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Identification of the raw 
and processed Crataegi Fructus 
based on the electronic nose 
coupled with chemometric 
methods
Chenghao Fei1, Chenchen Ren1, Yulin Wang1, Lin Li1, Weidong Li1, Fangzhou Yin1*, 
Tulin Lu1* & Wu Yin2*

Crataegi Fructus (CF) is widely used as a medicinal and edible material around the world. Currently, 
different types of processed CF products are commonly found in the market. Quality evaluation of 
them mainly relies on chemical content determination, which is time and money consuming. To 
rapidly and nondestructively discriminate different types of processed CF products, an electronic nose 
coupled with chemometrics was developed. The odour detection method of CF was first established 
by single-factor investigation. Then, the sensor array was optimised by a stepwise discriminant 
analysis (SDA) and analysis of variance (ANOVA). Based on the best-optimised sensor array, the digital 
and mode standard were established, realizing the odour quality control of samples. Meanwhile, 
mathematical prediction models including the discriminant formula and back-propagation neural 
network (BPNN) model exhibited good evaluation with a high accuracy rate. These results suggest 
that the developed electronic nose system could be an alternative way for evaluating the odour of 
different types of processed CF products.

Crataegi Fructus (CF) is obtained from the plants of the genus Crataegus of the Rosaceae family, which is mainly 
distributed in the Northern Hemisphere including Asia, Europe, and North America1,2. Although more than 1000 
species have been reported worldwide, Crataegus monogyna and C. lavigata are the major hawthorn species in 
Europe, and C. pinnatifida is the major one in Asia1. Crataegus leaves and flowers are often used as medicinal and 
food materials in western countries, but in Asia, it is commonly cultivated for fruits3. Many studies have dem-
onstrated that CF from C. pinnatifida can decrease blood pressure and hyperlipidaemia by enhancing coronary 
flow, myocardial contractility, and cardiac output4–6. Moreover, it exhibits useful antibacterial and antioxidant 
activities7. Due to excessive acidity, CF ingestion usually leads to increased gastric acid secretion and membrane 
irritation. To avoid these side effects, CF is often processed for clinical use. Four types of processed CF products 
are available in the market8. Raw Crataegi Fructus (RCF), which is freshly cleaned and smells slightly fragrant 
and sour, can promote blood circulation. RCF is heated at a low temperature (approximately 150 °C) to form 
Chao Crataegi Fructus (CCF), where the sour smell is reduced. Heating RCF at medium (approximately 180 °C) 
and high (approximately 200 °C) temperatures yields Jiao Crataegi Fructus (JCF) and Tan Crataegi Fructus 
(TCF), respectively. After stir-frying, the sour smell of CF decreases gradually, but coke flavour is increasingly 
strengthened. An increase in heating temperature gradually attenuates CF acidity. Meanwhile, different types 
of processed CF products have different functions in clinical use; for example, RCF treats hyperlipidaemia9 and 
hypertension10, CCF promotes digestion11, JCF promotes digestion12 and treats diarrhoea13, and TCF promotes 
haemostasis14 and treats diarrhoea15.

Odour is one of the most important indicators for evaluating the quality of herbal medicines. Every herbal 
medicine has its own special odour, whether strong or weak, which is directly related to its components. There-
fore, the trait and intensity of the odour are probably determined by the authenticity and quality of the herbal 
medicine. The odour is the comprehensive external expression of the components of herbal medicines. However, 
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it is undeniable that odour detection depends on the human olfactory system, which is influenced by many major 
factors including the differences of inspector and environment16. Thus, the objectivity and accuracy of human 
olfactory evaluation are difficult to be guaranteed, which limits the use of odour as an indicator in practical 
applications and long-term promotions. It is necessary to use advanced technology and equipment to objectively 
quantify the empirical odour expressions of herbal medicines.

The electronic nose (also known as the odour fingerprint technology, E-nose) is an analytical device with 
the ability to identify pure and mixed gases by multiple performance overlapping gas sensors and appropriate 
composition of pattern ordination methods17,18. The E-nose can be traced back to the 1960s. After 30 years 
of development, the E-nose was not defined until the 1990s. It is mainly composed of the sampling system, a 
gas sensor array, a signal processing system, and a pattern recognition system, and can simulate the olfactory 
sensation of humans and animals to judge and analyse odour characteristics19,20. Presently, due to the multiple 
advantages of being non-invasive, having fast response, ease of use, and low cost, it has been successfully applied 
in numerous fields including food product quality assessment, environmental monitoring, bio-security, agricul-
ture industry, and medical diagnostics21–23. One of the important properties of E-nose is that it can reflect the 
macroscopic characteristics and classify the quality grade for materials. Since many herbal medicines possess 
unique odours, E-nose is suitable for evaluating their quality. However, previous studies have mainly focused 
on the authentication and geoherbalism of different species, which was not sufficient and comprehensive for the 
quality control of different types of processed herbal medicines.

Conventional CF odour quality control (QC) methods are mainly dependent on human olfaction. Therefore, 
there is an increasing demand to develop objective QC methods for a rapid analysis of CF odour. In this study, 
the electronic nose was employed to evaluate the quality of different types of processed CF products. After the 
detection conditions were established and sensors optimised, the digital and mode standard of odour response 
were established by percentiles and discriminant factor analysis (DFA), respectively. Additionally, the treatment 
methods of different types of processed CF products were predicted by the discriminant formula and back-
propagation neural network for the first time.

Results
Electronic nose response of samples.  The typical signal records of the 18 sensors for RCF, CCF, JCF, 
and TCF are shown in Fig. 1. Each curve represents the conductivity of one sensor induced by the electro-valve 
action when volatile gas reaches the measurement chamber24. The sensor response was calculated by the follow-
ing equation: R = (R0 − Rt)/R0, where R, Rt, and R0 represent the sensor response, instantaneous sensor resistance, 
and sensor resistance at 0 s, respectively. Positive sensor response indicates that the reduction of gas is stronger 
than oxidation, while a negative response indicates that the oxidation of gas is stronger than reduction. In one 
test, the sensor resistance was measured every second for 120 s and the data were recorded using the software 
Alpha Soft 11.0. As shown in Fig. 1a–d, curves of different CF samples show a similar trend. Normally, there is a 

Figure 1.   Sensor response curves of the odour of different CF groups. (a) RCF; (b) CCF; (c) JCF; (d) TCF.
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minimum relative standard deviation (RSD) for peak or valley data of the same sample curve, which is conducive 
to the maximum identification of different samples. Therefore, the maximum response value for each sensor was 
extracted and analysed individually.

Optimisation of the condition for E‑nose detection.  To obtain the highest response and stability, the 
main parameters were optimised by single-factor investigation, such as the sample particle size (original size, 10, 
24, 50, and 65 mesh), sample quantity (0.1, 0.2, 0.3, 0.4, and 0.5 g), injected volume (500, 800, 1000, 1200, and 
1500 µL), headspace temperature (40, 45, 50, and 55 °C) and headspace time (100, 150, 200, 250, 300 and 600 s). 
The effects of sample treatment conditions and E-nose detecting parameters on the sensor response were shown 
(Supplementary Fig. S1). The principle of optimisation is to ensure that the response values of most sensors are 
0.3 ~ 0.9 and the corresponding RSDs are as small as possible. Most sensors had the optimum response value 
with lowest response RSD when the sample powder was at size of 50 mesh, the loading amount of sample was 
0.5 g, and the injected volume, headspace temperature and time of the examination were set at 1200 µL, 55 °C, 
and 600 s, respectively.

Validation of the method for odour detection.  The repeatability of the method was evaluated by 
measuring and analysing the same sample in six parallel tests. The RSD of the response value for each sensor was 
found to be < 5% (Supplementary Table S1). The sample stability was evaluated by analysing the same sample for 
different time periods (0, 2, 4, 6, 8, 10, 14, 16 h), and the sample was found to be stable for 16 h with RSDs less 
than 5% (Supplementary Table S2).

Optimisation of the sensor array.  The data of each sample contained 18 response values of E-nose sen-
sors. Thus, for the original sensor array, named U0, a data matrix (18 × 176) was obtained. To explore the cor-
relation and avoid any problems of dimensionality, SDA and ANOVA were employed for data reduction based 
on the data matrix of U0.

Optimisation of the sensor array by stepwise discriminant analysis.  Wilks’ Lambda method was used for SDA, 
with F values as discriminant statistics. The default values of F in this study were: when F ≥ 3.84, the variable 
entered the model; when F ≤ 2.71, the variable was moved out of the model. Stepwise selection started with the 
variable that had the largest F value and smallest Wilks’ lambda value. In this study, the procedure ended after 
10 steps. A total of 10 sensors were eventually identified by the model, where the F and p values were > 3.84 
and < 0.01, respectively (Supplementary Table S3). Finally, the optimised sensor array obtained by SDA, U1, was 
composed of LY2/AA, LY2/gCTl, T30/1, P10/2, PA/2, P30/1, P40/2, P30/2, T40/2, and T40/1.

Optimisation of the sensor array by the analysis of variance.  In ANOVA, the discrimination ability of the vari-
able was decided by the F value and the p value between the groups, and the repeatability of the variable was 
decided by the mean squares within groups. Thus, sensor contribution to discrimination increased with an 
increase in F value or a decrease in p value between groups, and sensor repeatability increased with a decrease in 
the mean squares within groups. Except for LY2/LG, LY2/G, LY2/AA, LY2/Gh, LY2/gCTl and T40/1, the p value 
of the 12 retained sensors was < 0.01. Furthermore, among the 12 retained sensors, the mean squares of LY2/gCT, 
P10/2, P40/1, P30/1, P40/2, T40/2 and TA/2 were < 3 × 10−3 (Supplementary Table S4). Finally, according to sen-
sor p value between groups and mean squares within groups, the optimised sensor array obtained by ANOVA, 
U2, was composed of LY2/gCT, P10/2, P40/1, P30/1, P40/2, T40/2 and TA/2.

Comparison of classification before and after sensor array optimisation.  To identify the best sensor array for 
following data analysis, linear discriminant analysis (LDA) was applied to compare the three sensor arrays (U0, 
U1, and U2) in the projected graph. LDA analytical results of the four processed CF product groups are shown 
in Fig. 2. Linear discriminant (LD) factors explained 94.6% of the total variance in the dataset of U0, with LD1 
and LD2 representing 76.8% and 17.8%, respectively, and all the CF groups were overlapped. The total LD1 and 

Figure 2.   LDA analytical results of CF groups based on different sensor arrays. (a) Original sensor array U0; (b) 
optimised sensor array U1 by SDA; (c) optimised sensor array U2 by ANOVA.
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LD2 contribution was > 99% of the optimised sensor arrays (U1 and U2), which implied that the established LD 
function could explain most of the information. Meanwhile, compared with U0, U1 and U2 intuitively improved 
CF sample distribution, with almost no overlap.

Furthermore, the classification was digitally evaluated by LDA. The classification value further showed that 
the optimised array is better than the un-optimised array. As shown in Table 1, the correct classification rate of 
CF samples for different sensor arrays are as follows: U1 (98.9%) > U2 (86.4%) > U0 (77.8%), and the sensor array 
U1 obtained by SDA had the highest correct classification rate. Therefore, U1 was identified as the optimum sen-
sor array and used for further data analysis.

Establishment of the digital standard of odour response.  The multivariate normality tests of sample 
data (four CF groups) were conducted. According to the normal distribution of the tested standard (p < 0.05), 
most odour response values do not conform to the normal distribution (Supplementary Table S5). Thus, bilateral 
90% confidence intervals were chosen to establish a reference range of odour response of the four CF groups 
based on U1, where the P5 and P95 percentile indices were obtained by the frequency statistics of descriptive 
analysis. The results are shown in Table 2.

The rationality of the reference range for processed CF products was verified by the nonparametric test. The 
method of K Independent Samples, including Kruskal–Wallis H Test and Median Test, was used to analyse the 
response value from CF samples. The p values of the response from 10 sensors were < 0.01, which indicated 
that the difference in the reference range of the four CF groups was statistically significant (Supplementary 
Table S6). The identification of unknown samples is based on whether the response of each sensor is within the 
corresponding reference range.

Establishment of modelling standard of odour response.  To establish a visual recognition pattern 
for the rapid determination of unknown samples, DFA was used to build an odour response database based on 
U1. As shown in Fig. 3, the total contribution rate of three-dimensional model reaches 100%, and the contribu-
tion rates of DF1, DF2 and DF3 are 98.8%, 1.1% and 0.1%, respectively, which shows that the information of the 
original samples could be explained by the established model reliably (> 85%). Furthermore, CF samples were 
divided clearly into four regions, and the cross-validation score of the model was 93, indicating that the model 
effectively distinguished different types of processed CF samples. The distribution of different CF groups showed 

Table 1.   Results of classification by LDA for three optimised sensor array. U0 original sensor array, U1 
optimized of the sensor array by SDA, U2 optimized of the sensor array by ANOVA. 1, 2, 3, 4 in column: the 
sample actually belonged to RCF, CCF, JCF, TCF, respectively. 1, 2, 3, 4 in row: the sample was predicted to 
RCF, CCF, JCF, TCF, respectively.

Group

Predicted group membership

Total Correct classification rate1 2 3 4

U0

Count

1 54 17 0 3 74

77.8%

2 11 45 0 0 56

3 0 0 26 0 26

4 0 0 8 12 20

%

1 73.0 23.0 0 4.1 100.0

2 19.6 80.4 0 0 100.0

3 0 0 100.0 0 100.0

4 0 0 40.0 60.0 100.0

U1

Count

1 74 0 0 0 74

98.9%

2 0 56 0 0 56

3 0 0 24 2 26

4 0 0 0 20 20

%

1 100.0 0 0 0 100.0

2 0 100.0 0 0 100.0

3 0 0 92.3 7.7 100.0

4 0 0 0 100.0 100.0

U2

Count

1 57 17 0 0 74

86.4%

2 2 54 0 0 56

3 0 0 23 3 26

4 0 0 2 18 20

%

1 77.0 23.0 0 0 100.0

2 3.6 96.4 0 0 100.0

3 0 0 88.5 11.5 100.0

4 0 0 10.0 90.0 100.0
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certain characteristics. For example, RCF and CCF groups were distributed in the positive direction of DF1, 
while JCF and TCF groups were distributed in the negative direction. Simultaneously, CCF and TCF groups were 
distributed in the positive direction of DF2, while RCF and JCF groups were distributed in the negative direc-
tion. Different CF groups were distinguished well.

When the unknown sample is input into the discriminant model and projected to a specific area, it will be 
identified as a corresponding group according to the recognition value (> 70%) or intuitive projection result. 
Otherwise, the unknown sample will be judged as “unrecognised”.

Prediction of different processed CF by discriminant formula.  To build mathematical functions to 
predict the processing degree of CF, each sensor response dataset from RCF, CCF, JCF, and TCF, based on the 
response of U1, was analysed using bayesian linear discriminant analysis (BLDA). The odour response values of 
all samples from the four groups were loaded into SPSS 23.0 to carry out the analysis. The canonical discriminant 
functions of raw and processed CF built by BLDA are as follows:

F1 = −1.350× 10
4LY2/G + 1.326× 10

4LY2/gCTl

−8.075× 10
3T30/1−6.764× 10

3P10/2+ 2.778× 10
3PA/2

+ 4.707× 10
3P30/1+ 3.564× 10

4P40/2−8.200× 10
3P30/2

−1.746× 10
4T40/2+ 1.122× 10

4T40/1− 6083.726,

Table 2.   Odour standard range of different processed products of Crataegi Fructus. The 5th and 95th 
percentiles in the exploratory analysis were selected to build the 90% range.

Sensor RCF CCF JCF TCF

LY2/AA − 0.218 ~ − 0.084 − 0.228 ~ − 0.066 − 0.118 ~ − 0.075 − 0.191 ~ − 0.064

LY2/gCTl − 0.364 ~ − 0.116 − 0.388 ~ − 0.090 − 0.177 ~ − 0.107 − 0.320 ~ − 0.088

T30/1 0.479 ~ 0.721 0.383 ~ 0.741 0.342 ~ 0.486 0.288 ~ 0.618

P10/2 0.360 ~ 0.486 0.328 ~ 0.501 0.335 ~ 0.412 0.315 ~ 0.479

PA/2 0.514 ~ 0.710 0.439 ~ 0.729 0.393 ~ 0.523 0.348 ~ 0.632

P30/1 0.685 ~ 0.806 0.642 ~ 0.836 0.528 ~ 0.651 0.493 ~ 0.746

P40/2 0.643 ~ 0.801 0.590 ~ 0.814 0.544 ~ 0.644 0.502 ~ 0.736

P30/2 0.721 ~ 0.881 0.625 ~ 0.891 0.614 ~ 0.758 0.535 ~ 0.854

T40/2 0.293 ~ 0.424 0.252 ~ 0.439 0.262 ~ 0.339 0.231 ~ 0.410

T40/1 0.206 ~ 0.315 0.198 ~ 0.330 0.214 ~ 0.242 0.212 ~ 0.284

Figure 3.   DFA recognition pattern of different CF groups. “DF” is the discriminate function, which is a linear 
combination (sum) of the discriminating variables. The contribution rates of DF1, DF2 and DF3 are 98.8%, 1.1% 
and 0.1%, respectively. Validation score is obtained by cross-validation (leave-one-out).



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1849  | https://doi.org/10.1038/s41598-020-79717-w

www.nature.com/scientificreports/

When the response value of the unknown sample is substituted into the above discriminant functions to 
calculate F, the processing degree of the unknown sample will be determined according to the highest F value. 
Thus, if the F1 value is the highest, it is a RCF; if the F2 value is the highest, it is a CCF; if the F3 value is the high-
est, it is a JCF; and if the F4 value is the highest, it is a TCF. The prediction capacity of the BLDA model was also 
evaluated by the cross-validated method (leave-one-out)25. The correctness values of each discriminant function 
of RCF, CCF, JCF, and TCF were 97.3%, 100%, 88.5%, 95% in the cross-validation, respectively (Supplemetary 
Table S7). Most samples were correctly classified. Overall, the canonical discriminant functions can be considered 
satisfactory in the classification and differentiation of raw and processed CF products.

Prediction of different types of processed CF products by back‑propagation neural net-
work.  Compared with linear discriminant analysis, artificial neural network, as a typical nonlinear discrimi-
nant, can effectively process sample data with complex information. In this study, BPNN was used to construct a 
nonlinear prediction model on Matlab R2018b software, which improved the classification result.

In the three-layer network with input, hidden, and output, the training dataset utilised 10 sensors responses 
(U1) as the input layer and 4 predicted groups (RCF, CCF, JCF, TCF) as the output layer. Additionally, the number 
of neurons in the hidden layer was determined by a series of tests and revisions based on the classic formula: 
L < (m + n)1/2 + α, where L is the number of hidden layer nodes, m is the number of input layer nodes, n is the 
number of output layer nodes, and α is a constant ranging from 1 to 10. Finally, 11 neurons in the hidden layer 
were found to be sufficient for preferable performance, and more neurons would merely increase training time. 
A BPNN model with the structure of 10–11–4 was eventually established.

Seventy and twenty percent samples were selected randomly as the training and validation sets, respectively, 
with the remaining samples being used as the test set. The BPNN training process is normally terminated only 
when the accuracy of the validation set reaches 95% and the total number of training epochs is more than 10,000 
times. The BPNN performance evaluation results of different CF groups are shown in Fig. 4. The horizontal 
axis represents the number of training epochs of the model. The loss value represents the difference between 
predicted and correct values, and it decreased significantly during the training period of 0–10,000 epochs and 
then decreased steadily. When the number of training epochs was 42,000, the loss value reached a minimum of 
0.2369 (Fig. 4a). Meanwhile, the accuracy of the validation set was 97.06%, and the model training was finished 
(Fig. 4b). The above results showed that the established BPNN model was qualified26. The total correct classifi-
cation rate of the training and validation sets were 96.83% and 97.06%, respectively. In the test set, the correct 
classification rate was 93.75% and only one CCF sample was misclassified as an RCF (Supplementary Table S8). 
In conclusion, BPNN can effectively classify and predict different types of processed CF products.

Discussion
While optimising the detection conditions for E-nose, most researchers set the incubation temperature above 
40 °C16,17,27, and our pre-experimental results also showed that the sensor response value would be too low to 
be detected at low incubation temperatures, hence, the incubation temperature was set at 40–55 °C, which was 
consistent with that of most previous studies. In addition, we found that among all the factors investigated, 
injection volume and incubation temperature have the greatest influence on sensor response value. The results 
indicated that the increase in sensor response values was probably due to the increased volatile components 
accounted by an increase in injection volume and incubation temperature.

Both SDA and ANOVA were used for sensor optimisation, which has been reported in many previous 
studies26,28. However, to the best of our knowledge, very few studies have compared the two methods. In our 
study, the SDA was carried out in units of the entire sensor array, while the ANOVA was performed on single 
sensor. The sensors have no correlation with each other in the ANOVA, which may lead to relatively poor results. 
This is the biggest difference between the two methods. Therefore, compared with ANOVA, SDA has a greater 
advantage in sample identification, which was also proved by our experimental results.

F2 = −1.256× 10
4LY2/G + 1.288× 10

4LY2/gCTl

−7.846× 10
3T30/1−6.460× 10

3P10/2+ 2.284× 10
3PA/2

+ 5.309× 10
3P30/1+ 3.596× 10

4P40/2−8.743× 10
3P30/2

−1.743× 10
4T40/2+ 1.116× 10

4T40/1− 6241.227,

F3 = −2.439× 10
4LY2/G + 1.799× 10

4LY2/gCTl

−1.344× 10
4T30/1−1.499× 10

3P10/2+ 1.138× 10
3PA/2

+ 1.867× 10
3P30/1+ 2.685× 10

4P40/2−3.877× 10
3P30/2

−2.848× 10
3T40/2+ 9.219× 10

3T40/1− 4879.960,

F4 = −2.230× 10
4LY2/G + 1.705× 10

4LY2/gCTl

−1.300× 10
4T30/1−8.024× 10

2P10/2+ 8.475× 10
2PA/2

+ 2.433× 10
3P30/1+ 2.754× 10

4P40/2−4.837× 10
3P30/2

− 3.366× 10
3T40/2+ 8.793× 10

3T40/1− 4961.121.
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DFA is a common analytical method applied in many studies to classify and identify samples using E-nose29,30, 
and most of them are two-dimensional models18. However, in our study, we found that the two-dimensional DFA 
model could not distinguish well among the four processed CF groups, which may be due to the large number 
of CF groups. Hence, a three-dimensional DFA model can appropriately distinguish between the different CF 
groups. RCF is close to CCF group, and JCF is close to TCF. The result is consistent with artificial judgement, 
that is, judging from olfactory senses, RCF odour resembles CCF odour, and that of JCF resembles that of TCF. 
Furthermore, the digital standard was established for the first time, which realises the objective expression of 
odour and can be also used to differentiate samples.

The mathematical prediction models of CF products were established by linear discriminant of BLDA and 
nonlinear discriminant of BPNN. BLDA has been rarely used to classify samples by E-nose, and there is limited 
research on the formation of discriminant formulas31. In our study, odour response-based discriminant formulas 
were established for the first time, which is very intuitive and easily acceptable because of a clear discriminative 
coefficient and convenient operation method. Compared with classic BLDA, BPNN is novel and similar to the 
prediction of human experience owing to its nonlinear characteristics. Similarly, BPNN was used to predict raw 
and processed CF products by E-nose for the first time. The results showed that the BPNN model has a small 
loss value and high validation accuracy, indicating that the experimental data fits well. Additionally, the results 
of recognition and prediction showed that the BPNN of CF samples had a high accuracy rate for training, vali-
dation, and test sets. It also indicates that the BPNN has a potential to predict unknown samples. Meanwhile, it 
was found that the BPNN has a low CCF recognition rate in the test set, which may be due to insufficient sample 
size. However, based on this small number of training samples, the advantages of artificial neural networks have 
been highlighted. It is possible that artificial neural network will replace human discrimination in the future.

Conclusion
The electronic nose of FOX-4000 with 18 different MOS sensors proved to be able to quantify the odour of CF 
effectively and objectively. In terms of reducing the data dimension and improving classification efficiency, 
stepwise discriminant in the optimisation of the sensor array had a better performance than one-way ANOVA. 
Furthermore, based on the optimised array with 10 sensors, the established digital and mode standards can be 
a tool to control the quality of different types of processed CF products. Although both the discriminant for-
mula and BPNN could predicate different types of processed CF products, BPNN is better to be used to replace 
human judgement.

Materials and methods
Experimental materials.  Eighty-eight different samples including 37 batches of RCF, 28 batches of CCF, 
13 batches of JCF and 10 batches of TCF samples were collected from their main production locations and 
identified by Professor Tulin Lu from the Nanjing University of Chinese Medicine (Supplementary Table S9).

Electronic nose.  Odour detection was performed on a commercial FOX-4000 E-nose (Alpha MOS, Tou-
louse, France), which consists of a sampling apparatus, an array of sensors, an autosampler, air generator equip-
ment and pattern recognition software (Alpha Soft V11.0) for data (Supplementary Fig. S2), and it has a high 
sensitivity32. The sensor array is composed of 18 metal oxide semiconductors (MOS) that are divided into three 
sets: SET CL2 (LY2/LG, LY2/G, LY2/AA, LY2/GH, LY2/gCT, LY2/gCT), SET A (T30/1, P10/1, P10/2, P40/1, 
T70/2, PA/2) and SET B (P30/1, P40/2, P30/2, T40/2, T40/1, TA/2). They are placed in three chambers and cali-

Figure 4.   BPNN performance evaluation results of different CF groups. (a) Loss value in the training process; 
(b) validation accuracy in the validation process.
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brated regularly in line with the manufacturer’s recommended procedures to ensure stability. The components 
and main application of sensors are listed in Table 3.

Odour detection and acquisition by Electronic nose.  The CF samples were pulverized and sieved (50 
mesh). Then the powder was accurately weighed (0.5 g) and transferred to headspace vials (10 mL). After seal-
ing, the vials were loaded into the autosampler. The procedure mainly referred to previous references33,34. The 
time and temperature of headspace incubation were 600 s and 55 °C, respectively. The carrier gas was synthetic 
dry air with a flow rate of 150 mL/min, and the agitation speed was 500 rpm. Then 1200 µL of the headspace 
air was automatically injected into the chamber by a syringe at the rate of 500 µL/s. The time of signal acquisi-
tion and the time between injections were 120 s and 600 s, respectively. The response values of the 18 sensors 
of every sample were recorded, and response curves were generated. Samples were analyzed in duplicate (total, 
176 sample data).

Data analysis.  Many different multivariate statistical methods were applied in the study. SDA and ANOVA 
were applied to the sensor array optimisation. LDA was used to confirm the optimisation results of sensors. 
Percentiles and DFA were also used for establishing digital and mode standard of odour response, respectively. 
BLDA and BPNN were applied to form two prediction models of different types of processed CF products.

Stepwise discriminant analysis.  SDA begins with no variables (sensor signals) in the model. The model is exam-
ined at each step. If the variable in the model contributes in the least to the discriminatory ability of the model 
measured by Wilks’ lambda and fails to meet the criterion of keeping, it will be removed. Meanwhile, the new 
variable is entered. The experiment is terminated after the optimal variable is determined. In this study, SDA was 
employed to filter out the set of sensors that are most helpful in identifying CF groups.

Analysis of variance.  ANOVA is a method of portioning variability into identifiable sources of variation and 
the associated degree of freedom in an experiment35. It compares the means of different experimental varieties 
and determines whether significant differences exist among them36. In this study, ANOVA was used to explore 
whether the response of the sensor contributes significantly to the grouping of the CF samples.

Linear discriminant analysis.  LDA is a probabilistic parametric classification technique that maximizes the 
variance between categories and minimizes the variance within categories via data projection from a high-
dimensional space to a low-dimensional space37. Compared with principal component analysis (PCA), the LDA 
method can consider not only the similarity of samples but also the category of samples, so as to achieve the 
maximum differentiation between groups38. Here, LDA was used to visualize the classification of samples.

Discriminant factorial analysis.  DFA is a method to build a visual discriminant model based on known sam-
ples. Its modelling process is similar to LDA. However, it can classify a new sample by projecting this sample 
onto the eigenvectors space and selecting the nearest class16. The validation value obtained by cross-validation 
was used to evaluate the built model.

Bayesian linear discriminant analysis.  BLDA is a method used to construct multiple discriminant functions 
for classifying samples by bayesian criteria and to obtain the correct classification rate by training samples with 
the back generation, in which the ratio of between-class variance is maximized and the within-class variance is 
minimized39,40. It is regarded as an extension of fisher linear discriminant analysis (FLDA) and has shown high 
performance. Compared with conventional FLDA, the BLDA algorithm employs regularization to avoid overfit-
ting to high dimensional and noisy datasets41.

Back‑propagation neural network.  BPNN is one of the most commonly used neural networks and includes 
input, hidden, and output layers. In the process of training BPNN for analysis, the weights and threshold values 

Table 3.   The components and main application of sensors of FOX-4000.

No. Name Description No. Name Description

1 LY2/LG Oxidizing gas 10 P40/1 Fluorine

2 LY2/G Ammonia, carbon monoxide 11 T70/2 Aromatic compounds

3 LY2/AA Ethanol 12 PA/2 Ethanol, ammonia/organic amines

4 LY2/GH Ammonia/organic amines 13 P30/1 Polar compounds (ethanol)

5 LY2/gCTl Hydrogen sulfide 14 P40/2 Heteroatom/chloride/aldehydes

6 LY2/gCT Propane/butane 15 P30/2 Alcohol

7 T30/1 Organic solvents 16 T40/2 Aldehydes

8 P10/1 Hydrocarbons 17 T40/1 Chlorinated compounds

9 P10/2 Methane 18 TA/2 Air quality
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of each layer are constantly revised based on the differences between the expected outputs and actual outputs. 
Thus, a BPNN is a neural network that spreads information in the forward direction and returns the difference in 
the reverse direction. This training is ceased until the difference between the expected outputs and actual outputs 
are reduced to a preset range or the scheduled training times are achieved. The prediction model was evaluated 
by loss value42 and validation accuracy26.

SDA, ANOVA, LDA and BLDA were performed by SPSS 23.0 (IBM, USA); DFA was performed on Electronic 
nose software (Alpha Soft V11.0); BPNN was performed by MATLAB R2018b (MathWorks, USA).
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