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SUMMARY

The hallmark of a virus is its capsid, which harbors
the viral genome and is formed from protein sub-
units, which assemble following precise geometric
rules. dsRNA viruses use an unusual protein multi-
plicity (120 copies) to form their closed capsids. We
have determined the atomic structure of the capsid
protein (P1) from the dsRNA cystovirus F8. In the
crystal P1 forms pentamers, very similar in shape to
facets of empty procapsids, suggesting an unex-
pected assembly pathway that proceeds via a pen-
tameric intermediate. Unlike the elongated proteins
used by dsRNA mammalian reoviruses, P1 has a
compact trapezoid-like shape and a distinct arrange-
ment in the shell, with two near-identical conformers
in nonequivalent structural environments. Neverthe-
less, structural similarity with the analogous protein
from the mammalian viruses suggests a common
ancestor. The unusual shape of the molecule may
facilitate dramatic capsid expansion during phage
maturation, allowing P1 to switch interaction inter-
faces to provide capsid plasticity.

INTRODUCTION

Mammalian double-stranded RNA (dsRNA) viruses hide their

genome from the cellular environment, as dsRNA provokes

strong immune responses. This is accomplished by maintaining

at all times the segmented dsRNA genome within the confines

of the closed capsid. The dsRNA virus capsid is therefore a

complex molecular machine capable of specifically encapsidat-

ing the plus polarity single-stranded RNA (ssRNA) genomic

precursors, synthesizing the minus strands inside the particle

(replication), making plus strands from the dsRNA genomes

(transcription), and finally extruding the newly made plus strand

transcripts to the particle exterior (for review, see Poranen and

Bamford, 2012). These transcripts can either enter translation
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or will be encapsidated into newly assembled capsids closing

the viral replication cycle. Bacterial dsRNA viruses follow a

similar strategy; however, in common with many other bacterial

viruses, the capsid is initially assembled in a ‘‘deflated’’ (procap-

sid) form, which is ‘‘inflated’’ as the genome is packaged.

The capsid of most dsRNA viruses is a characteristic 120 sub-

unit T = 1 shell, sometimes nicknamed ‘‘T = 2.’’ Depending on the

complexity of each virus, additional layersmay build on this shell.

The first dsRNA virus capsid structure solved to high resolution

was that of the mammalian bluetongue virus (BTV), revealing

the intriguing way the particle is constructed (Grimes et al.,

1998). This structure and subsequently solved structures of

other dsRNA virus shells (summarized by Luque et al., 2010)

show that the basic building blocks of the T = 2 capsid are capsid

protein dimers formed from nonsymmetrically relatedmolecules,

A and B. Because of different interactions with their respective

neighbors, monomers A and B have identical structural folds

but differences in the tertiary structure mainly arising from the

movement of domains about hinge points.

F8 is an enveloped bacteriophage with a segmented dsRNA

genome, belonging to the Cystoviridae family. Related viruses

include those from F6 to F14 and F2954, where F6 is the

type-virus of the family (Mindich et al., 1999; Qiao et al., 2010).

The outer layer of cystoviruses is composed of a membrane

envelope (where the lipids are of host origin) containing three

to four virus-specific integral membrane proteins, one of them

(P6) mediating the fusion between the viral membrane and the

host outer membrane (Bamford et al., 1987; Etten et al., 1976;

Gottlieb et al., 1988; Laurinavicius et al., 2004) (Figure 1). Under

themembrane vesicle, the nucleocapsid shell, composed of pro-

tein P8, (Etten et al., 1976) usually forms a middle protein layer

(Bamford and Mindich, 1980). In F6, P8 trimers form a T = 13

lattice covering the inner capsid, except at 5-fold locations that

are occupied by the packaging NTPase P4 (Butcher et al.,

1997; Huiskonen et al., 2006). InF8, however, the P8 shell seems

to be missing and the membrane contacts are carried out mostly

by protein P4 (Jäälinoja et al., 2007). The capsid is composed of

four proteins P1, P2, P4, and P7, where 120 copies of the capsid

protein P1 form a thin icosahedral shell. The RNA-dependent

RNA polymerase (P2) is located internally close to the 3-fold

symmetry position (Nemecek et al., 2012; Sen et al., 2008),
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Figure 1. Schematic Representation of the Organization and Expansion of Bacteriophage F8

The three dsRNA genomic segments s, m, and l (small, medium, and large, respectively) are depicted as green rectangles. Proteins discussed in the paper are

labeled.

See also Figures S1 and S2.
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whereas the P4 packaging hexamers reside on the outer surface

on the 5-fold axes, creating a mismatch in symmetry (de Haas

et al., 1999). The assembly cofactor P7 seems to reside, as a

monomer, inside the capsid near the 3-fold symmetry location,

possibly competing with the polymerase protein for the binding

site (Katz et al., 2012; Nemecek et al., 2010, 2012). The acces-

sory proteins (P2, P4, and P7) only partially occupy their binding

sites in the virion (Nemecek et al., 2010, 2012; Sun et al., 2012).

The cystoviral dsRNA genome is composed of three seg-

ments: small (S), medium (M), and large (L) (Figure 1). There is

evidence that the segments are packaged in a sequential order

(S then M and finally L) by the capsid (Frilander and Bamford,

1995; Qiao et al., 1995). The 50 end of each ssRNA segment

has a phage packaging site (pac) (Gottlieb et al., 1992, 1994; Pirt-

timaa and Bamford, 2000; Qiao et al., 2005) that initially binds to

protein P1 via a specific sequence (Qiao et al., 2003b), followed

by translocation into the capsid by the hexameric P4 packaging

NTPase (Frilander and Bamford, 1995; Gottlieb et al., 1991; Kai-

nov et al., 2003b; Pirttimaa et al., 2002). Genome packaging and

replication induce major conformational changes of the capsid,

leading to expansion of the shell (Butcher et al., 1997; Nemecek

et al., 2011). The current sequential packaging model proposes

that the empty capsid exposes a binding site only for S; when

S is packaged, the particle expands somewhat and the S binding

site disappears, while that for M appears. The same mechanism

applies to allow the packaging of L (Mindich, 2012).

Although the genome organization and virion structure

are conserved among cystoviruses, sequence conservation

between the members can be very limited. Within the genus,
viruses are grouped according to their relationship to the type

member F6 (Mindich et al., 1999). The most distantly related

member of the genus is bacteriophage F8, sharing only 15%

overall sequence identity, mostly in the polymerase P2 and the

core domain of the P4 protein (Hoogstraten et al., 2000), whereas

their P1 capsid proteins have an even lower sequence identity of

6%. This is reflected in changes during viral entry: F6 enters the

periplasmic space with a protein P8 shell, whereas F8 does not

have this layer (Sun et al., 2003).

Cystoviruses in general and F6 in particular are one of the

best understood viral assembly systems (Poranen et al., 2001)

in which purified viral proteins and RNA constituents can self-

assemble to generate infectious viral particles with high effi-

ciency. In addition the RNA-dependent RNA polymerase of F6

was the first such polymerase to be isolated (Makeyev and Bam-

ford, 2000). Its structure and mechanistic functions are known in

great detail (see, for example, Butcher et al., 2001; Poranen et al.,

2008; Salgado et al., 2004; Wright et al., 2012). Also the mecha-

nism of RNA translocation by P4 is known in atomic detail (Kai-

nov et al., 2006; Mancini et al., 2004a, 2004b). There are several

electron microscopy (EM)-based studies defining the organiza-

tion of the P1 shell and its transitions (see Table 1). In bacterio-

phages F6 and F8, five A subunits encircle the 5-fold axes,

and B subunits interact at the 2-fold and 3-fold axes, with no

direct contacts seen between A subunits belonging to different

5-fold vertices. However, a detailed description of the structure

of the P1 coat protein is still missing.

Here, we describe the crystal structure of the major capsid

protein P1 of bacteriophage F8 at a resolution of 3.7 Å. The
Structure 21, 1384–1395, August 6, 2013 ª2013 The Authors 1385



Table 1. Summary of Available Cryo-EM Structures of Bacteriophages F6 and F8

Virus Structure Resolution (Å) Reference EMDB Accession Code

F6 Nucleocapsid Detergent-treated virions 7.5 Huiskonen et al., 2006 1206

F6 Nucleocapsid Detergent-treated virions 12.0 Huiskonen et al., 2006 1207

F8 Core Detergent-treated virions 15.0 Huiskonen et al., 2007 1256

F8 Virion 21.0 Jäälinoja et al., 2007 1299

F8 Core Detergent-treated virions 8.7 Jäälinoja et al., 2007 1300

F6 Virion 18.0 Jäälinoja et al., 2007 1301

F6 Recombinant procapsid P1, P2, P4, and P7 14.0 Sen et al., 2008 1500

F6 Recombinant procapsid P1, P2, P4, and P7. Mutation

in P1 (E390A)

19.0 Sen et al., 2008 1501

F6 Recombinant procapsid P1, P4, and P7 11.0 Sen et al., 2008 1502

F6 Recombinant procapsid P1, P2, and P4 16.0 Sen et al., 2008 1503

F6 Recombinant procapsid P1, P2, P4, and P7 8.1 Nemecek et al., 2012 2341

F6 Recombinant procapsid P1, P2, and P4 9.7 Nemecek et al., 2012 2342

F6 Recombinant procapsid P1, P4, and P7 9.6 Nemecek et al., 2012 2344

F6 Recombinant procapsid P1 and P4 12.4 Nemecek et al., 2012 2346

F6 Recombinant expansion

intermediate 1 procapsid

P1, P2, P4, and P7 19.0 Nemecek et al., 2011 5355

F6 Recombinant expansion

intermediate 2 procapsid

P1, P2, P4, and P7 20.0 Nemecek et al., 2011 5356

F6 Recombinant expansion

intermediate 2 procapsid

P1, P2, P4, and P7 20.0 Nemecek et al., 2011 5357

F6 Recombinant capsid P1, P2, P4, P7, and RNA 18.0 Nemecek et al., 2011 5358
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oligomeric organization of P1 protein in the crystal and in solution

is pentameric, with the pentamers in the crystal structure resem-

bling closely the facet of emptyF6 procapsids. This suggests an

assembly mechanism, proceeding via pentameric intermedi-

ates, which is different to that proposed earlier. The atomic

details of P1 allow us to make structural comparison with other

dsRNA capsid proteins, providing insight into viral evolution.

The fit of the crystal structure into previously obtained EM

maps revealed conformational changes during virus maturation

and shed light on the packaging of the cystoviral genome and

themechanism bywhich, during genome packaging and replica-

tion, the procapsid expands dramatically to form the almost

spherical nucleocapsid, with minor internal changes in the

plate-like P1 subunits that, however, tilt and twist dramatically.

RESULTS AND DISCUSSION

Overall Fold of F8 P1
The building block of P1 crystals is a dimer of dome-shaped pen-

tamers, arranged bottom-to-bottom to form a hollow sphere

(Figure S1 available online). This leads to an extremely high sol-

vent content in the crystals (80%). Combining solvent flattening

and 10-fold noncrystallographic symmetry (NCS) averaging

resulted in clearly interpretable electron density maps and a reli-

able refined atomic model, despite the limited resolution (3.7 Å)

(Figure S2). Each dome-like pentamer is composed of virtually

identical (root-mean-square deviation [rmsd]�0.1 Å) and closely

interacting monomers, with an average interface surface area of

about 1,800 Å2 (Figure 2A).

The overall shape of the P1 monomer is that of a thin trape-

zoidal plate (�30 3 70 3 80 Å) (Figure 2B). The atomic model
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includes the majority of the 792 residues, lacking only the first

23, the last 2, and residues 325 to 346, due to disorder. The

structure can be divided into two roughly equal domains (Fig-

ure 2C). The N-terminal domain (residues 1–370) is composed

of thirteen a helices, including the remarkably long, 40-residue

helix a-8, which spans one side of the trapezoid, and three b

sheets, each made of two or three b strands. The C-terminal

domain (residues 371–790) contains nine a helices and four b

sheets made of either three or four b strands. The N- and C-ter-

minal are linked by a single connection around residue 370. The

buried area between the two domains is approximately 2,100 Å2,

and the contacts are mainly hydrophobic interactions and

hydrogen bonds linking b strands from each domain.

When compared to capsid proteins of other members of the

dsRNA virus lineage, F8 P1 has a similar molecular weight and

high a-helical content but a very different overall shape (Fig-

ure 3A). Previous analyses have shown that although the capsid

folds differ between members of the lineage, there are discern-

ible similarities in the arrangement of the structural elements

within the proteins (Abrescia et al., 2012). Analysis using the

program HSF (Ravantti et al., 2013) confirms this and places

P1 as intermediate between eukaryotic virus capsid proteins

(such as BTV) and the smaller proteins from other dsRNA viruses

(such as PBV) (Figure 3B).

Overall Architecture of the Expanded F8 Capsid
The atomic structure of the F8 P1 monomer was fitted into

the 8.7 Å cryo-electron microscopy (cryo-EM) map of the F8

expanded capsid (Jäälinoja et al., 2007) to generate a pseu-

doatomic model (Figure 4A). Fitting was performed using

VEDA (Navaza et al., 2002), a reciprocal-space fitting software



Figure 2. Overall Fold of the F8 P1 Structure

(A) Architecture of the pentameric F8 P1 structure

from the top, side, and bottom views.

(B) Monomeric F8 P1 is colored from the N-terminal

(blue) to the C-terminal (red). The first and the last

residues are represented as spheres. The pentagon

shows the region of themonomer that forms the hole

at the 5-fold axis.

(C) N- and C-terminal domains of F8 P1 colored in

blue and red, respectively. The single main-chain

connection between the two domains is shown as a

yellow sphere at residue 370.
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package that allows refinement of the fit, while taking icosahe-

dral symmetry into account. Densities for 14 out of the 22 a

helices are resolved in the cryo-EM reconstruction, allowing a

good initial rigid-body fitting of the P1 monomer in the A and B

positions (CC = 0.58). The A and B subunits were subsequently

allowed to freely rotate about the hinge residue between the N

and C termini, producing an improvement of the fit (CC = 0.61).

Compared to the crystal structure, there is a rotation of the C

terminus of 19� and 28�, respectively, in the A and B subunits,

if the structures are superimposed on their N-terminal domain

(Figure 4B).

The arrangement of the 120 P1 subunits on the icosahedrally

symmetric lattice is shown in Figure 4A. The A and B subunits

are located in distinct environments on the capsid surface,

making nonequivalent contacts with neighboring subunits. Five

closely associated A subunits (average interface area circa

1,000 Å) radiate from each 5-fold axis, giving rise to 12 noninter-

locking pentamers, each forming a regular pentagon. An individ-

ual B subunit is associated with each side of these pentagons,

filling in the spaces between them. The placement of the B sub-

unit relative to A can be described as follows: the whole of each
Structure 21, 1384–139
side of a pentamer (formed by equal contri-

butions from two subunits A and A’) is in

contact with a B subunit, which is in essen-

tially the same orientation as one of the

A subunits that it contacts (Figure 4A,

close-up). In total circa 2,000 Å2 of each

B subunit is buried in each such interac-

tion. B subunits form trimeric associa-

tions on the 3-fold icosahedral axis and

the extent of the interface area, circa

2,000 Å2 (B-B’ and B-B’’), is similar to

that seen for the A-B and A-B’ interaction,

suggesting somewhat similar strength

associations. The arrangement of the 120

P1 subunits differs somewhat from the

corresponding T = 2 lattice seen in mature

cores of reoviruses. The prototype of such

proteins, VP3 from BTV, assembles as

decamers, with five A subunits clustered

around the icosahedral 5-fold axis of sym-

metry and five B subunits interdigitating

between them, a little further from the

5-fold (Figure 3B) (Grimes et al., 1998). In

BTV A subunits span icosahedral 2-fold
axes, linking adjacent pentamers to form a continuous scaffold,

while B subunits form isolated trimeric plugs. In addition, the

significant distortion observed between the A and B subunits

in BTV, to overcome the conformational restriction preventing

the formation of a genuine ‘‘T = 2’’ shell, is present to a much

smaller extent in F8 P1, where an rmsd of 1.7Å is measured

between quasiequivalent subunits. The organization of the P1

lattice is reminiscent of that of the capsid protein of PsV-F, a par-

tivirus, and PBV, a picobirnavirus, two small dsRNA viruses with

a simple one-layer structure capsid (Duquerroy et al., 2009; Pan

et al., 2009). In both cases, the 60 A subunits surround the icosa-

hedral 5-fold axes and form 12 flower-shaped pentamers that

contact only at the icosahedral 2-fold axes, while B subunits

pack into 20 trimeric clusters isolated at the 3-fold axes. Dimers

of capsid proteins are the proposed building blocks.

dsRNA virus capsid proteins thus share a similar ‘‘T = 2’’ shell

architecture and a high content of helices. They can, however,

adopt very different shapes, which might reflect differences in

their assembly/maturation pathways. F8 P1, which is trape-

zoidal in shape, is different from the other known dsRNA virus

capsid proteins of comparable size, which are rather elongated
5, August 6, 2013 ª2013 The Authors 1387



Figure 3. Structural Comparison of F8 P1

with Other dsRNA Virus Capsid Proteins

(A) Structure-based phylogenetic tree of the

dsRNA virus capsid proteins. Each node in the

tree is labeled x/y#z, where x is the number of

identical residues within the equivalent residues, y

is the number of equivalent residues in the core,

and z is the average rmsd of the aligned equiva-

lent residues to the corresponding average

residue. Capsid proteins are colored from the N

terminus (blue) to the C terminus (red) and are

labeled as followed with the protein and Protein

Data Bank codes inside parentheses: Phi8,

bacteriophage F8 (P1, 4BTP), BTV, bluetongue

virus (VP3, 2BTV), RDV, Rice dwarf virus (P3,

1UF2), ROTA, rotavirus (VP2, 3KZ4), CPV, cyto-

plasmic polyhedrosis virus (VP1, 3IZX), AQUA,

Aquareovirus (VP3, 3IYL), REO, orthoreovirus (l1,

1EJ6), PSV-F, partitivirus (3ES5), PBV, pico-

birnavirus (2VF1), and LA, L-A virus (1M1C). The

protein at the top of the tree corresponds to a

communal core.

(B) The capsid shells of F8, picobirnavirus, and

bluetongue virus are shown as ribbons. Mono-

mers A and B are colored in green and red,

respectively.
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(Abrescia et al., 2012) (Figure 3A). Nevertheless, structural align-

ments surprisingly show relationships between these capsid

proteins and reveal that F8 P1 is more similar to the reoviral

capsid proteins than to the simple-capsid dsRNA viruses with

smaller capsid proteins.

Overall Architecture of the Procapsid
The pentamer observed in the crystal structure of F8 P1 is very

reminiscent of the facet of the empty F6 procapsid, where P1

pentamers point toward the inside of the procapsid (Figure 2A).

Although F6 and F8 P1 share low sequence similarity (no more

than 6%, rendering reliable sequence alignment in the absence

of structure problematic), they both possess a similar flat trape-

zoidal shape and appear similar at the tertiary structure level,

when examined at low resolution by cryo-EM (Jäälinoja et al.,

2007). To analyze this, the atomic structure of F8 P1 was fitted

into the 14Å resolution cryo-EM reconstruction of the F6 pro-

capsid to generate a pseudoatomic model (Figure 4C). It was

possible to fit the complete P1 pentamer from our crystal struc-

ture as a rigid body at the 5-fold vertices of the procapsid and

individual P1 subunits around the 2- and 3-fold axes. Fitting

the entire pentamer led to a CC of 0.89, while allowing the indi-
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vidual subunits to move only increased

the CC to 0.93 with a �13� rotation of

the P1 subunit (Figure S3). These subunits

correspond to the A subunits in the

expanded capsid; however, they are radi-

cally rearranged (�45� rotation and�84 Å

translation) (Figure 4D). The surrounding

B subunits are also in a very different

position and orientation between the two

structures (20� rotation and 30 Å transla-

tion) (Figure 4D). The changes between
these two structures give insight into virus maturation, as dis-

cussed below.

Procapsid Assembly
It has been proposed that the cystovirus procapsids are assem-

bled from building blocks of tetramers of P1. This hypothesis

was based on gel filtration and light-scattering experiments,

showing that in solutionF8 P1 forms assemblies with a hydrody-

namic radius of 5.5 nm (Kainov et al., 2003a). Because this pro-

posal is not in accord with our results, we suggest instead that

thebasicbuildingblock for viral assembly is apentamerofP1sub-

units (Figure 5). The presence of pentamers in the crystal struc-

ture, in a shape essentially indistinguishable from that of the

5-fold facet of the procapsid (Figure S3), suggests that the pen-

tamersarepresent insolutionprior toassembly. Indeed,wewould

expect the crystal structure to select the lowest energy conforma-

tion, subject to crystal packing forces (which are negligible for the

P1 crystals, where the water content exceeds that in a living cell).

Further support for the relevanceof thisassemblyunit comes from

negative stain electron micrographs of purified protein, which

supports the presence of F8 P1 pentameric assemblies in solu-

tion, similar in shape to the ones seen in the crystal (Figure S4).



Figure 4. Fitting of the F8 P1 Monomers A and B Colored in Green

and Red, Respectively, in Cryo-EM Reconstructions
(A) Fitting of the F8 P1 in the 8.7 Å reconstruction of the F8 expanded capsid.

On the left, ribbon representation of the F8 expanded capsid. The box shows

the fit of the structure in the EM map. On the right, model of the F8 expanded

capsid showing the symmetry axes. P1 monomers are represented by trap-

ezoids.

(B) Rotation movement observed between monomeric F8 P1 from the crystal

structure (gray) and the monomers A and B of the F8 expanded capsid (green

and red, respectively). Structures have been superimposed on their N-terminal

domain.

(C) Fitting of theF8 P1 structure in the 14 Å reconstruction of theF6 procapsid.

On the left, ribbon representation of theF8 procapsid. The box shows the fit of

the structure in the F6 EM map. On the right, model of the procapsid showing

the symmetry axes.

(D) Movement observed during the capsid expansion at the 5-fold (pentagon)

and 3-fold (triangle) of a conformer A pentamer (green) and a conformer B

trimer (red).

See also Figure S3 and Movie S1.
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It has been previously proposed that P1 building blocks

nucleate larger assemblies in the presence of P2 protein (ratio

3:1) and that the complex is further stabilized by P4 proteins (Kai-

nov et al., 2003a). If the P1 building block is a pentamer, then a

single P2molecule would be able to stabilize three such pentam-

ers, in line with the proposed location of P2 under the 3-fold axis

in the procapsid of F6 (Nemecek et al., 2012; Sen et al., 2008). If

one of the three attachment sites to P1 is maintained during par-

tial expansion, then P2 would be naturally transported toward

the 5-fold axis, its proposed location in the expanded capsid

shell (Sen et al., 2008). It was also previously demonstrated

that F8 P1 alone could, at high enough concentrations,

assemble into procapsid-like dodecahedral cages (Kainov

et al., 2003a). The high concentration threshold for cage forma-

tion (�5 mg/ml) and the instability of these particles suggested,

however, that other proteins are needed to stabilize intermedi-

ates and to lower the nucleation threshold.

Taking these pieces of evidence together, we propose a

revised model for the assembly of the cystovirus procapsid,

where preformed P1 pentamers, in the shape of collapsed

5-fold facets (A subunits), accumulate in solution and form

trimeric higher order assemblies, with the assembly being stabi-

lized by B subunits recruited from a pool of P1 monomers

(Figure 5). This process is probably accelerated in vivo by the

presence of the P2 protein, which sitting under the 3-fold axis

facilitates the association of three pentamers. The fact that the

copy number of P2 is between 3 and 10 instead of 20 (Sen

et al., 2008; Sun et al., 2012) indicates that most of the 3-fold

axes are not occupied by P2 and that substoichiometric

numbers are needed for assembly. Moreover if, following expan-

sion, P2migrates toward the 5-fold axes, its copy number should

not exceed 12. P4 is attached to the outside of the procapsid,

further stabilizing the complex, perhaps acting as a wedge

to ensure that the P1 pentamers adopt the right curvature. The

role of P4 is discussed further below.

Symmetry Mismatch at the 5-Fold Vertex
Hexameric P4 protein is responsible for RNA translocation and is

located at the 5-fold vertices (Figure 6). It has been suggested

that the 6/5-fold symmetry mismatch is critical for the packaging

function andmight facilitate the P4 ring opening required for RNA

loading prior to translocation (Huiskonen et al., 2007). The struc-

ture of F8 P4 has been determined by X-ray crystallography

(K.E., C. Meier, D. Kainov, G.S., J.M.G., M.M. Poranen, D.H.B.,

R. Tuma, D.I.S., and E.J.M., unpublished data); thus, in addition

to theF8 P1 structure reported here, we have been able to fitF8

P4 into the available EM reconstructions. Although the broad

localization of P4 hexamers on the EM reconstructions of the

F6 procapsid and F8 expanded capsid is straightforward (Fig-

ures 6A and 6B), a detailed study of P4 is limited by the incorrect

averaging at the 5-fold vertices due to the icosahedral three-

dimensional reconstruction techniques. In order to study the

symmetry mismatch, a different approach has been used to

obtain a 15 Å resolution cryo-EM reconstruction of the F8

P1:P4 interaction (Huiskonen et al., 2007) (Figure 6C).

In the latter reconstruction fitted with the F8 P1 and P4 crystal

structures, the hexameric P4 seems to be floating above the

P1 shell. Lower map contour levels reveal that one P4 monomer

is closer to P1 than the others and might interact with P1
Structure 21, 1384–1395, August 6, 2013 ª2013 The Authors 1389



Figure 5. ProposedModel of the Assembly Pathway of the Bacterio-

phage F8

See also Figure S4.
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(Huiskonen et al., 2007). These ‘‘floating’’ hexamers are also

seen in F6 procapsid reconstructions, suggesting that a similar

mechanism of attachment is employed forF8 andF6. The C-ter-

minal face of P4 is orientated toward the P1 shell, and in the

four known P4 structures, the C terminus is disordered (K.E.,

C. Meier, D. Kainov, G.S., J.M.G., M.M. Poranen, D.H.B., R.

Tuma, D.I.S., and E.J.M., unpublished data). A very flexible

C-terminal region would not be seen by X-ray crystallography

or cryo-EM techniques; moreover, the available P4 structures

are mostly complete apart from the C terminus so that the only

part of P4 available to contact P1 is the C terminus. It could be

argued that similarly P1might provide a flexible region to contact

P4, but in our P1 structure, the missing residues (1–23 and

325–346) are pointing toward the inside of the shell and would

not be in contact with P4 hexamers. Thus, we postulate that

the flexible P4 C termini are used by P4 hexamers to bind to

the P1 shell. Flexibility in binding confers a number of advan-

tages: (1) not all the monomers need to bind at the same time,

which would solve the symmetry mismatch, (2) the P4 hexameric

ring could open while still bound to the P1 shell, and (3) P4 would

stay bound to P1 during the large conformational changes of the

expansion step.

For F8 P4 the C terminus is seen folding inside the central

channel via the top of the hexamer, on the most distant side

from the P1 shell (K.E., C. Meier, D. Kainov, G.S., J.M.G., M.M.

Poranen, D.H.B., R. Tuma, D.I.S., and E.J.M., unpublished

data). In agreement with deuterium exchange experiments (Lı́sal

et al., 2005), we believe that the C terminus is rather flexible and

is displaced from the central channel by RNA loading. Here, we

propose that at least a single P4 subunit would contact to P1

shell, as proposed from the EM reconstruction of the asymmetric

vertex (Huiskonen et al., 2007), and that at least one of the

remaining ones would remain folded in the central channel

preventing ATP hydrolysis. Upon RNA loading, the remaining

C termini would be displaced from the central channel and acti-

vate ATP hydrolysis and thus RNA translocation. At the same

time, some of the displaced C termini will be able to bind the

P1 shell and increase the stability of P4 for P1 during RNA

translocation. This is in agreement with the known biochemical

properties of the capsid.

Procapsid Expansion
Bacteriophages F6 and F8 undergo radical conformational

changes upon packaging of the genomic RNA segments (Fig-

ures 4 and 6; Movie S1) with a volume increase reported to

be �2.4 fold (Huiskonen et al., 2006). However, based on our

modeling and incorporating the substoichiometric number of

P2 and P7 proteins, we estimate that the increase in volume

accessible to RNA is likely to be circa 5-fold (data not shown).

Our crystal structure of F8 P1, closely replicates the arrange-

ment of the A subunits in the F6 procapsid (Figure S3), and

this, together with the fitting of the B subunits to the procapsid

and the articulated fitting to the A and B subunits of the EM

reconstruction of the expanded F8 capsid, reveals that the N-

and C-terminal domains of P1 undergo very significant relative

rotations during expansion. If the N-terminal domain of the A

and B subunits of the expanded F8 capsid are superimposed

on the N-terminal domain of the A subunit of the F6 procapsid,

the rotations of the C-terminal domain with respect to the



Figure 6. Fitting of the F8 P4 Structure in

Cryo-EM Reconstructions, Where F8 P4 Is

Colored in Yellow and F8 P1 Monomers A

and B Are Colored in Green and Red, Respec-

tively

(A) On the left, ribbon representation ofF8 P1 andF8

P4 forming the procapsid. In the middle, cryo-EM

map (EMD 1500) used for the fitting. On the right, F8

P4 is fitted at the 5-fold vertices of the F6 procapsid

reconstruction.

(B) On the left, ribbon representation of F8 P1 and

F8 P4 forming the F8 expanded capsid. In the

middle, cryo-EM map (EMD 1300) used for the

fitting. On the right, fitting of F8 P4 at the 5-fold

vertices of the F8 expanded capsid reconstruction.

(C) Fitting of the F8 P4 and F8 P1 in the asymmetric

5-fold vertex. The left is a side view, and the right is a

top view.

Structure

Crystal Structure of the Capsid Protein F8 P1
N-terminal domains are 19� and 28�, respectively (Figure 4D).

While these rotations are occurring during expansion, the A sub-

units at the 5-fold axis undergo an iris-like motion. In the procap-

sid, the P1 subunits form recessed 5-fold facets by overlapping

of neighbors within the pentamer (Figure 4C) to give an interface

area between adjacent subunits in excess of 2,000 Å2. Upon

expansion, each subunit moves away from its neighbors so

that eventually it makes only side-to-side contacts (Figure 4A).

In the procapsid, interactions at the 2-fold axes are almost

nonexistent, whereas at the 3-fold, three subunits form a spike

that flattens upon expansion (Figure 4C). The trapezoidal shape

of the cystoviral capsid protein might confer higher flexibility to

the virus over the elongated molecule, such as those found in

the reoviruses that would have to undergo much larger internal

conformational changes, because they span from the 5- to the

2-fold axes and rigidify the capsid.

RNA Recognition and Packaging
Along with its structural role, P1 is also required for the specific

recognition of the single-stranded genomic segments S, M,

and L and their sequential packaging following handover to the

NTPase P4 (Qiao et al., 2003a). This process is strictly regulated
Structure 21, 1384–13
for F6, where only segment S can be pack-

aged alone, whereasM requires prior pack-

aging of S, and L requires prior packaging

of M. The pac sites are specific for each

segment and have limited sequence iden-

tity. To explain how sequential recognition

and packaging occurs, a model has been

put forward for F6, in which the conforma-

tional changes occurring after packaging of

each segments lead to the consecutive

exposure of new RNA binding surfaces

(Qiao et al., 1997).

Our work illustrates in detail the rear-

rangements of P1 following packaging

and therefore suggests a mechanism for

the RNA packaging specificity. During

expansion we see dramatic tectonic move-

ments of the P1 plates, especially at the
5-fold and at the 3-fold axes, where the interfaces between

plates go from angled to almost parallel. We propose that the

RNA binding sites are situated at the interfaces between P1

plates, in a way that they will be sequentially exposed or buried

in accordance with the packaging state of the virus. Specifically,

we think that the S segment RNA binding site is situated at the

3-fold axis because in the ‘‘deflated’’ state (1) the 5-fold plates

are collapsed, pointing inward, and almost totally covered by

P4, while the 3-fold plates form bulging ridges on the surface,

and (2) the 3-fold plates are in close spatial proximity to P4

and remain close throughout the expansion process. In this

model, the S segment binds around the 3-fold axis of P1 and

is then handed over to the P4 hexamer, which undergoes ring

opening. Closing of the ring and binding of the RNA trigger

ATP hydrolysis and translocation of the RNA inside the capsid,

causing its expansion and exposure of the M segment binding

site. This process would be repeated with packaging of M

and L. Given the size of the pac elements, it is likely that the

RNA packaging sites are formed by the quaternary structure

arrangement of the three P1 monomers on the 3-fold and not

simply by the tertiary structure of the individual monomers.

This configuration would also curb the number of binding sites
95, August 6, 2013 ª2013 The Authors 1391



Table 2. Data Collection and Refinement Statistics

Data Collection Details Native Se Hg

Space group P41212

Unit cell dimensions (Å) 315.1, 315.1,

529.9

314.1, 314.1,

521.8

313.1, 313.1,

524.7

Wavelength (Å) 0.9326 0.9787 1.005

Resolution range (Å) 30.0–3.7

(3.83–3.70)

80.0–4.8

(4.97–4.80)

35.0–6.0

(6.21–6.00)

Number of unique

reflections

271,956

(19,751)

128,534

(11,157)

65,583

(6,426)

Redundancy 11.1 (4.8) 7.6 (7.7) 17.4 (17.0)

Completeness (%) 97.1 (71.3) 100.0 (100.0) 100.0 (100.0)

Average I/s(I) 15 (2.1) 8.3 (4.4) 32.3 (6.0)

Rmerge 0.17 (1.1) 0.26 (0.56) 0.10 (0.56)

CC1/2 0.99 (0.66)

Refinement Statistics

Resolution range (Å) 30.0–3.7

R-factor (Rwork/Rfree) 0.245/0.258

Rmsd bond (Å) 0.007

Rmsd angle (�) 1.2

Mean B-factor/Wilson

plot (Å2)

140/141

Ramachandran plot (%)

favored/allowed/

outliers

95.6/100/0

Values in parentheses are for the highest resolution shell.

Structure

Crystal Structure of the Capsid Protein F8 P1
on the capsid and mitigate the unproductive binding of RNA

prior to assembly.

In previous studies, aF8mutant virus was isolated, capable of

bypassing the strict sequential recognition of segments and

package chimeric M segments containing ‘‘L’’ pac sites.

Sequencing showed that a single point mutation, valine 242 to

alanine, had occurred in protein P1. Interestingly, valine 242 is

in the middle of the long a8 helix, which essentially constitutes

one of the sides of the P1 monomer and is therefore found at

the interface between P1 plates.

Conclusions
In summary the structure of a cystovirus P1 shell protein reveals

a tertiary structure, which can be convincingly aligned with that

of the apparently quite different proteins that form the corre-

sponding shell in dsRNA viruses. Indeed the cystovirus P1 struc-

ture is more similar to the reovirus proteins than it is to proteins of

the other simpler members of the dsRNA virus lineage (such as

L-A virus). This suggests that phages such as the cystoviruses

either represent an ancestral form of the coat protein that has

then formed specialist adaptations for the reoviruses (where par-

ticle expansion is no longer required) and the simplified dsRNA

viruses or else the cystoviruses are a serial homolog in the evo-

lution that led from the simpler viruses to the more complex

reoviruses. The remarkable reconfiguration of the P1 subunits

during particle expansion is possible only due to the more

compact form of the trapezoidal subunit, compared to the elon-

gated homologs of the reoviruses, and the crystal structure

and EM observations of the subunits in solution, taken with
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earlier experimental results, allows us to propose an augmented

pentamer-based assembly mechanism for these complex

particles.

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification

Cloning of F8 P1 has been reported elsewhere (Kainov et al., 2003a). Briefly,

the gene encoding F8 P1 was PCR-amplified from the plasmid pLM2424

(Hoogstraten et al., 2000) and cloned into pT7-7, resulting in the plasmid

pDK5. The expression plasmid was transformed into BL21 (DE3) cells for pro-

tein expression and grown at 37�C in Luria broth starter culture supplemented

with 150 mg/ml ampicillin until the A540 reached 0.5. The culture was then

diluted 1/50 into fresh medium and grown at 37�C to an A540 of 0.6. The cul-

tures were induced with 1 mM isopropyl-beta-D-thiogalactopyranoside

(IPTG) and further incubated at 18�C for 12 hr. The cells were harvested by

centrifugation, and the pellets were resuspended in buffer A (20 mM Tris

[pH 8], 50 mM NaCl, 7.5 mM MgCl2) supplemented with protease inhibitors,

prior to cell disruption using sonication. The lysed cells were clarified by centri-

fugation at 27,000 g for 1 hr at 15�C. Ammonium sulfate was added to the

supernatant to 20% saturation, and after 15 min on ice, precipitated P1 was

collected by centrifugation at 20,000 g for 15 min at 4�C. Precipitated P1

was resuspended in buffer A and then centrifuged again to discharge residual

material at 20,000 g for 15 min at 4�C. The P1 protein-containing solution was

applied to a Heparin column (GE Healthcare) pre-equilibrated with buffer A.

P1 was eluted by a linear gradient of NaCl, from 0.05 to 1 M, buffered with

20 mM Tris [pH 8] containing 7.5 mM MgCl2. The fractions containing P1

were pooled and diluted 5-fold prior to repeating the same experiment by

anion-exchange chromatography (Q-sepharose column, GE Healthcare).

Fractions of interest were further purified by size exclusion chromatography

(Superdex S200, GE Healthcare), pooled, and concentrated to 5 mg/ml for

crystallization experiments.

Crystallization and Data Collection

Crystallization trials were performed by hand in 24-well Linbro plates using the

sitting-drop vapor-diffusion method at 15�C, mixing 1 ml of protein solution

with 1 ml reservoir solution and equilibrating the drop against 1,000 ml reservoir

solution. Native and selenomethionine-labeledF8 P1 crystals appeared within

1 week of setup in 100 mM Tris [pH 8.5], 30 mM sodium citrate, and between

34% and 39% PEG 200. Mercury incorporation was obtained by soaking the

crystals in a drop containing Baker’s dimercurial (1, 4-diacetoxymercuri-2,

3 -dimethoxybutane) at a final concentration of 3 mM for 60 min; crystals

were then back-soaked against the reservoir solution containing 20%glycerol.

X-ray diffraction data were collected at the European Synchrotron Radiation

Facility (ESRF) and the Swiss Light Source (SLS). Diffraction data were

indexed, integrated, and scaled with HKL2000 (Otwinowski and Minor,

1997). The crystals belonged to space group P41212 with unit cell parameters

a = b = 313.1, c = 524.8Å, a = b = g = 90� (Table 2).

The P1 structure was solved using a single anomalous dispersion (SAD)

experiment at the peak wavelength of the mercury X-ray absorption edge.

HKL2MAP (Sheldrick, 2010) was used to detect heavy atom sites, which

were then input in PHENIX AUTOSOL (Adams et al., 2002), resulting, after

density modification, in a low-resolution (6 Å) interpretable electron density

map. Inspection of the map revealed two pentamers of P1 in the crystallo-

graphic asymmetric unit, clearly visible due to the unusually high solvent

content (80%). The portion of the map corresponding to the asymmetric

unit was cut out, placed in an oversized P1 cell, and used for molecular

replacement using PHASER (McCoy et al., 2007) with both the selenomethio-

nine-labeled F8 P1 data set (at 4.8 Å resolution), in order to find the selenium

site positions, and the higher resolution (3.7 Å) native data set, for phase

extension. Initial manual building with polyalanine chains was carried out

with the program COOT (Emsley and Cowtan, 2004), and the sequence

assignment was facilitated by the location of selenium sites. Because of the

excellent observation-to-parameter ratio of 4.5, arising from the 10-fold

NCS and extremely high solvent content, it was possible to use phase and

NCS-restrained individual atom refinement with REFMAC5 (Murshudov

et al., 2011), which resulted in final Rwork and Rfree of, respectively, 24.5%
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and 25.8% and good stereochemistry. The final structure was validated with

MOLPROBITY (Davis et al., 2007), and detailed data collection and refine-

ment statistics are presented in Table 2.

Structural Comparisons

Structural comparisons were performed in SHP (Stuart et al., 1979) and HSF

(Ravantti et al., 2013). In the HSF method, a large number of different proper-

ties (e.g., simple residue-residue sequence similarities and Ca-Ca distances)

are considered. For amultiple structure comparison, a full pairwise set of com-

parisons is first assembled on the basis of this extensive set of properties and

then a recursive process is used, successively grouping structures. At each

grouping stage, the common features of the pair are identified, defining a com-

mon ‘‘core.’’ In the next recursion the common core is used instead of the two

contributing structures, thus gradually reducing the number of items to be

compared and implicitly defining a tree of similarities. Finally a single core

remains, which defines the structure common to all the proteins being

compared. In this study, the common core for all classified structures (contain-

ing 147 equivalent residues with average rmsd of 5.3 Å) is shown in the root of

the tree (Figure 3).

Fitting of Atomic Coordinates into EM Reconstructions

Monomers of F8 P1 were fitted into the F8 capsid reconstruction (EMD-

1300) (Jäälinoja et al., 2007) and the F6 procapsid reconstruction (EMD-

1500) (Sen et al., 2008) using VEDA, the graphical version of URO (Navaza

et al., 2002).

In the 8.7 Å resolution EM reconstruction of the F8 capsid, it was possible

to establish the orientation of the A and B subunits on the icosahedral sur-

face by fitting the a helices to their corresponding density. Fitting to either

A or B gave similar correlation coefficients (CCs) of about 0.92 (obtained

from CHIMERA), and allowing the subunits to move as two rigid body

domains separated at residue 370 resulted in a slightly better fit and a CC

of 0.93.

Icosahedral symmetry was then applied with VEDA to generate the

complete complement of 120 subunits with a CC of 0.61.

The fitting of P1 subunits in the 14 Å resolution F6 procapsid reconstruction

was performed as described above, except that P1was not separated into two

domains. A CC of 0.64 was obtained after fitting the A and B subunits with

VEDA.

The crystal structure of the hexamericF8 P4 (K.E., C. Meier, D. Kainov, G.S.,

J.M.G., M.M. Poranen, D.H.B., R. Tuma, D.I.S., and E.J.M., unpublished data)

and of the monomeric F8 P1 were fitted with CHIMERA (Pettersen et al., 2004)

into a 15 Å asymmetric reconstruction of the 5-fold vertex of the F8 capsid

(EMD-1256) (Huiskonen et al., 2007), with respective CCs of 0.74 and 0.78.

This asymmetric ‘‘in situ’’ reconstruction was obtained by using icosahedral

orientations and origins for both vertex selection and orientation, subtracting

away the icosahedral information from the images before classifying the

hexamers in order to calculate asymmetric reconstructions of individual

vertices. This allows the study of the symmetry mismatch between hexameric

P4 and pentameric P1 proteins of the F8 capsid.
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