of sampling and soil cores were taken with a
hand corer (two-inch diameter) following snow excavation
to a depth of 15 cm from the soil surface. Snow was
in amorphous state and had accumulated over 5 months
prior to excavation. Dissolved inorganic nitrogen pools were
determined colorimetrically according to protocols as described
previously (Sims et al., 1995; Doane and Horwáth, 2003).
NO3

− concentration was below detection limit and NH4
+

concentration was 1.91 ± 0.07 µM. Soil water content was
measured gravimetrically at 0.136 g H2O/g soil. Soil porosity
was determined at 0.66 and bulk density at 0.89 g/cm3.
A water retention curve was obtained and used to determine
soil water potential, estimated at -1.5 MPa for these samples
prior to wet-up. The retention curve was measured with
an HYPROP2 by METER. HYPROP2 uses the evaporation
method to investigate the relationship between water content
and the associated matric potential from 0 kPa to -100
kPa (Schindler et al., 2010a,b; Peters et al., 2015). This
matric potential range covers full saturation condition, field
capacity, and wilting point, providing useful information on
the actual water availability in soil. The van Genuchten-
Mualem model was used to approximate soil hydraulic properties
from retention curve measurement (van Genuchten, 1980;
van Genuchten and Nielsen, 1985). More details on the soil
hydraulic properties are included in Supplementary Data 1.
Before mVC measurement, the soil microcosms were left at
room temperature to acclimate for 12 h and the headspace of
each microcosm was flushed under 70 mL/min of VC-free air
(zero-air) for 1 h.

In order to investigate the effects of wet-up on the soil mVC
profile, soil microcosms were prepared in 300 mL VC-grade
glass jars with Teflon covers. Each jar contained 20 g soil wet
weight taken from a homogenized core with an empty jar used
to control for any background VC fluxes (Figure 1). Microcosms
were initially maintained at 80% relative humidity to simulate soil
underlying snow cover for 6 days to establish mVC profiles prior
to a simulated snowmelt wet-up event. This relative humidity
was chosen to both prevent rapid drying of the soil microcosm
upon wet-up and to reflect natural relative humidity levels in
the area that ranged from 74 to 96%. For soil wet-up, milli-Q
water was sterilized by membrane filtration (0.2 µm pore size)
and 9.0 mL added to each jar to achieve approximately 75% soil
water saturation. Measurement of mVC fluxes continued for an
additional 3 days following this wet-up event.

Microcosm Flow-Through System
A dynamic flow-through gas-exchange system was used to
maintain an 80% humidity following wetting and avoid unnatural
accumulation of mVCs and trace gases such as CO2 during
microcosm incubations (Misztal et al., 2018). A constant inflow of
air into each of the six jars was matched by an equal outflow. The
airflow did not pass through the soil itself, but rather mixed with
the soil headspace air. At the outlet of each jar, a vent was installed
to maintain atmospheric pressure conditions, continuous airflow,
and to mimic the diffusion of mVCs from the soil into a mixed
atmosphere. Five 20 g soil replicates from a single soil core plus
an empty jar for a control were installed in parallel, each with a
constant flow velocity of 70 mL/min (Figure 1). The inflow air
was purified of organic compounds using an Aadco 737 Zero
Air Generator (Aadco Inst, Cleves, OH) and was maintained
at approximately 80% humidity using a glass bubbler. Mass
flow controllers (MFCs) were used to control relative humidity
and the entire gas flow through the system. A LabJack U3 LV
(LabJack, CO) controller was used in conjunction with a 6-way
solenoid valve to facilitate an automated measurement rotation
across each of the six jars separately over 10-min intervals. While
individual jars were in the PTR-TOF-MS measurement phase for
10 min, the remaining five jars returned to continuous flow and
headspace venting.

PTR-TOF-MS
Proton-transfer-reaction time-of-flight mass spectrometers use
soft-ionization (protonation) via hydronium ions to render a
single positively charged ion from volatile compounds. For
example, acetic acid has a molecular monoisotopic mass/charge
ratio (m/z) of 60.021 but will be detected at m/z 61.028 due
to the added proton from the hydronium ion. The following
protonation reaction will take place if the proton affinity of the
volatile compound X is higher than that of water (Yuan et al.,
2017).

X +H3O+ → XH+ +H2O

Despite being a soft-ionization method, PTR-TOF-MS can still
induce fragmentation and such fragments can sometimes be used
as identifiers for the mVCs of interest. For example, m/z 43.018
can be considered as an acetyl fragment originating from volatiles
containing an acetyl functional group.

A PTR-TOF-MS 8000 (Ionicon Analytik, Innsbruck, Austria)
was operated at a drift-tube pressure of 2.3 mbar, a drift-tube
temperature of 75◦C, a field density ratio (E/N) of 120 Td, and
an inlet temperature of 70◦C.

Data Analysis
All time-series data of raw PTR-TOF-MS ion counts were
normalized using the following equation

Compound Normalized by Primary Ion =

[X]

[m/z 21] × 500 molecules of H16
3 O+

1 molecule of H18
3 O+
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FIGURE 1 | A schematic image of the dynamic flow-through system used for soil VC measurement. Soils were incubated without water for 6 days and were
subsequently saturated with water. This set-up provides clean and humidified air to the soils and also prevents artificial accumulation of trace gases with constant
outflow matching the inflow air.

to account for the primary ion abundance. A time-series gap-
filling protocol was followed using “dplyr” and “zoo” packages
(Grothendieck and Zeilleis, 2005; Wickham et al., 2021) in R
x64 3.6.3 (R Core Team, 2020) to account for 50-min data gaps
between 10-min measurement intervals for each jar. Background
signals were subtracted from sample data using empty jar
measurements. Time-series data from the five soil containing
jars were averaged and a spline-based time-series smoothing was
performed alongside a 5-min interval aggregation in R to reduce
the effect of noise on the information partitioning (full script
included in Supplementary Data 2).

Principal components analysis (PCA) was performed on the
processed time-series dataset to explore mVCs that differentiated
the post wet-up phase from the preceding dry phase. R

packages “factoextra,” “ggplot2,” “ggnewscale” were used for PCA
calculation and processing (Wickham, 2016; Kassambara and
Mundt, 2020; Campitelli, 2021). Each point represented in the
PCA represents an mVC profile at a given 5-min interval and
colors (red for pre-wet-up, or Dry-Phase; and purple for post-
wet-up, or Wet-Phase) together with gradients representing time
are used to show the temporal dynamics of mVCs. Vectors
representing loading scores were plotted to represent specific
mVCs that contributed most to separation across the PCA axes, in
addition to others that were of particular biological interest based
on prior literature.

Temporal Information Partitioning Network (TIPNet)-
based information partitioning was performed to go beyond
synchronous metabolic connections suggested by PCA
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FIGURE 2 | A conceptual model for using VC time-series data to infer causality. Dependencies across different timelags in (1τ) are used to calculate lagged mutual
information (LMI). LMI is further partitioned into unique (U), synergistic (S), and redundant (R) contributions between VCs.

(Goodwell and Kumar, 2017). The calculations were performed
using TIPNet’s graphical user interface in MATLAB (2018).
Mutual information (the statistical dependence between
variables) over timelags from 5 to 100 min was calculated for
every m/z pair to account for natural timelags over a series of
metabolic transformations. Lagged mutual information (LMI)
was further partitioned into unique (U), synergistic (S), and
redundant (R) information to establish directionality as well as
inferred causality in the relationships between variables, termed
source-target relationships. This was assessed by simultaneously
considering the relationships between two to three m/z’s. U
shows the strength of a causal relationship between two nodes
(mVCs). S is a measure of new information that is obtained
by using two source nodes to explain a single target node
(Figure 2). For example, trimethylamine and methanol are two
different substrates that can be transformed into formaldehyde
by methylotrophs and a strong synergistic connection from
methanol and trimethylamine to formaldehyde could be
expected. Redundant information, R was not used for this study,

but is a measure of overlap in information that can be obtained
by two different source nodes against a target node.

Unique and synergistic information that showed statistical
significance using shuffled surrogates (n = 2,500) were obtained
from TIPNet calculations of dry and wet phases. Shuffled
surrogates test for statistical significance by randomly shuffling
time-series data of source time-series n number of times
(Goodwell and Kumar, 2017). For a simple calculation of mutual
information between source node X(t-1) and target node Y,
X(t-1) data will undergo random shuffling for “n” number of
times. Each U connection would imply a causal relationship
between two mVCs. Each S connection would imply a metabolic
relationship between the three mVCs in question (Figure 2). For
example, methanol, formaldehyde, and formate are metabolites
involved in methylotrophy and can form an S triad. mVCs with
observed U and S relationships should be concordant in some
way with metabolite relationships in known metabolic networks.

To explore this, we used the KEGG reaction network and
projected the top 20% (based on partitioned mutual information)
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of mVC pairs or triads showing significant U connections. For S
connections, every source-target pair had 129 candidate mVCs
to qualify as the second source contributing to the amount of
explained information. Only the top mVC with the highest S
information for a given source-target pair was considered as the
second pair to form an S connection that later was projected onto
the KEGG reaction network. KEGG pathways that included at
least two of the inferred metabolic connections were extracted
using “MetaboSignal” and “gdata” packages (Warnes et al., 2017;
Rodriguez-Martinez et al., 2018) in R and the “igraph” package
(Csardi and Nepusz, 2005) in R was used to label the shortest
paths corresponding to the U and S connections in the KEGG
reaction network. The final network was created using Cytoscape
3.72 (Shannon, 2003). Sub-networks within the KEGG reaction
network were replotted and annotated for clarity and annotated
using Adobe Illustrator 2020 (24.3, Adobe Inc., available at: https:
//adobe.com/products/illustrator).

RESULTS

Principal Component Analysis of mVC
Time-Series
mVC profiles of the soil microcosms were initially characterized
prior to and following wet-up. Time-series measurements of
mVCs in the range of m/z 22–150 were obtained by PTR-
TOF-MS and are included in Supplementary Data 3. Principal
Component Analysis (PCA) was performed on the entire time-
series data including both dry and wet phases to identify m/z’s
that characterize the wet-up response (Figure 3). The dry phase
metabolism exhibited some dynamics, oscillating around the
origin of the PCA biplot. Analysis of PCA loading scores
(represented as vectors overlaid on the PCA plot) indicated that
the wet-up event resulted in a significant departure of metabolism
and contributed most to the variance in mVC flux. In the first few
hours following wet-up the mVC profile diverged abruptly from
the origin before relaxing back toward the origin after the 8-day
experiment. The initial divergence of metabolism upon wet-up
could be ascribed to a few highly dynamic metabolites, including
dimethylamine, formaldehyde, formate, followed by methanol
are suggestive of methylotrophy, while the appearance of ethanol,
acetaldehyde, benzaldehyde, 2,3-butanediol and diacetyl suggest
the onset of fermentation and the subsequent transformation of
microbial fermentation products (Speckman and Collins, 1968;
Jansen et al., 1984). Subsequent time points following wet-up
likely experienced re-drying of the soil matrix and showed the
equilibration of mVC profile back toward the origin, suggesting a
disturbance-stabilization dynamics.

Inferring Metabolic Connections
PCA analysis provided useful information on the overall response
of soil mVCs to wet-up. In order to explore the reaction
dynamics responsible for observed changes in mVC emissions we
performed causality inference based on Temporal Information
Partitioning Networks (TIPNet). This approach allowed us
to identify metabolic connections between pairs or triads of
mVCs (with consideration of timelags) indicative of directional

source-target relationships. In this way, each LMI between two
or three mVCs was considered as a proxy for a metabolic
connection and was partitioned into unique (U) and synergistic
(S) information to infer causal relationships between mVCs.
Unique and synergistic connections were projected onto the
KEGG reaction network and yielded six sub-networks (Figure 4)
that we explore briefly below. Full sub-network information is
included as Supplementary Data 4.

Methane and Nitrogen Metabolism
The sub-network containing KEGG pathways related to
methane and nitrogen metabolism was enriched in several
methylotrophic processes that pointed toward the degradation
of plant litter and the possible consumption of microbial
osmo/cryoprotectants upon soil re-wetting. Trimethylamine
(TMA), for example is a quaternary amine known to be
produced during the anaerobic degradation of glycine betaine
and choline (Wang and Lee, 1994), formed a synergistic
connection with formaldehyde to formate. This connection
is plausible given that trimethylamine can be oxidized by
methylotrophs with trimethylamine dehydrogenase (EC 1.5.8.2)
to dimethylamine and formaldehyde (Figure 5). Dimethylamine
also showed two unique connections to formaldehyde and
formate, suggesting the resurgence of methylotrophic activity
dependent on dimethylamine dehydrogenase (EC 1.5.8.1)
upon wet-up. Methanol also displayed a synergistic connection
with formaldehyde to formate, likely as a result of parallel
methylotrophic machinery with genes, methanol dehydrogenase
(EC 1.1.2.7) and formaldehyde dehydrogenase (EC 1.2.1.46)
that utilize substrates derived from plant litter (i.e., pectin)
de-esterification (Dorokhov et al., 2018). A unique connection
identified from methanol to 2-butanone could not be projected
onto an existing KEGG pathway but was included as a reaction
involving an as yet unknown enzyme as 2-butanone production
in soil by methylotrophs in the presence of methanol has
been previously reported (Hou et al., 1979). A connection
between hydroxylamine and nitrite, represented by nitrous
acid fragment at m/z 30 (Lee et al., 2006), was also included
since hydroxylamine and nitrite can be produced either from
ammonia oxidizing microorganisms or via methylotrophic
machinery due to similarity in substrate structure and the
need to detoxify resulting co-metabolites (Versantvoort et al.,
2020). With this in mind, it is worth noting that ammonia
is produced during TMA catabolism, and could represent
a substrate source for nitrification. Metabolic connections
inferred from TIPNet could also be indicated by the individual
time series. Emissions of 2-butanone, trimethylamine and
formaldehyde were strongly stimulated at a similar time point
following wet-up, whereas methanol showed a gradual decline
in emission suggestive of consumption into the aforementioned
intermediates of methylotrophy.

Sulfur Metabolism
Metabolic connections in sulfur-containing mVCs were projected
onto the KEGG reaction network and formed a distinct cluster
containing pathways related to methylotrophy and sulfur cycling.
Formaldehyde once again emerged as an important component
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FIGURE 3 | PCA (Principal Component Analysis) plot for VC time-series data shows the effect of wet-up treatment on soil VC dynamics. Each point is VC emission
profile across 5-min time window and green arrows show specific VCs with corresponding m/z’s contributing to the shifts in VC profile with time and wetness. VC
profile experienced the largest change during early wet-up as the time points show rapid migration toward bottom right quadrant. Subsequently, VC profile gradually
stabilizes over time and returns closer to the beginning of dry measurement. Large colored circles mark the start and end of the incubation or start of the wet-up
treatment. Pre-treatment time points are labeled in a gradient of red and post-treatment time points are labeled in a gradient of blue. Red and blue ellipses mark 95%
confidence intervals of dry and wet VC profiles, respectively.

FIGURE 4 | KEGG reaction network projected with metabolic connections that were tentatively detected by VC measurement. For a given pairwise connection
observed, a corresponding shortest path was mapped onto the reaction network. Each edge is a metabolite-to-gene or a gene-to-metabolite connection. Dark red
and blue nodes are metabolites detected as VCs and light red and blue nodes are metabolites or genes that the projected shortest paths go through. The projected
portion of KEGG reaction network was further divided into six sub-networks shown as circles.
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FIGURE 5 | Reaction pathways that constitute methane and nitrogen metabolism sub-networks from Figure 4. Unique connections are shown in straight yellow
edges and synergistic connections are shown in forked blue arrows. Each detected compound is labeled in orange and juxtaposed with respective time-series
following wet-up. Genes responsible for each reaction are labeled in blue diamonds with respective KEGG reaction IDs. Gray edges represent KEGG pathways.

of the sub-network being identified as a target mVC with sources
including dimethyl sulfide (DMS) and methanethiol (Figure 6),
projectable on KEGG pathways driven by dimethyl sulfide
monooxygenase (EC 1.14.13.131) and methanethiol oxidase (EC
1.8.3.4), respectively. In particular, methanethiol also formed a
synergistic connection to formaldehyde with hydrogen sulfide as

the second source, which consolidates the role of methanethiol
oxidase (EC 1.8.3.4) in the observed connection. Two non-
methylotrophic pathways were also shown by methanethiol and
hydrogen sulfide. Methanethiol formed a unique connection to
dimethyl sulfide and this connection projected onto a mddA
methyltransferase pathway in KEGG (EC 2.1.1.334). Hydrogen
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FIGURE 6 | Reaction pathways that constitute sulfur metabolism sub-network from Figure 4. Unique connections are shown in straight yellow edges and
synergistic connections are shown in forked blue arrows. Each detected compound is labeled in orange and juxtaposed with respective time-series following wet-up.
Genes responsible for each reaction are labeled in blue diamonds with respective KEGG reaction IDs. Gray edges represent KEGG pathways.

sulfide was uniquely connected to acetate and the connection
was projected onto a CysO cysteine synthase pathway with
acetate as its target mVC (EC 2.5.1.47). Time-series data of both
methanethiol and DMS differed from those of pure carbon mVCs
as they showed a more gradual increase and peaked at a later time
point with patterns showing an apparent co-variance. This co-
variance that was exclusive to sulfur-containing mVCs suggested
not only the metabolic connectivity of the two compounds but
also the metabolic progression of the soil microbial community
that shows evidence of mostly oxidative and some fermentative

carbon and nitrogen metabolism followed by a reduced sulfur-
based one, possibly suggesting a change in redox conditions.

Central Metabolism and Isoprene
After wet-up, processes related to fermentation and lower redox
potential were predominant in the central metabolism and
isoprene sub-networks. Pyruvate showed a unique connection
to diacetyl and two different synergistic connections to acetate
and 2,3-butanediol paired with methanol (Figure 7). These
connections were projected onto fermentation pathways from
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FIGURE 7 | Reaction pathways that constitute central metabolism and isoprene sub-network from Figure 4. Unique connections are shown in straight yellow edges
and synergistic connections are shown in forked blue arrows. Each detected compound is labeled in orange and juxtaposed with respective time-series following
wet-up. Genes responsible for each reaction are labeled in blue diamonds with respective KEGG reaction IDs. Gray edges represent KEGG pathways.

KEGG involving acetolactate decarboxylase (EC 4.1.1.5), acetate
kinase (EC 2.7.2.1) and 2,3-butanediol dehydrogenase (EC
1.1.1.4), respectively. Ethanol appeared as both a unique source
and a target mVC connecting to and from acetaldehyde via
pathways likely driven by alcohol dehydrogenase (EC 1.1.1.1).
A unique connection from isoprene to acetate was also included
(although it could not be projected onto the current KEGG
reaction network) based on the hypothesis from previous studies
that isoprene is oxidized through beta-oxidation pathway with an
unknown enzyme (McGenity et al., 2018). Time-series trendlines
of pyruvate and diacetyl showed apparent co-variance with 2,3-
butanediol also showing an emission spike at a similar time
point in accordance with the 2,3-butanediol fermentation from

pyruvate to diacetyl and 2,3-butanediol. The time-series of
pyruvate and acetaldehyde also shared a similar pattern indicative
of a close connection within the KEGG metabolic network.

DISCUSSION

Microbial volatile compounds (mVCs) have been used as
metabolic fingerprints in multiple disciplines including
epidemiology, microbial ecology, and environmental
microbiology (McNeal and Herbert, 2009; Misztal et al., 2018;
Palma et al., 2018) and have demonstrated utility as tractable
and non-destructive windows into microbial metabolism. Most
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prior studies focused on the detection of individual mVCs while
treating the emission profile itself as a fingerprint. Our approach
took advantage of semi-continuous time-series of mVC fluxes to
establish causal linkages between metabolites using information
theory analyses. This allowed us to use the observed emission
profile to explain the biological state of the system, namely soil.
Our goal was to leverage on mVCs as a window into the specific
biological pathways constituting the biogeochemical state of
soil. We explored the possibility of real-time characterization of
soil microbiome metabolic processes by using time-series mVC
data from PTR-TOF-MS measurements. Ordination of mVC
profiles as they transitioned from the initial comparatively dry
condition of soil that is often characteristic of that beneath a
snowpack, to the wet-up phase akin to the onset of snowmelt,
showed a rapid and distinct change in the trajectory of microbial
metabolism. This wet-up driven activation of soil microbiome
metabolism was ephemeral with the metabolic state (reflected as
PCA coordinates) generally returning toward the origin within
4 days after wet-up (Figure 3). The infiltration of snowmelt
is known to induce a pronounced increase in soil microbial
growth and metabolism (e.g., Lipson et al., 2002; Sorensen et al.,
2020). As expected, we observed an accumulation during wet-up
of mVCs such as diacetyl and butanol known to be produced
under oxygen limiting conditions (Seewald et al., 2010). We
also observed a dynamic emission of mVCs possibly related
to methylotrophy (e.g., methylamines, methanol) and saw
further evidence of the onset of fermentation (such as ethanol,
acetaldehyde, benzaldehyde, and 2,3-butanediol).

Re-wetting of soil could result in mVC pulses by purely
abiotic factors such as chemo-desorption caused by water
addition (Thibaud et al., 1993). This uncertainty required an
approach where the biological relevance of observed mVCs
could be assessed in the context of biological pathways. Directed
connections between mVCs were obtained based on LMI and
were used to construct a putative reaction network that could
be projected onto a known biological network (KEGG in
this case) to evaluate the biological relevance of the mVC
fluxes. Information partitioning of LMI was used to calculate
unique and synergistic connections that showed pair and triad
relationships to further narrow down the type of microbial
processes contributing to respective connections. In this regard,
two synergistic connections, methanol and formaldehyde to
formate and trimethylamine (TMA) and formaldehyde to
formate (Figure 5) strongly indicated that methylotrophic
activity was stimulated by wet-up. Prior qNMR data from soils
at a nearby site showed high abundance of methanol during
snowmelt (unpublished data). The source of methanol remains
uncertain but may be related to the de-esterification of plant litter
(Dorokhov et al., 2018) and consequently increased the activity
of methylotrophs present in soil. However, a rapid increase in
trimethylamine (TMA) emission was also observed upon wet-up.
TMA is a substrate for methylotrophs, and it has been previously
observed to originate from the anaerobic degradation quaternary
amines such as choline and glycine betaine by microbes (Wang
and Lee, 1994). Glycine betaine is shown to function both as
both an osmo- and cryo-protectant in microbes and plants
(Xing and Rajashekar, 2001; Chattopadhyay, 2002), thus it is

possible that upon soil wet-up, microbial lysis or active export
of osmo/cryoprotectants are transformed to TMA for eventual
consumption by methylotrophs (Sun et al., 2019). Other mVCs
that we observed during early wet-up such as acetone, methanol
and acetaldehyde have previously been observed in soil following
precipitation and are commonly regarded as volatile signatures
of plant litter decomposition and support a hypothesis that litter
decomposition was stimulated by water addition (Schink and
Zeikus, 1980; Schade and Goldstein, 2001, 2002; Niemenmaa
et al., 2008; Gray et al., 2010).

This approach of identifying unique and synergistic
connections also allows interactions between carbon and
nutrient cycles to be postulated. For example, following the
initial pulse of mVCs during wet-up, rapid production of TMA
potentially from anaerobic degradation of quaternary amines
was soon matched by consumption at a similar rate (Figure 5)
which could be driven by the activation of methylotrophs. The
synergistic connection of TMA and formaldehyde → formate
(Figure 5) supports that TMA was consumed by methylotrophs
as formaldehyde is an important byproduct in TMA degradation
via trimethylamine dehydrogenase often found in methylotrophs
(Sun et al., 2019). Dimethylamine (DMA) also displayed a unique
connection to formaldehyde and TMA was likely degraded into
DMA leading to sequential extraction of formaldehyde from
available methylamines. Full oxidation of methylamine can yield
an ammonium ion that can be directly utilized by methylotrophs
or released to the extracellular space becoming available for
cross-feeding by nearby microbial communities (Taubert et al.,
2017). Although we could not measure methylamine emission via
PTR-TOF-MS due to high background from molecular oxygen
(m/z 32), the rapid consumption of TMA via methylotrophic
pathway suggests an equivalent release of ammonium ions as
a result of methylamine oxidation. This hypothesis aligns with
the results of another study from our group on nearby soils
that showed a rapid increase in microbial biomass N early upon
snowmelt initialization followed by a population crash, a pulse
of nitrate in parallel with an increase in nitrifier abundance
(Sorensen et al., 2020). Interestingly, a unique connection from
hydroxylamine to nitrite was observed and could be a result of a
known detoxification process managed by either methylotroph
or nitrifier hydroxylamine oxidoreductase, possibly as a result of
the release of ammonium ions from methylamine oxidation.

Combined, these results support a hypothesis that the change
in soil water content and redox conditions similar to the
conditions of snowmelt, stimulated methylotrophic activity
by providing methylamines from anaerobic decomposition of
quaternary amines, and consequently leading to an increase
in ammonium ion pool to stimulate further autotrophic or
heterotrophic microbial growth. Further studies are required to
confirm these possibilities.

While early wet-up was characterized by rapid and diverse
production of mVCs, later timepoints generally showed lower
diversity and intensity of mVCs being emitted. Sulfur-containing
mVCs, methanethiol and dimethyl sulfide (DMS), showed a
gradual increase in emission as TMA emission disappeared
(Figure 6). Both methanethiol and DMS have been shown to
occur in anaerobic soil (Stotzky et al., 1976). The sources remain
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unclear, but previous studies have confirmed that methanethiol
can be produced as a result of methionine degradation, whereas
DMS is produced via methylation of methanethiol and appears
to be a widespread phenomenon across soils (Carrión et al.,
2017). Regardless of the source of these sulfur-containing mVCs,
they are also methylotrophic substrates like TMA and indeed
showed unique and synergistic connections to formaldehyde
(Figure 4). It appears that the stimulation of methylotrophic
activity may be partitioned into two stages; an early, but
ephemeral methylotrophy driven by TMA and degraded amines,
and a later stage that provides DMS and methanethiol.

As presented, we propose that information partitioning of
time-series data from PTR-TOF-MS can be used to build
a metabolic narrative of soil microbiome metabolism and
offers a practical means of diagnosing the activation of major
metabolic pathways following perturbations. This approach is
amenable to other diagnostic purposes such as evaluating soil
redox transitions and estimating the significance of anaerobic
microsites. In this regard, diacetyl, 2,3-butanediol and other
mVCs that are known fermentation byproducts are useful
markers and metabolic connections, such as pyruvate to 2,3-
butanediol, and acetaldehyde to ethanol can be computed to
further verify the biological pathways suggested by the presence
of the mVCs detected. Further, this approach can also be
used to generate hypotheses regarding unexplored pathways.
For example, in our study, a unique connection, methanol
to 2-butanone, suggests that this metabolic transformation is
occurring, and while soil methanol-utilizers have been shown
to produce 2-butanone, the responsible enzymes have yet to
be identified (Hou et al., 1979). Similarly, isoprene to acetate
is a unique connection that supports a general, but unverified
assumption that isoprene is degraded via beta-oxidation pathway
to supply carbon to the central metabolism (Carrión et al., 2018;
McGenity et al., 2018). Such hypotheses that can be generated
by mVC analysis provide room for complementary use of other
methods such as stable isotope tracing and probing.

In this proof-of-principle study, we explored an information
theory approach where mVC time-series are analyzed to discover
unique and synergistic metabolite-to-metabolite connections
that are projectable to KEGG reaction networks. We showed
that this approach can be useful in providing a metabolic
narrative that coincides with the results from other studies.
A number of sophisticated metabolomic approaches exist with
higher fidelity, however, a necessity to destructively sample
makes the assessment of microbial dynamics and metabolic
couplings difficult to interpret and precludes true time-series
measurements. Continuous or semi-continuous time-series data
also allows directional connections to be computed from LMI
and its partitioned constituents such as unique and synergistic
information. Several m/zs explored in this study can have
contributions from multiple compounds and cause challenges
in unambiguous identification without gas standards. However,
our approach of inferring strong causal relationships that map
to biological pathways relevant for soil under snowmelt provides
a compelling evidence for their identities. In future studies, we
plan to facilitate the results and framework of this approach
by coupling measurements with GC-MS and other instruments

that may complement data provided by PTR-TOF-MS. Overall,
we propose that mVCs, especially when combined with online
measurement such as PTR-TOF-MS, represent an attractive
approach to “remotely sense” soil microbiome metabolism.
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