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ABSTRACT

Many studies have identified binding preferences
for transcription factors (TFs), but few have yielded
predictive models of how combinations of transcrip-
tion factor binding sites generate specific levels
of gene expression. Synthetic promoters have
emerged as powerful tools for generating quantita-
tive data to parameterize models of combinatorial
cis-regulation. We sought to improve the accuracy
of such models by quantifying the occupancy of TFs
on synthetic promoters in vivo and incorporating
these data into statistical thermodynamic models
of cis-regulation. Using chromatin immunopre-
cipitation-seq, we measured the occupancy of Gcn4
and Cbf1 in synthetic promoter libraries composed of
binding sites for Gcn4, Cbf1, Met31/Met32 and Nrg1.
We measured the occupancy of these two TFs
and the expression levels of all promoters in two
growth conditions. Models parameterized using
only expression data predicted expression but
failed to identify several interactions between TFs.
In contrast, models parameterized with occupancy
and expression data predicted expression data, and
also revealed Gcn4 self-cooperativity and a negative
interaction between Gcn4 and Nrg1. Occupancy
data also allowed us to distinguish between
competing regulatory mechanisms for the factor
Gcn4. Our framework for combining occupancy and
expression data produces predictive models that
better reflect the mechanisms underlying combina-
torial cis-regulation of gene expression.

INTRODUCTION

Regulated gene expression lies at the heart of many
biological processes including development (1,2),

differentiation (3) and environmental responses (4–6).
Often, changes in gene expression occur by one or more
transcription factors (TFs) binding to transcription factor
binding sites (TFBS) and either enhancing or inhibiting
the recruitment of RNA polymerase II to gene promoters
(7–10). When multiple TFBS are present in a gene’s
promoter, it is difficult to predict the resulting expression
of the gene. This is because TFs may function independ-
ently of one another (11), or may exhibit one of a number
of non-linear interactions, including cooperativity (12),
anti-cooperativity (13) or competition (14). An important
goal in functional genomics is to produce models that
accurately predict patterns of gene expression as a
function of changes in the TFBS composition of gene
promoters.

Investigators have attempted to learn the binding
site specificities of TFs through a variety of methods,
including the analysis of promoters of suspected targets
(15–18), the analysis of sequences bound in vivo by the TF
using chromatin immunoprecipitation assays (ChIP-Chip,
ChIP-seq) (19–24) and through in vitro binding studies
(25–27). These studies contribute the important first step
of predicting which sequences are likely to be bound by a
particular TF.

Recently, some investigators attempted to correlate
whole-genome expression profiles and experimentally
determined (28–30) or predicted (31,32) occupancy data
to the DNA content of regulatory sequences using
models based on statistical thermodynamics. In this
approach, a gene promoter is modeled as existing in one
of a number of states. Each state represents one of all
possible configurations of bound and unbound TFs.
Each TF in turn is modeled as having either a favorable
or an unfavorable interaction with RNA polymerase
and the TFBS. By summing over all possible promoter
states, it is possible to estimate the fraction of time
RNA polymerase spends bound to any given promoter,
which is an approximation of the transcription level of the
promoter (33). The results of these studies demonstrate
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that statistical thermodynamic models of transcription are
a reasonable framework for producing predictive models
of steady-state levels of gene expression that also help
explain the mechanisms that underlie cis-regulation.

The main difficulty with the thermodynamic approach
is parameterizing the models given the available genomic
data. Even for a promoter with a relatively small number
of TFBS, the number of possible promoter states is
immense compared with the number of gene expression
observations that can be made, even with high-throughput
techniques. Moreover, we usually do not know the
identities of all TFs that influence any particular gene
promoter. An alternative approach is the use of synthetic
promoters composed of defined TFBS. In this approach,
promoters with combinations of known TFBS are
synthesized and then used to drive the expression of fluor-
escent reporter genes or sequence barcodes (34–42). The
synthetic approach allows investigators to sample large
numbers of similar promoters, which provides a simplified
system relative to the genome. Although synthetic pro-
moters do not capture all of the intricate features of
genomic promoters, they are useful tools for obtaining
the statistical power necessary to isolate and quantify
the effects of particular promoter features. By focusing
on the effects of particular combinations of TFBS, syn-
thetic promoters can be used to parameterize thermo-
dynamic models of cis-regulation.

Previous synthetic promoter approaches used only ex-
pression data to infer relationships between the TFBS
content of gene promoters and the gene expression levels
they drive. For example, the model from (36) performs
well on the given data, explaining �60% of the gene
expression variance. However, the degree to which the
model accurately describes the underlying biophysical
mechanisms responsible for the observations remains an
open question.

We sought to extend the synthetic promoter approach
by developing a ChIP-based metric of TF occupancy on
synthetic promoters. We applied this approach to libraries
of binding sites for TFs responsive to the standard 2%
glucose condition (43) and conditions in which cells are
starved for amino acids (44–46). We used both TF occu-
pancy data and expression data to model the TF–DNA
and TF–TF interactions that underlie regulation in this
system. Our results demonstrate how occupancy data
combined with expression measurements can uncover
biophysical processes that underlie gene expression. In
particular, interactions that we could not capture with
expression data alone were revealed when we combined
expression data with occupancy data in a formal biophys-
ical framework.

MATERIALS AND METHODS

Construction of strains

Strain BC905 (Mat alpha, his3�1 leu2�0 lys2�::BirA
ura3�0) was created by integrating BirA into the
genome of strain BY4742 (Mat alpha, his3�1 leu2�0
lys� ura3�0) at the lys2 locus via PCORE (47). Briefly,
a cassette containing KAN and URA3 (PCORE) was

inserted into the lys2 locus using primers RZ131 and
RZ132 (Supplementary Table S2) and standard trans-
formation protocols (48) with selection on G418. A BirA
cassette was created with homology to the lys2 region by
polymerase chain reaction (PCR) amplification using the
primers RZ133 and RZ134 (Supplementary Table S2) and
plasmid prs313-BirA-NLS (49) as a template. This cassette
was used to replace PCORE at the lys2 locus by trans-
formation with counter-selection on 5-FOA. Insertion
was verified by PCR around the upstream and down-
stream regions of integration (primers RZ147–RZ149,
Supplementary Table S2) and by Sanger sequencing.
CBF1, GCN4, MET31 and NRG1 were C-terminally

tagged with the myc-C-avi tag by amplifying myc-C-avi
with a KAN cassette from plasmid PUG6-myc-C-avi (49)
using primer pairs referred to in Supplementary Table S2:
RZ129 and RZ130 (CBF1), RZ137 and RZ138 (GCN4),
RZ135 and RZ136 (MET31) and RZ127 and RZ128
(NRG1) and transforming the resulting PCR product
into BC905 using G418 selection to create strains BC906
(BC905+CBF1::myc-C-Avitag), BC907 (BC905+GCN4::
myc-C-Avitag), BC908 (BC905+MET31::myc-C-Avitag)
and BC909 (BC905+NRG1::myc-C-Avitag). Insertion
was verified by PCR (Supplementary Table S2, primers
RZ92-RZ99, RZ143, RZ144) and by Sanger sequencing.
The resulting strains were backcrossed to BY4741,
sporulated and offspring-selected, which matched the
appropriate genotype (MAT alpha his3�1 leu2�0
lys2�::BirA ura3�0 CBF1::myc-C-avi KAN). Retention
of the tag and BirA was verified by PCR post-mating.

Media

All strain growth was done in YPD; synthetic complete
medium with 2% glucose (SC); synthetic complete
medium lacking uracil with 2% glucose (SC-Ura); syn-
thetic complete medium lacking Trp with 2% glucose
(SC-Trp); minimal medium+2% glucose with 300 mM
his, 1mM lys, 2mM leu, 400 mM Trp (Min); minimal
medium+2% glucose with 300 mM his, 1mM lys, 2mM
leu, 200 mM Ura (Min+Ura-Trp); or in these same media
supplemented with 0.9mM biotin [YPDB, SCB, SCB-Ura
(glucose), MinB, MinB+Ura-Trp].

Synthetic promoter library creation

Libraries of synthetic promoters were created as described
previously (35,36). Briefly, oligos with recognition sites for
Cbf1, Gcn4, Met31 and Nrg1 (Supplementary Table S2,
RZ84–RZ91) were annealed, then mixed in ratios
inversely proportional to the melting temperatures of the
annealed products and ligated together. The ligation
products were size selected with YM100 Microcon
columns and cloned into plasmid pJG102 (36) and
maxiprepped. The resulting plasmid was digested to
produce a linear product with flanking homology
to TRP1. The linear product was integrated into the
avi-tagged strains following standard large-scale trans-
formation protocols (50). Ten 96-well plates of colonies
were picked for each tagged strain, which were subjected
to three rounds of dilution purification consisting of
growing the strains overnight in SC-URA, then pinning
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them onto SC-URA agar plates and allowing them to
grow for 2 days. The final strains were replica-plated
onto SC-Trp to check for misintegration events.
Promoter sequences were determined by PCR-amplifying
the promoters using double-barcoded primers with restric-
tion sites, followed by a pooled ligation of the PCR
products to add Illumina sequencing adapters and then
sequencing the final product on the Illumina MiSeq
platform. The sequence reads were mapped back to their
originating well and plate via the double barcodes with a
custom python script. See Supplementary Methods for
more details.

Growth conditions

For expression measurements, strains were grown in
glucose and amino acid starvation (AAS) conditions as
described previously (36) with the addition of 0.9 mM
biotin to all media. For ChIP measurements, strains
were grown as for expression in 96-well format overnight.
For the glucose condition, 30 ml of overnight culture from
each well for a given tagged factor was pooled together,
and 20ml of this pooled culture was added to 980ml of
SCB-Ura (see media) and grown for �4.5 h to a final
optical density (OD660) of 0.6–1.0. For the AAS condi-
tion, growth was carried out as for expression measure-
ments except that after growth to mid-log phase in
glucose, 30 ml of each strain for a given tagged factor
was pooled together and 20ml of the pooled culture was
spun down briefly (2min at 1000G) and the supernatant
decanted. The pellet was resuspended in 10ml of MinB
(see media) and added to 990ml of MinB media. Final
OD660 after 6 h of growth was between 0.8 and 1.2.

YFP expression measurements

Strains were grown as described, and then fixed by adding
4% paraformaldehyde solution (4% formaldehyde,
100mM sucrose) to a final concentration of 1%. Yellow
Fluorescent Protein (YFP) intensities were measured by
flow cytometry on a Beckman Coulter Cell Lab Quanta
SC. The final expression measurement was the median of
at least 10 000 observations of the ratio of raw fluores-
cence to volume of the cell, as reported as the ‘electronic
volume’ by the instrument, normalized to the mean ex-
pression of three to four no-insert control promoters on
the same plate. The expression for promoters with <80%
of counts with fluorescence intensity between 10 and 900
raw fluorescence units was treated as missing data in
downstream analyses.

Biotin-ChIP

Synthetic promoter-containing strains were pooled and
fixed with 1% final concentration of formaldehyde,
quenched with glycine, washed and the resulting cell
pellet was frozen at least overnight at �80C. Pellets were
thawed and resuspended in lysis buffer [50mM HEPES,
150mM NaCl, 1mM ethylenediaminetetraacetic acid
(EDTA), 1% v/v Triton X-100, 0.1% w/v sodium
deoxycholate, 0.1% w/v (sodium dodecyl sulphate) SDS]
with protease inhibitor (Roche #11836170001), then bead
beaten and sonicated. The supernatant was clarified by

centrifugation, then applied to phosphate-buffered
saline-washed Dynal M280 streptavidin-coated magnetic
beads (Life Technologies, 112-05D) and incubated for 1 h.
The supernatant was removed and set aside as input. The
beads were washed twice for 5min per wash in each of
lysis buffer, high salt lysis buffer (50mM HEPES, 0.5M
NaCl, 1mM EDTA, 1% v/v Triton X-100, 0.1% w/v
sodium deoxycholate), LiCl wash buffer (500mM LiCl,
1% NP-40 alternative, 10mM Tris, pH 8.0, 1mM
EDTA), SDS wash buffer (10mM Tris, pH 8.0,
1mM EDTA, 3% SDS) and TE (10mM Tris, pH 8.0,
1mM EDTA). The beads were resuspended in 250 ml
TE+0.5% SDS+10ml of 20mg/ml Proteinase-K (NEB
P8102S) and distributed into three 250ml PCR tubes.
Then 72.5ml of input material was combined with 72.5 ml
of TE+1% SDS to which 10 ml of 20mg/ml proteinase-K
was added and distributed into two or three 250ml PCR
tubes per replicate. The tubes were incubated for 4 h at
42�C, 2 h at 72�C and 6 h at 65�C. The material from each
replicate was recombined and purified via ChIP cleanup
columns (Zymo D5205), eluting in 40 ml of elution buffer.
ChIP success was validated by quantitative PCR (qPCR)
analysis of known targets for each TF. See Supplemental
Methods for a complete description of the ChIP and
qPCR protocols.

Sequencing of ChIP synthetic promoters

ChIPed synthetic promoters were sequenced by adding
adapter sequences to synthetic promoters in the input
and IP samples via PCR amplification using 23 ml of IP
material with 1 ml each of 10 mM primers that were
barcoded in the forward read based on sample identity
and in the reverse read based on the identity of the
tagged TF (Supplementary Table S1) and three different
starting concentrations of input material. PCR products
between 150- and 600-bp long were gel-purified on a 1.5%
TAE agarose gel. Input samples were retained on the basis
of similar gel intensities to the corresponding IP sample
as an approximate concentration measure. The resulting
samples were combined, ethanol precipitated and
reconstituted in 30 ml of water. The forward sequencing
adapter was added by digestion/ligation exactly as for
library sequencing. The final concentration of se-
quenceable fragments was determined by qPCR using
SYBR Green QPCR master mix, primers RZ259 and
RZ260 and eight synthetic promoter standards, diluted
across five orders of magnitude. The material was
sequenced on the Illumina HiSeq 2000 platform using
one lane of a paired-end 101-bp run.

Occupancy of synthetic promoters

The relative occupancy of synthetic promoters was
determined by mapping each sequenced read back to its
synthetic promoter of origin. First, the read was parsed to
determine which binding sites were present. This informa-
tion was used to map the read back to the originating
promoter. The read counts were normalized by the total
number of reads that were associated with a given tagged-
factor strain, condition and sample type (IP or input). The
ratio of normalized IP counts to normalized input counts
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for a particular promoter was divided by the median
normalized IP/input ratio of all promoters lacking a
binding site for the ChIPed factor to give the normalized
relative occupancy. Scaling to the median background
occupancy effectively scales the occupancy values
relative to the non-specific binding of the factor. This
places all occupancy values from all factors and conditions
on the same relative scale, assuming that the non-specific
binding distribution is the same for all factors. For
demonstrating technical replicate variance, the occupancy
was calculated separately for each replicate. For modeling
purposes, the replicates were generally combined by
summing the promoter coverage across replicates and
computing occupancy from the summed values. The
exception was Gcn4 in AAS where a single ChIP replicate
was used due to substantial depletion of promoters
with four or more binding sites in the input of two of
the replicates. Promoters with <50 reads in the inputs
were excluded from the analysis.

Thermodynamic model of transcription and TF occupancy

To model gene expression and TF occupancy, we used a
thermodynamic model of transcription described previ-
ously (28,35,36). In this model, each promoter comprises
a set of TFBS, which can exist in one of two states:
unbound, or bound by its specific TF. Non-specific
binding is not modeled. An implicit binding site is
assumed for RNA polymerase, which is also allowed to
be bound or unbound to that site. In this model, every
promoter exists as collection of states, with each state
describing a particular configuration of TFs bound to
the DNA. When two TFs are bound to DNA in the
same state, they may interact favorably (cooperativity),
unfavorably (anti-cooperativity) or not at all (independent
binding). These interactions may occur between TFs or
between TFs and polymerase. The model treats unbound
DNA as a reference state and computes the statistical
weight of each possible state that can be produced with
k TFs. The weight of any particular state is the sum of
�Gs of protein–DNA and protein–protein interactions
that occur in that state. The statistical weight of a given
state divided by the sum of the statistical weights of all
possible states is the probability of that state occurring.
The occupancy of any particular TF is the sum of the
probabilities of all states in which that TF is bound.
Likewise, the probability of polymerase binding to a
given promoter is the sum of the probabilities of all
states in which polymerase is bound. As implemented,
the model assumes that the probability of polymerase
binding is related to the observed expression by a
constant scaling factor. See Supplementary Methods for
a complete description of the model.

To fit models to our data, we used a non-linear fitting
routine (nlminb, R statistical package) to find values for
the �Gs in the model that maximize the correspondence
between expression (and/or TF occupancy) predicted
by the model and the experimentally measured expression
(and/or TF occupancy). This problem is tractable because
we assume that the �G of any particular protein–DNA
or protein–protein interaction is constant across all

synthetic promoters. For example, in this work, we were
fitting models that contained between 6 and 15 different
�Gs (Supplementary Table S5) using experimental meas-
urements from between 114 and 291 synthetic promoters
(Tables 1 and 2). Models were initially fit with only TF–
DNA and TF–polymerase interactions: all TF–TF inter-
actions were constrained to 0. In subsequent rounds of
fitting, we added each TF–TF interaction to the model,
in turn, and then tested for statistically significant differ-
ences in the fit relative to a fit without the interaction.
Only TF–TF interactions that resulted in significantly
better fits were retained in the final models.

Competitive binding model

The competitive binding model functioned exactly as the
standard model except that each Gcn4 site had three
possible states: unbound, bound by Gcn4 and bound by
the unidentified competitor. No direct interaction between
Gcn4 and the competitor was modeled. The competitor
was assumed to have the same concentration and the
same effect on polymerase in both conditions. The Gcn4
effect on polymerase was held constant in both conditions,
but its concentration in both conditions was allowed

Table 1. Summary of usable promoters for expression analysis

Tagged TF Total,
glucose

Unique,
glucose

Total,
AAS

Unique,
AAS

Cbf1 529 218 374 125
Gcn4 614 213 396 114
Met31a 643 271 475 170
Nrg1a 634 271 393 139

Cbf1, Gcn4, Met31 and Nrg1 were tagged with the myc-C-avi tag in a
strain harboring the bacterial biotin ligase BirA.
Synthetic promoters containing sites for all four factors were con-
structed in each strain. Nine hundred sixty colonies were picked for
each library, purified, sequenced and then grown in glucose and AAS.
The library members were cross-linked, and then run on a Beckman
Coulter Cell Lab Quanta SC flow cytometer to measure the fluores-
cence of the reporter gene in each strain. The numbers shown are the
number of strains for which sequence information was determined and
for which a reliable fluorescence value was obtained.
aOmitted from expression analysis due to lack of ChIP signal from
occupancy analysis.

Table 2. Summary of usable promoters for occupancy analysis

Tagged TF Glucose AAS

Cbf1 290 291
Gcn4 199 229
Met31a 0 0
Nrg1a 0 0

ChIP was performed on the libraries of synthetic promoters and
the promoters specifically sequenced as described in Methods.
Promoters with <50 reads in the input replicates were discarded.
Met31 and Nrg1 showed no specific enrichment, so all pro-
moters were discarded. The table summarizes the total number
of promoters used for analysis for each factor and condition.
aNo observable ChIP signal.
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to vary. All other parameters were fit as for the non-
competitive model.

Cross-validation of models

All models were subjected to 5-fold cross-validation. The
promoters and associated expression or occupancy values
were randomly partitioned into five equally sized sets. In
each round of cross-validation, training was performed on
four of the five sets of data, and validation was performed
on the fifth set of data. Each partition was used once and
only once for validation.

RESULTS

Promoter libraries with tagged TFs show similar
quantitative expression

We created four yeast strains in which single TFs were
epitope-tagged to facilitate ChIP. Cbf1, Gcn4, Met31
and Nrg1 were each tagged by creating in-frame fusions
to the C-myc-Avi epitope tag (49) at the native chromo-
somal locus of each TF. Each strain also contained the
bacterial biotin ligase, BirA, integrated at the LYS2 locus.
In each one of these four strains, we then created a syn-
thetic promoter library comprising binding sites for Cbf1,
Gcn4, Met31/Met32 and Nrg1, as described in (35). The
number of total and unique promoters for each library is
reported in Table 1.
These strain libraries were grown for either ChIP or

expression analysis in both glucose and AAS conditions.
In general, the libraries showed similar expression distri-
butions to each other in both growth conditions
(Supplementary Figures S1 and S2), indicating that the
C-myc-Avi-tag does not alter protein function. The excep-
tion was the Cbf1-tagged strain, which showed a Cbf1-
site-dependent effect on expression (Supplementary
Figures S1 and S3). In all thermodynamic modeling, we
corrected for the effect of tagged Cbf1 by introducing a
polymerase-Cbf1 interaction term specific to the tagged
Cbf1, but enforcing the TF–DNA interaction term to be
the same between the tagged and untagged versions of the
protein.
Quantitative expression in AAS of many promoters

with multiple Gcn4 sites could not be determined due to
high expression exceeding the dynamic range of the flow
cytometer. For modeling purposes, these expression values
were treated as missing. A list of all promoters and their
expression data is available in Supplementary Table S3.

ChIP of synthetic promoter libraries shows reproducible
quantitative signal

We first attempted to measure the occupancy of the tagged
TFs on the promoters in our libraries. We performed three
biological replicates of ChIP on each of the four strain
libraries. We validated that our ChIP protocol was
working by performing qPCR on known genomic
targets of each of the four tagged TFs (Supplementary
Figures S4 and S5). Samples from the Met31- and Nrg1-
tagged libraries did not show target-specific enrichment
(Supplementary Figure S5) and were excluded from all

further analyses. Samples from the Cbf1- and Gcn4-
tagged libraries were analyzed by high-throughput
sequencing of the synthetic promoters in both the input
and precipitated fractions (‘Methods’ section), which
produces a measure of occupancy of each tagged TF on
each member of the promoter libraries. The occupancy of
Cbf1-containing promoters by Cbf1 increases almost
linearly with the number of Cbf1 binding sites, with
tight distributions around the median occupancy scores
for a given number of Cbf1 sites (Figure 1A, left).
Median Gcn4 occupancy also increases as a function of
the number of Gcn4 binding sites, but in contrast with
Cbf1, there is a wider dispersion of occupancy scores for
different promoters with the same number of Gcn4 sites,
suggesting that the context in which binding sites appear
has a greater impact on Gcn4 than Cbf1. These occupancy
distributions were highly reproducible across ChIP repli-
cates (Figure 1B). These results suggest that we are ob-
taining accurate measures of TF occupancy across the
synthetic promoters in our libraries.

Thermodynamic modeling of expression shows good
agreement between predicted and observed expression
and occupancy

We used a thermodynamic model to analyze the data we
collected from our synthetic promoter libraries. The
thermodynamic model describes the expression of pro-
moters in terms of the free energies of interaction (�G)
of TFs with DNA, TFs with other TFs and TFs with
RNA polymerase (51). In the thermodynamic model,
each promoter is a collection of states, where each state is
a particular configuration of bound and unbound proteins
on the DNA. Each state is assigned a statistical weight
based on the �Gs of the specific interactions that occur
in that particular state. The statistical weight of a state is
the probability of observing the promoter in that particular
state. The statistical weights are used to compute the frac-
tional occupancy of RNA polymerase, which determines
the expression level of the promoter. The fractional occu-
pancy of RNA polymerase is computed as the sum of the
weights of the promoter states in which polymerase is
bound divided by the sum of the weights of all possible
states. Thus, with values for the �Gs of the interactions
in the model, we can compute the occupancy of RNA poly-
merase on each promoter and provide a prediction of the
expression level of that promoter.

We fit the model to data from synthetic promoter
libraries by finding values for the �Gs that minimize the
difference between the predicted and experimentally
measured expression values, across the entire library.
During fitting, we always compare models that include
different numbers and types of interactions. The resulting
collection of �Gs that comprise the best-fit model
provides a quantitative description of the cis-regulatory
interactions that govern the promoters in our libraries.

We first fit the model using expression data collected in
both glucose and AAS, ignoring the occupancy data
(Figure 2A). The model uses the sequence composition
of synthetic promoters to predict their expression levels.
The overall fit was good (R2=0.53) and comparable with
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the fit previously obtained by (36) (R2=0.60), despite
using two fewer parameters to model the data, having
two different tagged TFs and having a greater diversity
of promoters (212 unique promoters in glucose versus 131
unique promoters published previously). We performed
5-fold cross-validation on the final model and observed
no loss of predictive power, suggesting that the model is
not over-fit (Supplementary Table S4). The final param-
eter values for this model are listed in Supplementary
Table S5. Notably, when fitting solely with expression
data, no TF–TF interactions were found to significantly
improve the fit.

We next attempted to fit the thermodynamic model using
the normalized relative occupancy data we obtained from
ChIP, ignoring the expression data. We used occupancy
data collected from the Cbf1 and Gcn4-tagged strains
grown in both the glucose and AAS conditions. We used
these data to fit a thermodynamic model relating promoter
sequence to the occupancy of the TFs on the synthetic
promoters (Figure 2B). For this implementation, we con-
sidered only specific TF–DNA interactions; promoters
with no specific binding sites for the tagged factors were
excluded from the fit. The resulting model had a good fit
to the data (R2=0.54), suggesting that a large amount of
TF occupancy can be accurately predicted by only the
presence and configuration of TFBS. Cbf1 had no signifi-
cant interaction terms with any other factors, which agrees
with the linear increase of Cbf1 occupancy we observed
with increasing numbers of Cbf1 sites. However, the
�GGcn4–Gcn4 and the �GGcn4–Nrg1 interactions both made
significant improvements to the fit of the model (R2=0.56,

P=1.11e�04 and R2=0.56, P=5.20e�05, respectively,
F-test with Bonferroni correction). Neither of these
interactions was significant in the model that used only
expression data, which suggests that the occupancy data
contain extra information that reveals interactions that
are undetectable in the expression data. Adding the
�GGcn4-Gcn4 interaction to a model that includes the
�GGcn4-Nrg1 interaction also led to a significant improve-
ment in the performance of the model (R2=0.57,
P=1.43e�05, F-test with Bonferroni correction). The
final model, which includes the TF–DNA binding
energies, along with the �GGcn4-Nrg1 and �GGcn4-Gcn4

interactions, predicts virtually no change in the DNA
binding energy of Cbf1 between the two conditions
(��G: �0.08), versus a large change in the DNA binding
energy of Gcn4 when moving from glucose to AAS (��G:
�2.74). This is consistent with the known regulation of
Gcn4; amino acid starvation increases translation and
transcription of Gcn4 mRNA, and stabilization of Gcn4p
through dephosphorylation (52), all of which serve to
increase the concentration of Gcn4p and decrease the free
energy of binding. The final model resulted in a fit with
explanatory power on par with the thermodynamic model
of expression (R2=0.57 for occupancy versus R2=0.53
for expression), suggesting that the model describes the
variation in both types of data equally well.
Finally, we attempted to fit a thermodynamic model with

both expression and occupancy data simultaneously. We
chose parameters to include based on which parameters
were significant in the expression-only and occupancy-
only fits (Supplementary Table S5). In general, the model

Figure 1. ChIP reveals quantitative differences in the occupancy of synthetic promoters by Cbf1 and Gcn4, and is highly reproducible. (A) The
smoothed density of occupancy scores is shown for Cbf1 (top) and Gcn4 (bottom) for the AAS condition, colored by number of binding sites for the
factor of interest. The y-axis has been cut at 2. (B) The relative occupancy for one ChIP replicate is plotted against the relative occupancy for another
replicate for avi-tagged Cbf1 (top) and Gcn4 (bottom) in the AAS condition.
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converged on reasonable predictions of both expression
and occupancy (Figure 2C). In particular, the model fit
with both expression and occupancy data predicted both
categories of data better than models fit separately to either
source of data. The model fit only on occupancy data was
incapable of predicting expression, as the �GTF–RNAP

terms could not be fit, and the model fit only on expression
data predicted occupancy with an R2 of 0.36. In contrast,
the model fit on both data types predicted expression
with an R2 of 0.43 and occupancy with an R2 of 0.56
(Supplementary Table S4).

Gcn4 site shows switching behavior

The Gcn4 binding site showed different behavior between
the glucose and AAS conditions. Figure 3A shows the
aggregate effect on expression of increasing the number
of Gcn4 sites in promoters with many different combin-
ations of Cbf1, Nrg1 and Met31/32 binding sites. In AAS,

the Gcn4 binding site was a strong activating sequence
(Figure 3A, left) regardless of which other sites were
present, consistent with the known role of Gcn4 in recruit-
ing mediator and other transcriptional complexes (53,54)
in response to limiting amounts of amino acids. In
contrast, the Gcn4 site functioned as a weak repressor
when cells were grown in glucose (Figure 3A, right) in
many different promoter contexts. The switching
behavior occurred regardless of which factor was tagged
(data not shown), indicating that the repressive effect in
glucose is independent of the epitope tag. When modeling
only expression, allowing the Gcn4-RNAP interaction to
differ between conditions revealed the same trend; the site
activates in AAS conditions but represses weakly in
glucose (Supplementary Table S5). Forcing the model to
use the same polymerase interaction term for the Gcn4 site
in both conditions resulted in a significantly worse fit
(R2=0.53 versus 0.43, P< 10�16, F-test). Attempting to

Figure 2. Fits of expression and occupancy by thermodynamic models. Observed data versus model-predicted values for thermodynamic models fit
on (A) expression data, (B) occupancy data, (C) expression and occupancy data and (D) expression and occupancy data with Gcn4 competition.
Gray line: best fit line.
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fit the model by constraining the �GGcn4–RNAP term while
allowing the �GGcn4�DNA in glucose to vary, as was done
previously (36), resulted in a good fit (R2=0.50), but the
resulting change in binding energy equates to
8.12� 10�14-fold lower apparent Ka. This change in
binding energy is not biologically reasonable and is
likely an artifact of fitting the data to an inappropriate
model. Taken together, the results suggest that the
switching behavior of Gcn4 is not a result of differential
affinity of Gcn4 for its binding site between the glucose
and AAS conditions.

There are two possibilities for why the Gcn4 site
switches behavior between conditions. The first is that
post-translational modifications, or interactions with
other proteins, cause Gcn4 to convert between two
forms, an activating form that predominates in AAS and
a repressing form that predominates in glucose.
Alternatively, Gcn4 may always be an activator, but in
glucose competes with a repressor for binding to the
same site. The occupancy data can distinguish between

these two hypotheses. If expression is negatively correlated
with Gcn4 occupancy in glucose, it would suggest that
Gcn4 is switching from an activator to a repressor in
glucose. However, if expression is positively correlated
with Gcn4 occupancy in glucose, it would suggest that
Gcn4 is still an activator in glucose and that a repressive
factor competes with Gcn4 for binding in glucose. To dis-
tinguish between these two hypotheses, we plotted Gcn4
occupancy versus expression for both the glucose and
AAS conditions (Figure 3B). As expected, there is a
strong positive correlation between Gcn4 occupancy and
expression in AAS (Figure 3B, left), where Gcn4 is known
to be a transcriptional activator. However, there is also a
positive correlation between Gcn4 occupancy and expres-
sion in glucose (Figure 3B, right). This suggests that Gcn4
is still a transcriptional activator in glucose, and that the
repressive effects of Gcn4 sites in glucose result from a
repressive factor that competes with Gcn4 for binding to
the Gcn4 site. The idea of a Gcn4 competitor has some
experimental support. For instance, high concentrations

Figure 3. Gcn4 site activates in AAS and represses in glucose, but Gcn4 TF is an activator in both conditions. Strains bearing synthetic promoters
with avi-tagged Gcn4 were grown as described in Methods in glucose and AAS media. Expression was measured via flow cytometry. Occupancy was
measured by ChIP. (A) A boxplot of expression of promoters in AAS (left) and glucose (right) grouped by the number of Gcn4 sites present in the
promoter shows that Gcn4 sites repress weakly in glucose but activate strongly in AAS. (B) A plot of expression versus total Gcn4 occupancy in
AAS (left) and glucose (right) shows that Gcn4 occupancy correlates positively with expression in both AAS and glucose. This suggests a repressive
factor is binding the Gcn4 site in glucose in competition with Gcn4. There are fewer points in AAS than in glucose due to the strong activating effect
of multiple Gcn4 sites in AAS.
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of Gcn4 were shown to compete with an unidentified
nuclear protein on the HIS4 promoter (44). Moreover,
the factor Bas1 binds an overlapping motif with Gcn4
(55) and is suspected of competing with Gcn4 (56).
Alternatively, nucleosomes may effectively compete for
binding to the Gcn4 site in rich medium, where Gcn4
concentrations are lower. Thus, both our data and the
literature support the idea of competitive binding
occurring at the Gcn4 site.

Competitive model of binding better explains Gcn4
expression and occupancy

We extended the thermodynamic model to incorporate
competitive binding at the Gcn4 site between Gcn4 and
an unknown repressor. We did this by adding promoter
states where the competing protein is bound to the site
instead of Gcn4. To fit the model, we assumed that the
effect on polymerase of the two competitors was consist-
ent between conditions, but allowed the relative affinity of
the two factors for the Gcn4 site to vary between condi-
tions. When this model was fit with only expression data,
it performed exactly the same as the model that allows
Gcn4 to switch from an activator to a repressor in differ-
ent conditions. Thus, the switching behavior of the Gcn4
binding site can be modeled equally well by either having a
repressive factor compete with Gcn4 for binding (competi-
tive model) or by having the Gcn4 protein switch from
an activator to a repressor between conditions (non-
competitive model). With only expression data, these
two models cannot be distinguished.
We determined whether fitting the models simultan-

eously to both expression data and occupancy data
would distinguish between the competitive and non-
competitive models. The combined expression and occu-
pancy data were already fit to the non-competitive model
(Figure 2C), and we performed the same analysis with the
competitive model. Both models resulted in similar fits
(expression, occupancy R2: 0.425, 0.556 and 0.431, 0.554,
non-competitive and competitive models, respectively; see
also Supplementary Table S5), although the competitive
model is marginally better at predicting expression.
However, the non-competitive model consistently set the
glucose Gcn4-RNAP term as highly unfavorable (i.e.
made Gcn4 a strong repressor in glucose) and resulted
in fits that rarely converged to similar parameter values
(<20% of the time) and usually resulted in singularities in
the parameter Jacobian matrix (>90%). In contrast, the
competitive model resulted in the same fit 50% of the time,
with a non-singular Jacobian matrix. In this best fit, the
difference in Gcn4–DNA binding energies between the
two conditions equates to fold change in the apparent
Ka of �25-fold, which is somewhat larger than previous
estimates (57), but is still biophysically plausible. Thus,
incorporating competition in the model resulted in a
more biologically reasonable fit.

DISCUSSION

We sought to improve our quantitative understanding
of the biophysical mechanisms underlying cis-regulation

by incorporating ChIP data into existing statistical
thermodynamic models of regulation. We compared
models parameterized with only expression, only occu-
pancy data and with both types of data. Comparing the
results of these modeling procedures revealed several
interesting features.

Gcn4 occupancy was more sensitive to the particular
configuration of binding sites in promoters, whereas Cbf1
appeared to bind promoters with almost no context-
dependent effects. In light of this result, it is interesting
to note that Cbf1 recruits chromatin remodeling complexes
(58,59), whereas Gcn4 directly recruits the transcriptional
machinery (53,54). Proper Cbf1 function may require the
ability to bind DNA regardless of what other factors are
binding nearby, including nucleosomes. In contrast, having
Gcn4 occupancy depend on a more specific local sequence
context might prevent inappropriate activation of non-
target genes. This line of reasoning suggests that TFs,
which directly recruit polymerase and related subunits,
will be more heavily influenced by binding site context
than so-called pioneer factors (60), which are involved in
earlier processes, such as chromatin remodeling.

Modeling complex systems requires a balance between
sufficient model complexity to capture the observed trends
and sufficient simplicity to avoid over-fitting the data. We
have attempted to err on the side of simplicity. Although
the model generally performed well, the predictive ability
with regards to expression decreased when incorporating
the occupancy data because the fitting tended to favor
fitting the occupancy data. This is partially due to the
magnitude of residuals in the occupancy data relative to
the residuals in the expression data. But it also suggests
that the relationship between occupancy and expression in
the data is more complex than the simple protein–protein
interaction energies expressed in our model. Additionally,
in our attempt to keep the model as simple as possible, we
have avoided incorporating spacing, orientation and edge
effects. Subsequent model refinements could look at these
effects and attempt to describe a richer activation scheme
than our current model.

In all, we find that integrating protein binding informa-
tion in the form of ChIP data with expression data
provides the ability to quantitatively reason about the
biophysical mechanisms that underlie observed expression
data and to distinguish between distinct biophysical
mechanisms that can give rise to the same expression
patterns.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [61–65].
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