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Abstract:  Cells accumulate mutations throughout development, contributing to cancer, aging, and 
evolution. Quantitative data on the abundance of de novo mutations within plants or animals are 
limited, as new mutations are often rare within a tissue and fall below the limits of current sequencing 
depths and error rates. Here, we show that mutations induced by the maize Mutator (Mu) transposon 
can be reliably quantified down to a detection limit of 1 part in 12,000. We measured the abundance of
millions of de novo Mu insertions across four tissue types. Within a tissue, the distribution of de novo 
Mu allele frequencies was highly reproducible between plants, showing that, despite the stochastic 
nature of mutation, repeated statistical patterns of mutation abundance emerge. In contrast, there 
were significant differences in the allele frequency distribution between tissues. At the extremes, root 
was dominated by a small number of highly abundant de novo insertions, while endosperm was 
characterized by thousands of insertions at low allele frequencies. Finally, we used the measured 
pollen allele frequencies to reinterpret a classic genetic experiment, showing that evidence for late Mu 
activity in pollen are better explained by cell division statistics. These results provide insight into the 
complexity of mutation accumulation in multicellular organisms and a system to interrogate the factors 
that shape mutation abundance.
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INTRODUCTION

Multicellular organisms accumulate mutations throughout development, producing genetic 
heterogeneity within and between tissues. With the increased sensitivity to detect de novo mutations 
through sequencing, it has become clear that genetic mosaicism is ubiquitous even in healthy 
individuals1–8: over 1,000 single-base substitutions are present per adult human fibroblast1 and 
megabase-sized structural variants can be observed in 30% of healthy human neurons2. In plants, low
frequency mutations can be transmitted to the next generation3, and preexisting (somatic) mutations 
contribute to variation between plants regenerated in tissue culture4.

To interpret and predict the effect of de novo mutations, it is critical to understand what influences their
abundance and spread within the organism. This is challenging for both biological and technical 
reasons. Biologically, mutation accumulation is complex and depends on processes that impact the 
initial mutation rate (e.g. mutagenic exposure, DNA repair) as well as the spread of mutations once 
they arise (e.g. tissue development, selection, cell death). While there have been theoretical advances
in understanding how these factors interact to shape mutation abundance9–15, there is need for 
quantitative, empirical data to constrain and inform the theory.

This is where the technical challenge comes in: new mutations can span many orders of magnitude in 
their abundance, down to 1 per cell, pushing the limits of current sequencing depths and error rates. 
To date, genome-wide studies on de novo mutations in plants and animals have reported detection 
limits around 1-5%2–8 (Fig. S1A), which cover only the most abundant mutations. Targeted sequencing
has helped bridge this gap16–20, with an inverse relationship between genomic coverage and sensitivity 
to detect rare mutations (Fig. S1A). However, targeted sequencing still suffers from a limited dynamic 
range, as more abundant mutations are unlikely to occur within a narrow genomic window.

Mutations caused by transposable elements (TEs) play important roles in evolution, contributing to
genome-size evolution21,  alleles selected during crop domestication22,  and the origin of new genes
through exon shuffling23. Unlike other classes of mutation, TE insertions introduce defined sequences
into the genome that can be targeted by PCR24.  The potential  of  this is  significant:  by selectively
amplifying  only  genome sequences containing the  TE,  de novo insertions  can be identified  without
sequencing through an overwhelming number of wild-type copies at the same location  (Fig. S1B).
This shares advantages of targeted mutation sequencing without needing to focus on a predefined
genomic region.

Here, we evaluate the maize Mutator (Mu) transposon as a quantitative model of  de novo mutation
accumulation  in  multicellular  tissues.  Mu  has  long  been  a  valuable  model  in  maize  genetics25–

28 because of its high forward mutation rate, availability of both Mu-active and inactive genetic stocks,
and ease of identifying Mu insertion locations by sequencing24,29. Mu is a class I (DNA) transposon that
predominately transposes duplicatively,  i.e.  transposing to new locations without loss of  the donor
element30; this apparent ‘copy-and-paste’ behavior is thought to be caused by DNA repair pathways
that restore the original sequence after transposition25,26. Mu transposes into unlinked sites, with no
preference to insert near its site of origin30.

We find that Mu sequencing can accurately measure the absolute allele frequencies of  de novo Mu
insertions within complex tissues, with a sensitivity, dynamic range, and error rate that are orders of
magnitude better than currently possible for single-base substitutions. We then  measured the allele
frequency distribution for  de novo Mu insertions in leaf, root, pollen and endosperm. Mu had broad
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activity in all four tissues, with no evidence for a preference of late insertion in pollen.  These results
provide a rich dataset with which to test and refine theoretical models of mutation accumulation in
multicellular organisms, and highlight the importance of tissue organization in shaping the abundance
of de novo mutations during development.

RESULTS

Sensitive identification of de novo TE insertion sites.  To identify Mu TE insertions, we established
a sequencing assay based on MuSeq24, which has been widely used to map Mu insertions in maize 
genetic stocks24,31,32. MuSeq applies nested PCR to specifically amplify and sequence DNA fragments 
that span the TE-genome boundary (Fig. S2). We optimized MuSeq for quantifying the abundance of 
rare, de novo TE insertions within heterogeneous tissue samples. Two key changes were 
implemented in ‘MuSeq2’; first, we introduced molecule counting by incorporating unique molecular 
identifiers33 (UMIs) during an initial adapter ligation step (Fig. S2). This makes it possible to identify 
and remove PCR duplicates, improving quantitative accuracy. Second, we limited the amplification of 
non-Mu products using suppression PCR, providing more specific transposon amplification with fewer 
PCR cycles (Fig. S3).

To test MuSeq2, we first applied it to seedling leaves from Mu-active and inactive maize lines. 
Samples were sequenced to a mean of 1.7 and 2.9 million TE-spanning molecules per Mu-active and 
inactive plant, respectively. For the inactive plants, all Mu elements are expected to map to a fixed set 
of genomic locations, representing historical TE insertions. Indeed, 99.8% of molecules from Mu-
inactive samples mapped to only 29 locations (Table S1). In contrast, Mu-active plants had Mu 
elements mapping to a wide range of new genomic sites (Fig. S4A,B), with a mean of 184,410 
insertion sites detected per leaf. These can be confirmed as bona fide Mu insertions because (i) the 
TE border was consistently sequenced along with the genomic region (Fig. S4C) and (ii) 123,312 sites
were sequenced out of both directions of the TE, including the 9 bp target site duplication that is 
characteristic of Mu insertions26. To estimate the error rate of MuSeq2, we leveraged the fact that Mu-
inactive lines have a negligible rate of new Mu transposition, providing a genetic control for no 
transposon activity. Assuming that all molecules mapping outside the 29 historical locations were false
positives, the error rate of MuSeq2 is 0.1 falsely identified insertions per diploid cell (2.6 x 10-11 false 
positive insertions per bp), two orders of magnitude lower than the most accurate duplex methods to 
measure single-base substitutions34.

De novo and inherited Mu insertions across matched tissues.  We next applied MuSeq2 to leaf, 
pollen, endosperm, and root from Mu-active plants. Our experimental design used a combination of 
sequential tissue isolations and controlled genetic crosses to unambiguously separate de novo 
insertions from inherited ones, and further divide the inherited insertions by parent-of-origin (Fig. 1A). 
First, the plants were generated from a cross between a Mu-inactive female and Mu-active male; the 
female parent contributes a defined set of historical insertions (Fig. 1B; Table S1), and so all other 
insertion sites in the offspring are either de novo or paternally inherited. To distinguish de novo from 
paternally inherited insertions, we used matched tissues with early and well-defined divergence times. 
The endosperm, which comprises the bulk of maize seed mass, inherits its paternal DNA from a sister 
sperm cell during double fertilization (Fig. 1A, left). Thus, insertions present at high abundance in both

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2025. ; https://doi.org/10.1101/2025.01.22.634239doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.22.634239
http://creativecommons.org/licenses/by-nc-nd/4.0/


endosperm and embryo-derived tissues must be paternally inherited (hereafter: ‘paternal insertions’). 
Indeed, paternal insertions were well-separated from de novo insertions based on their abundance in 
both endosperm and other tissues from the same plant (Fig. 1B,C).

To determine the Mu insertion rate in our line, we compared the inherited insertions between parents 
and their offspring. On average, there were 1.1 x 10-8 new Mu insertions per bp per generation; for 
context, this is comparable to the per generation single-base substitution rate in Arabidopsis35 (0.7 x 
10-8), maize36 (1.6 x 10-8), and human37 (1.3 x 10-8). Thus, while the Mu-active line has an unusually 
high mutation rate for a change the size of a TE insertion (>1 kb for Mu elements), the number of 
events is similar to the background rate of single-base substitutions.

4

Figure 1. Sensitive and quantitative assessment of de novo mutation abundance for an active maize 
transposon. 

(A) Cartoon of experimental design and tissue collection. Sequential, matched isolations from endosperm and other 
tissues make it possible to distinguish inherited from de novo insertions, because endosperm is derived from a sister 
sperm cell during double fertilization.

(B) Heatmap showing the abundance of Mu insertions in matched tissue samples from two siblings as well as control 
Mu-inactive plants. The Mu-inactive samples were from the family used as the female parent, and represent historical
insertions that were maternally inherited. All insertion sites with >= 2500 CPM in at least one of the samples are 
shown. CPM, counts per million (number of TE-spanning molecules at a given genomic site).

(C) Allele frequencies of Mu insertions for matched endosperm and leaf from a single plant. Paternal insertions were 
abundant in both samples, while de novo insertions were only abundant in one (e.g. gray arrow). Black dot, de novo 
insertion; red dot, paternal insertion; VAF, variant allele frequency.

(D) Technical replicates for a representative leaf sample.
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Quantifying absolute allele frequencies of de novo Mu insertions.  The initial output of MuSeq2 is 
the relative abundance of different Mu insertion sites within a sample. To convert relative abundances 
(UMI counts) to absolute allele frequencies (variant allele frequency; VAF), we normalized the data 
using the paternal insertions, which have a known allele frequency within the sample: 0.5 
(heterozygous) in leaf, root and pollen and 0.33 in triploid endosperm (this normalization is insensitive 
to realistic Mu excision rates; Fig. S5). The measured allele frequencies were reproducible between 
technical replicates (independent libraries prepared from the same DNA; Fig. 1D), with strong 
quantitative agreement across 5 orders of magnitude (R2 = 0.997 for all insertions; R2 = 0.955 for de 
novo insertions). In contrast, there was no correlation in the abundance of de novo insertions between 
matched tissues from the same plant (Fig. 1C), reflecting their independent and recent origin. In total, 
MuSeq2 measured TE allele frequencies down to a detection limit of 8.3 x10-5 for the median sample 
(1 part in 12,029).

To validate the measured allele frequencies, we leveraged the fact that allele frequencies in pollen 
should match those in the next generation (Fig. 2A). First, we asked whether the pollen data could 
accurately predict the number of inherited insertions per plant. The expected number of paternal 
insertions can be calculated as the sum of allele frequencies (Σvafi). From pollen, we predict an 
average of 46.5 paternal insertions per plant, in close agreement with the empirical value of 48.7 (Fig. 
2B). Similarly, the expected number of paternal insertions shared by any two siblings (e.g. 17 
insertions were shared by the siblings in Fig. 1B) can be estimated as the sum of allele frequencies 
squared (Σvafi

2). The pollen data predicts that 13.4 inherited insertions would be shared by siblings, 
again in agreement with the empirical value of 13.8 (Fig. 2C). Thus, allele frequencies measured in 
pollen accurately match paternal inheritance patterns in the offspring.

De novo Mu insertions occur at a wide range of allele frequencies.  A histogram of Mu allele 
frequencies for a representative leaf sample is shown in Fig 3A. There were 211,097 de novo 
insertions detected in this single leaf, with allele frequencies ranging from 0.28 down to <10-4 (the 
detection limit of the assay). These data suggest that Mu is active throughout development, including 
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Figure 2. Pollen allele frequencies match paternal inheritance patterns.

(A) Allele frequencies in pollen should predict allele frequencies in the 
offspring.

(B) Number of paternal insertions per plant, measured in offspring (gray) or 
estimated from the pollen allele frequency distribution (red). N.S. not 
significant (p = 0.67, Mann-Whitney U test).

(C) Number of paternal insertions shared by two siblings, measured in 
offspring (gray) or estimated from the pollen allele frequency distribution 
(red). N.S. not significant (p = 0.42, Mann-Whitney U test). For panels B and 
C, N = 30 offspring, 9 pollen samples. Insertions on chromosome 9 were 
excluded because a reporter gene on this chromosome (bz1) was actively 
selected to maintain Mu activity, skewing allele frequencies for linked TEs.
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insertions that likely arose in the meristem (based on their high abundance38; Fig. 3A) down to lower 
frequency insertions that more likely arose in the leaf itself39. Mu has a strong preference to insert into 
and immediately upstream of genes29, targeting a reduced portion of the genome. Despite this, we did 
not observe saturation of the available Mu target sites (Fig. S6). The most abundant de novo Mu 
insertions occurred at uncorrelated, independent sites between samples (Fig. 1C). Thus, the specific 
mutations induced by Mutator were stochastic and infrequently repeated between plants. In contrast, 
the allele frequency distribution was highly reproducible across its entire range (Fig. 3B). Essentially, 
while the specific set of transposon insertions varied widely, a predictable number of insertions were 
present at any given abundance.

Mu insertion activity is much broader than for Mu excisions.  The majority of prior data on 
somatic Mu activity is based on the excision of Mu elements in the endosperm25,26,40, which can be 
observed by the appearance of revertant purple sectors after Mu excises from an anthocyanin reporter
gene (Fig. S7). Endosperm excisions produce almost entirely small sectors40, suggesting that Mu 
excision activity is highest later in development25,26. The excision rate also varies 1000-fold between 
tissues, ranging from ~10% excisions per element in endosperm40 down to <10-4 excisions per element
transmitted through pollen26. Compared to excisions, de novo Mu insertions were much more broadly 
distributed across space and time (Fig. 4A). There was substantial new insertion activity in every 
tissue type, despite large divergence in the developmental origins and biology of the selected tissues. 
Furthermore, de novo Mu insertions were observed at a wide range of allele frequencies. While Mu 
excisions almost never occur above an allele frequency of 0.00240, Mu insertions were often observed 
beyond this limit, even within endosperm (Fig. 4A and S7). Thus, Mu insertions and excisions behave 
differently, with Mu insertions being more widely distributed.

Tissues show distinct allele frequency distributions for de novo Mu insertions.  While not as 
dramatic as the divergence between excisions and insertions, there were significant differences in the 
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Figure 3. De novo Mu insertions occur across a wide range of allele frequencies.

(A) Histogram of Mu allele frequencies in a representative leaf sample. Colors indicate whether the insertion sites were 
historical, paternally inherited, or de novo. Cartoons on top show the potential spatial distribution of mutations at 
selected VAFs, estimated from sector sizes in ref. 39. Top bracket, insertions that likely originated in the meristem, 
based on estimate that 250 meristematic cells form a leaf primordia in maize38. VAF, variant allele frequency.

(B) Cumulative number of Mu insertion sites in individual leaf samples (N = 6). Dashed line, best linear fit to the log-log 
transformed data; gray dotted line, theoretical expectation for random mutation in an exponentially dividing cell 
population (Luria-Delbrück distribution).
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behavior of de novo Mu insertions between tissues (Fig. 4). The total number of de novo insertions 
per cell varied by up to 4-fold (Fig. 4B), ranging from 8.2 in root to 32.8 in leaf. Moreover, each tissue 
had a reproducible but distinct allele frequency distribution (Fig. 4A). Root was most dominated by 
insertions at high allele frequencies (Fig. 4B,C), suggesting that new Mu insertions often formed 
relatively large sectors in this tissue. At the other extreme, endosperm had a much higher proportion of
rare (low VAF) insertions. Thus, there was variation not only in the total number of Mu insertions, but 
also in how widespread the individual insertions were throughout the tissue.

What might contribute to the observed allele frequencies? Since early studies on bacterial mutation by
Luria and Delbrück, many theoretical models of mutation accumulation have been developed. As a 
starting place, we compared the empirical allele frequency distributions to established theory. Leaf, 
pollen, and endosperm all closely followed a linear relationship on a log-log plot (a power law 
distribution; Fig. 3B and S8). Power-law relationships are well-known in mutation accumulation14, as 
this distribution occurs in an exponentially dividing cell population subjected to a constant rate of 
neutral mutations (a Luria-Delbrück process). However, the empirical data was a bad fit to the Luria-
Delbrück model, because the slopes were far steeper than the theoretical expectation14 of -1 (Fig. 3B 
and S8). In animals, a common model for mutation accumulation is based on an exponential growth 
phase early in development, followed by a later, stable-population phase9,41–44; however, this model 
predicts a strong deviation from power law behavior and a shallow slope for much of the range, again 
a poor fit to the data (Fig. S9). Other models of mutation accumulation, including boundary-driven 
growth13,14 (where cells divide preferentially at the edge of an expanding population), linear 
growth9 (such as occurs during asymmetric stem-cell divisions), and the glandular fission 
model12 (developed for solid cancer tumors) also predict sharp deviations from power law behavior. 
Given the complexity of multicellular development and transposon regulation, it is perhaps 
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Figure 4. Allele frequency distribution of de novo 
Mu insertions across maize tissue types.

(A) Cumulative number of de novo Mu insertion sites at
different allele frequencies. For insertion data (solid 
lines), curves show the mean and 95% confidence 
interval (bootstrap test). For endosperm excision data 
(dotted line), curve shows the reported values; shaded 
area, 95% confidence interval assuming Poisson 
counting error. Endosperm excision data is from ref. 
40; the reported number of excision events was 
multiplied by 10 to make the insertion and excision 
distributions easier to compare. VAF, variant allele 
frequency.

(B,C) Number and % of de novo Mu insertions per cell,
calculated from the sum of allele frequencies (Σvafi). 
Colors indicate the contribution of insertions at different
allele frequencies.
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unsurprising that established theory cannot explain the data. The availability of quantitative allele 
frequency data across several orders of magnitude can inform and constrain future theoretical 
developments to understand mutation accumulation in plants.

Mu outcross experiments can be explained by cell division statistics.  The classic view has been 
that Mu is most active late in germinal development25–28, with activity peaking around the time of 
meiosis or during pollen maturation. In contrast, our data suggests that Mu insertions occur rather 
continuously throughout development (Fig. 4A). The most direct evidence for Mu activity late in 
germinal development comes from a study by Robertson27, in which he outcrossed Mu-active plants 
and characterized new mutations in the F1 offspring (Fig. 5A). He identified 177 mutant F1 plants that 
segregated recessive seedling phenotypes; then, through extensive complementation testing, 
determined that 82.8% of the F1 offspring had unique mutations. The frequent occurrence of unique 
mutations among the offspring led to the idea that Mu must be most active late in development25–28.

To reconcile these results, we directly compared our data to Robertson (1980). We previously showed 
that pollen allele frequency data can predict inheritance patterns in the offspring (Fig. 2); this approach
can also be used to predict more complex experimental designs, such as Robertson’s. We simulated 
Robertson’s experiment 1,000 times, randomly drawing new mutations at probabilities defined by the 
bulk pollen data (see Methods). On average, the simulations predict that 83.3% of F1 offspring would 
have unique mutations (Fig. 5B), in close agreement with the reported value (p = .83, two-tailed 
bootstrap test). An advantage of the simulated experiments is that it is possible to computationally go 
‘back in time’ and see how abundant any given mutation was in the Mu-active parent (Fig. S10). For 
offspring that shared mutations with 2+ siblings, the source mutations had an average allele frequency
of 0.13 in pollen (consistent with a mutation at the time the seed was planted45); thus, the fact that 
Robertson observed any such offspring (8.2% of the total) suggests that early Mu activity occurred at 
an appreciable rate in this experiment.

Here, we can provide an alternative explanation for Robertson’s data: in a dividing cell population, 
most mutations will be rare simply because there are more cells later in development and therefore 
more opportunities for a mutation to occur. While there is one chance for a mutation in the zygote, 
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Figure 5. Pollen allele frequencies are consistent with outcross data from classical genetics.

(A) Experimental design from Robertson (1980). F1 offspring were generated by outcrossing a Mu-active male parent, 
then the offspring were assessed for appearance of visible mutant phenotypes after self-fertilization. F1 siblings 
segregating similar mutant phenotypes were subjected to complementation testing to determine if they shared the same 
(allelic) mutation.

(B) The experimental design in A was simulated using mutant alleles randomly drawn with probabilities matching the 
measured pollen allele frequencies. The % of F1 offspring that share mutations with 0, 1, or 2+ siblings were then 
calculated and compared to Robertson (1980). Error bars, standard error of the mean.
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there are two in the following division, then four, and so forth. This effect will lead to increasing 
numbers of mutations at decreasing allele frequencies, as was observed in all tissues for Mu 
insertions (Fig. 3A) and is even predicted by the Luria-Delbrück distribution (Fig. 2B). Rather than 
evidence for tissue-specific activity, the preponderance of unique mutations in Mu outcross families is 
better explained by the statistics of cell division.

DISCUSSION

De novo mutations are difficult to identify because they can be extremely rare within a tissue. This has 
led to an acute depth-vs-breath trade-off46, where mutations can either be sequenced to lower depth 
across the genome or at higher depth for targeted loci. Here, we overcame this technical barrier with a
strategic model system – the maize Mu transposon. We show that Mu sequencing can accurately 
measure the absolute allele frequency of de novo TE insertions genome-wide, while achieving a 
detection limit rivaling the most sensitive of targeted mutation studies18.

As a model of mutation, a limitation of our approach is that it is only applicable to TEs; however, 
several findings are likely to be representative of other mutation classes. First, there were a large 
number (>100,000) of de novo Mu insertions per sample. If single-base substitutions could be 
sequenced to the same depth, a similar number of events might be expected. It has been estimated 
that every gene is mutated multiple times in an organism the size of maize or humans9, a prediction 
consistent with data from deep sequencing single-genes18. The number of de novo Mu insertions per 
cell was similar to the germline single-base substitution rate in Arabidopsis35 and far below the number
of single-base substations per somatic cell in animals34. Thus, Mu simply provides a glimpse into the 
scope of genetic mosaicism for an organism with a cell population measured in the trillions.

Second, most de novo mutations were present at low allele frequencies. A strong trend towards low 
frequency mutation is expected from the statistics of cell division, as there are exponentially more cells
later in development and thus more chances for mutations to occur. While individually rare, these 
mutations can collectively add up to important effects and may contribute to aging, cancer, and 
evolution. Finally, tissues varied not only in the number of mutations per cell, but also in how 
widespread the mutations were. When considering the rise and spread of de novo mutations, it will be 
important to recognize that multicellular organisms are large, complex populations with extensive 
heterogeneity.

Our results provide greater resolution into Mu activity across maize tissues. Mu insertions have been 
observed in somatic tissues such as leaf29, but quantitative data on their number and abundance were 
not available. We found that Mu insertions occurred continuously throughout development in both 
somatic and germinal tissue. This is in contrast to Mu excisions, as there is a clear bias against early 
excision activity40 and a >1,000-fold range in excision rates between endosperm40 and pollen26 (vs. 4-
fold maximum range for de novo insertions). This provides further evidence that Mu insertions can be 
decoupled from excision outcomes, perhaps due to tissue-specific differences in the use of DNA repair
to restore a Mu element after a transient excision event26.

What might drive the tissue-specific variation in Mu allele frequencies? Differences in transposon 
activity may contribute, but are not the only explanation. For instance, spatial biases in cell division 
rates have a profound impact on mutant allele frequencies9,11–13, and so differences in tissue 
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development may contribute to the patterns we observed. Selection for and against specific mutations 
has been observed in healthy human tissues16, and might similarly impact the persistence or spread of
de novo Mu insertions. Future work can dissect the relative contribution of tissue-specific transposon 
activity, cell division patterns, selection, and other processes on the ultimate abundance of de novo 
mutations within and across the plant.
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METHODS

Literature survey on VAF detection limit vs. genomic coverage

For Fig. S1A, only papers that reported VAFs in the main text or figures were considered. The 
selected studies were not meant to be exhaustive, but rather representative of a range of techniques 
and mutation types. VAF detection limits were as given in each paper; when multiple limits were 
provided for different sample types (e.g. tissues), the lowest reported value was used. For targeted 
sequencing studies, genomic coverage was calculated from the reported target size divided by the 
mappable genome size48: 2,864,785,220 bp for human and 119,482,012 bp for Arabidopsis. For the 
purposes of the figure, whole-genome sequencing papers were considered to have 100% genomic 
coverage.

Two classes of study were not included: First, studies that identified de novo mutations from transcript 
data were excluded (e.g. ref 49). RNA-seq produces very uneven read depths across the genome, and 
so there is not a well-defined relationship between VAF detection limit and genome coverage – highly 
expressed genes, which represent a small portion of the transcriptome, dominate the minimum 
observed VAFs. Single-cell mutation studies were also not included50. This was not due to active 
exclusion, but rather because available single-cell mutation papers largely do not report VAF detection
limits. While single-cell methods provide additional cell-type resolution and information about cell-to-
cell variation, they do not fundamentally overcome the limitations on sequencing depth and error rates 
that are also present in bulk experiments.

Plant growth and tissue collection

Mu-active plants were maintained by continual outcrossing of Mu-active pollen onto Mu inactive ears, 
using the bz1-Mum9 anthocyanin reporter to confirm Mu activity. The Mu-inactive maintainer (female) 
parents were descended from maize Co-op stock 910I, and carry the sh1-bb1981 and bz1-m4::Ds 
alleles. Mu-active seeds were descended from maize Co-op stock 919J, which carries a mutable bz1-
Mum9 allele. Both stocks were originally ordered from the Stock Center in January 2010 by Jonathan 
Gent. Continual outcrossing of Mu active lines onto Mu inactive ears was required to maintain Mu 
activity. Mu active kernels were phenotypically identified by the speckling pattern that occurs when Mu 
somatically excises from the bz1-Mum9 allele.

For tissue collection, kernels were chipped using a razor blade and the resulting endosperm samples 
were stored in 2 mL tubes and frozen. To minimize sample cross-contamination, the surface that 
kernels were chipped on was wiped with a 10% bleach solution and razor blades were only used 
once. Chipped kernels were then planted in vermiculite (Therm-O-Rock Vermiculite 3A-HORT 
Medium). After the second seedling leaf was fully emerged (V2 stage; 10-13 days after planting), 
plants were removed from vermiculite. Roots were rinsed thoroughly in water to remove any 
vermiculite, and ~1 inch of the primary root was collected into 2 mL tubes and frozen. The topmost half
of the first leaf (~3/4 inch) was also harvested and collected into 2 mL tubes and frozen. Seedlings 
were then transplanted to soil in the Botany Greenhouses in Athens, Georgia, where they were grown 
in sunlight supplemented with LED fluorescent lights (Medic Grow 550W Slim Power 2) until maturity. 
At maturity, pollen was collected into 2 mL tubes in the morning from the plants at first pollen shed (9-
10 am) and frozen.
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DNA isolation

Leaf DNA isolation: Leaf tissue was disrupted in a 2 mL tube using liquid nitrogen and a pestle (Agilent
cat. no. PES-15-B-SI). Once disrupted, DNA was extracted with the Qiagen DNeasy Plant Mini Kit 
(Qiagen cat. no. 69104) and eluted in two steps, first with 30 ul of elution buffer followed by 25 uL 
elution buffer. DNA size distributions were evaluated using 5 ul of sample on a 0.8% agarose gel.

Root DNA isolation: Root tissue was disrupted with a Qiagen Tissue Lyser II and three to six 3 mm 
glass beads per sample. Prior to disruption, the sample box was chilled overnight at -80 °C with root 
samples and 3 mm glass beads inside. Pre-chilled root tissue was then shaken in the Tissue Lyser at 
max frequency for 5 minutes. Samples were removed from the shaker and agitated using a pestle to 
dislodge root debris from the tube walls. Shaking was repeated at max frequency for 5 minutes. After 
this process, root DNA was extracted as described for leaf isolation using the Qiagen DNeasy Plant 
Mini Kit. DNA size distributions were evaluated on a 0.8% agarose gel. 

Endosperm DNA isolation: Genomic DNA was isolated from endosperm using a modified CTAB DNA 
extraction protocol. To prepare CTAB buffer, CTAB stock was made with 3% Cetyltrimethyl ammonium
bromide, 1.4 M NaCl, 20 mM EDTA (pH 8.0), 100 mM Tris-Cl (pH 8.0). The day of DNA extractions, 
2% w/v polyvinylpyrrolidone (PVP, MW 40 kDa) was dissolved into CTAB stock by heating the solution 
to 65 °C, and then 800 ul preheated lysis buffer was aliquoted into tubes (one tube per sample to be 
processed). Then 8 ul proteinase k (ThermoFisher cat. no. EO0491) and 1 ul beta-mercaptoethanol 
were added to each tube.

Endosperm tissue was disrupted using liquid nitrogen, mortar, and pestle. Disrupted tissue was then 
incubated at 65º C for 1 h in the preheated lysis buffer. Samples were inverted to mix every 10 
minutes during incubation. Following this, samples were spun down at 5000 rcf for 8 mins to pellet 
tissue debris. Lysate was transferred to a new tube using a metal spatula and combined with 1 volume
of a 24:1 chloroform isoamyl alcohol solution. Samples were mixed by inversion for 5 minutes and 
then centrifuged at 8,000 rcf for 10 minutes. The upper aqueous phase was carefully transferred to a 
new tube following centrifugation. To precipitate DNA, 0.7X volumes of cold isopropanol was added to 
each sample and inverted to mix. Samples were incubated at -20 °C for 1 hour. Samples were then 
centrifuged at 10,000 rcf for 15 minutes. The supernatant was removed and the DNA pellet was 
washed using 1000 ul of freshly prepared 70% ethanol. Samples were inverted to mix and incubated 
at room temperature for 5 minutes. Samples were then centrifuged for 5 minutes at 10,000 rcf. The 
ethanol wash was repeated one more time and DNA pellets were dried until the pellet became 
translucent. The DNA pellet was resuspended using 55 ul of ultra-pure H2O (ThermoFisher cat. no. 
10977015) and incubated overnight at 4 °C. Size distributions were visualized using 5 ul of purified 
DNA on a 0.8% agarose gel. The first batch of endosperm samples showed signs of cross-
contamination; these data were used to identify paternal insertions but excluded from all other 
analyses (see ‘Sample assessment and quality control’). Prior to processing subsequent endosperm 
samples, the mortar, pestle, and metal spatula were incubated for 5 min in 10% bleach solution and 
then thoroughly rinsed with water; this additional washing step removed the cross-contamination.

Pollen DNA isolation: Pollen was disrupted using a Qiagen Tissue Lyser II as described for root. 
During disruption, pollen debris would stick to the lid of the tubes and so a pestle was used to scrape 
off the debris into the tube. After disruption, 800 ul of preheated CTAB lysis buffer (prepared as 
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described for endosperm) was added to each sample. A pestle was again used to scrape off any 
material from the tube lid back into the tube as well as break up any pellet that had formed in the 
bottom of the tube. This step ensured a homogenous mixture during lysis, which greatly increased 
DNA quality and quantity. DNA extractions were then performed as described for endosperm, with the 
additional of third ethanol wash after DNA precipitation. The first batch of pollen samples had much 
lower sequencing depth compared to the other tissues (lower UMIs / sample). For subsequent 
samples, pollen DNA was purified an additional time with a Monarch DNA and PCR cleanup kit (New 
England Biolabs cat. no. T1030S); the DNA cleanup kit was performed after CTAB extraction and DNA
shearing, prior to the end repair step in MuSeq2.

MuSeq2 adapter preparation

MuSeq2 adapter oligos (Table S2) were ordered from Integrated DNA Technologies, suspended to 
100 uM in TE. The general adapter structure is as follows:

5’-[phos]rrrrrrrrrrUGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNbbbbbbbbbbT-3’

The 10 nt sequences labeled as strings of ‘r’ and ‘b’ are reverse complements of each other, allowing 
the adapter to form a hairpin with a 3’ T overhang. These sequences vary by adapter (Table S2), 
providing a sample-specific barcode during adapter ligation. The series of ‘N’s is the 10 nt Unique 
Molecular Identifier (UMI). A uracil (U) near the 5’ end makes it possible to cut the hairpin after adapter
ligation. Read 2 begins at the UMI and continues through the sample barcode and subsequent 
genome sequence.

To prepare MuSeq2 adapters and anneal the hairpin, 7.5 ul of adapter oligo (100 uM) was diluted with 
25 ul Duplex Buffer (Integrated DNA Technologies cat. no. 11-05-01-03) and 17.5 ul H2O. Diluted 
adapters were then placed in a thermocycler and incubated at 95ºC for 2 minutes followed by a .1º C 
ramp down in 1-second intervals for 700 cycles, reaching a final temperature of 10ºC. Adapters were 
then stored at -80ºC.

MuSeq2 library preparation

DNA samples were sheared using a Covaris E220 Evolution instrument in 50 uL of water. Shearing 
settings were optimized for each tissue to shear to a mean of 1000 bp. All tissues used settings of 2% 
Duty Factor with 200 cycles per burst. For pollen, the peak incident power was 140 and time was 50 
seconds; Endosperm: 100 Peak Incident Power and 30 seconds; Leaf: 70 Peak Incident Power and 
30 seconds. Root: 100 Peak Incident Power and 20 seconds. Concentrations and size distributions for
sheared DNA was measured using an Agilent 4200 TapeStation with a D5000 screentape (Agilent cat. 
no. 5067-5589).

Sheared DNA (200-1000 ng / sample) was end-repaired using the NEBNext Ultra II DNA Library 
Preparation Kit (New England Biolabs cat. no. E7370L) according to manufacturer instructions, except
that all reaction volumes were cut in half. MuSeq2 adapters were then ligated to the DNA using the 
same kit (NEBNext Ultra II) with half reaction volumes; a separate adapter was used for each sample, 
providing up to 48 sample-specific barcodes during the initial ligation step. After ligation, 1.5 uL USER 
enzyme (New England Biolabs cat. no. M5505S) and 2 uL Exonuclease 1 (New England Biolabs cat. 
no. M0293S) were added to each sample and the reaction was incubated at 37 for 15 min then 80 °C 

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2025. ; https://doi.org/10.1101/2025.01.22.634239doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.22.634239
http://creativecommons.org/licenses/by-nc-nd/4.0/


for 15 min. This step linearizes the hairpin adapters by cleaving at a uracil base, and the addition of 
Exonuclease 1 degrades residual unligated adapter to minimize carryover in subsequent PCR. 
Samples were then purified with Ampure XP Beads (Beckman Coulter cat. No A63880) using a 
bead:sample ratio of 0.8X. After bead purification, libraries were resuspended in 5 ul ultra-pure H2O.

Adpter ligated libraries were processed through 3 rounds of PCR to selectively amplify Mu-containing 
fragments and complete the Illumina adapter sequences (PCR primer sequences in Table S3). For the
first PCR, 5 ul sample was mixed with 6 ul NEBNext Ultra II Q5 Master Mix (New England Biolabs cat. 
no. M0544S), 0.5 ul TIR6 primer (4.8 uM stock concentration; 0.2 uM final), and 0.5 ul UDz_i7 primer 
(4.8 uM stock concentration; 0.2 uM final). Reactions were pipetted to mix and incubated at 98 °C for 
30 s, then 14 cycles of 98 °C for 10 s, 65 °C for 30 s, and 72°C for 30 s, followed by 72 °C for 2 min. 
To remove excess primers, 0.5 ul Exonuclease I was added and the tube was incubated at 37 °C for 
15 min then 80 °C for 15 min.

For PCR2, an additional 4 ul of Q5 master mix was added along with 0.4 ul of Museq2_NestedTIR 
primer (10 uM stock), 0.4 ul of P7 primer (10 uM stock), and 2.7 ul of ultra-pure H2O. Reactions were 
pipetted to mix and incubated at 98 °C for 30 s, then 6 cycles of 98 °C for 10 s, 59 °C for 30 s, and 
72°C for 30 s, followed by 72 °C for 2 min. To remove excess primers, 0.5 ul Exonuclease I was added
and the tube was incubated at 37 °C for 15 min then 80 °C for 15 min.

For PCR3, 5 ul of PCR2 product was mixed with 25 ul Q5 master mix, 19.5 ul ultra-pure H2O, and 5.5 
ul xGen indexed primer pairs (Integrated DNA Technologies xGen UDI Primers Plate 1, cat. no. 
10005922). A distinct primer pair was added to each sample to allow for multiplexing. Reactions were 
pipetted to mix and incubated at 98 °C for 30 s, then 5-15 cycles of 98 °C for 10 s, 59 °C for 30 s, and 
72°C for 30 s, followed by 72 °C for 2 min. The number of PCR cycles varied by sample and was 
determined using qPCR as follows: prior to PCR3, 5 ul of the prepared PCR reaction was withdrawn 
and mixed with 0.5 ul of a 1:1000 dilution of SYBR Green I DNA Gel Stain (Thermo Fisher cat. no. 
S7563) in water. The reaction aliquot with SYBR was then run on a BioRad CFX96 Real Time PCR 
Thermal Cycler for 25 cycles using the reaction conditions listed above. The cycle number for each 
PCR reaction was chosen to be within 30-80% of the plateau height, and the remaining PCR mix was 
run using the selected cycle number.

After PCR, libraries were cleaned up and size selected using magnetic beads. For cleanup, 50 ul 
Ampure XP beads were added to each PCR sample (1X ratio) and then  the DNA was purified 
according to manufacturer instructions and eluted in 40 ul ultra-pure H2O. Size selection was then 
performed using SPRIselect beads (Beckman Coultier cat. no. B23317) with 0.6/0.8 bead ratios 
according to manufacturer instructions. DNA was eluted in a final volume of 20 ul and the size 
distribution and concentration was measured using an Agilent 4200 TapeStation with a D5000 
screentape. Libraries were pooled to 15 nM such that each individual library was equally represented. 
Paired-end 150 bp sequencing was performed at the Duke University Sequencing and Genomics 
Technologies Core on an Illumina NovaSeq X Plus instrument with 20% PhiX spike-in.

Mu insertion mapping and quantification

For MuSeq2 libraries, read 1 contains the last 29 bp of the Mu transposon followed by genomic DNA 
sequence. Read 1 was first pre-processed by removing the first 23 bp, which contain transposon 
sequence matching the PCR primer, and moving bp 24-29 (the ‘validation sequence’) to the read 
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header using Fastp v0.23.451 with all filters disabled. Read 2 contains the adapter ligated fragment 
with an 8 bp UMI, 11 bp sample-specific barcode, and genomic sequence. Read 2 was pre-processed 
using Fastp to move both the 8 nt UMI and 11 nt sample-specific barcode to the read header. During 
this step, adapter sequences were also trimmed and fragments with under 40 bp in read 2 were 
removed. Paired-end reads were then mapped to the W22 V2 genome47 using Bowtie2 v2.5.452, with 
both mixed and discordant mapping disabled (--no-mixed --no-discordant). The UMI-tools 
v1.1.653 ‘group’ function was used to identify reads sharing the same UMI while accounting for 
sequence errors.

Next, fragments were filtered using a custom R script to remove low quality mapping and PCR 
duplicates. Fragments were excluded if they had a mapping quality score <10 or a validation 
sequence that did not match ‘TRTCTC’ (the sequence at the edge of the Mu transposon). They were 
further excluded if they did not have an exact match to the sample-specific barcode added during 
adapter ligation. To remove PCR duplicates, fragments mapping to the same position (both read 1 and
2) with the same UMI were merged. The libraries in this study were intentionally over-sequenced to 
increase the amount of error-correcting from molecular counting, with a mean of 5.2 sequenced 
fragments per molecule (UMI). Each molecule was required to have a minimum support of at least 1/5 
the average number of reads for a given sample; for the median library, this means that each molecule
(UMI) was sequenced with a minimum of two reads.

Most Mu elements contain an intact Terminal Inverted Repeat (TIR) at both ends of the transposon, 
and so can be sequenced out of each direction. To connect molecules mapping to the left or right 
border of the same Mu element, the following steps were taken: First, for Mu elements present in the 
reference genome (N = 20; all historical insertions), the left and right borders were defined based on 
the genome sequence. For other Mu elements, the left and right borders were connected by expecting
a 9 bp target site duplication (TSD) to be generated during Mu insertion; this would result in both ends 
of the transposon mapping 8 bp apart in reverse orientation (for a 9 bp TSD, there is an 8 bp distance 
between positions 1 and 9). To allow for discrepancies in TSD length, we searched for cases where a 
left and right border were within 15 bp of the expected TSD, but where both borders had over 50-fold 
more molecule counts than the corresponding border 8 bp away. In such cases, the two borders with 
higher counts were considered to come from the same element. Deviations from the 9 bp TSD were 
rare, with only 273 such instances identified compared to more than 3 million with the ‘ideal’ 9 bp TSD.

The total number of molecule counts mapping to either the left or right transposon border were then 
added to provide a single estimate for each element. A subset of elements were not sequenced 
effectively out of both directions, which could result in under-counting as there was only one border 
available for sequencing instead of the usual two. To adjust for this effect, we identified any elements 
where there was a greater than 2-fold difference in molecule counts between the left and right border 
after adding a pseudocount of 500. For these elements, the number of molecules was estimated as 2 
times the greater of the left or right border counts. This process affected 422 elements (0.00013%). 
Finally, 19 elements were ‘blacklisted’ and removed from analysis (Table S4) because they were 
identified at moderate abundance (between 10-1000 counts per million) in over half of all samples or 
half of the Mu-inactive controls; many of the blacklisted sites were ancestral Mu elements with 
diverged sequences and would not be expected to amplify efficiently during MuSeq.
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Estimating variant allele frequencies from Mu count data

To convert Mu insertion counts to variant allele frequencies (VAF), the data for each sample was first 
scaled to counts per million (CPM). Paternal insertions were identified as insertion sites with ≥1000 
CPM in both endosperm and at least one matched sporophytic tissue (leaf, root, or pollen), excluding 
the 29 historical insertions (Table S1). CPM data were then normalized to VAF by dividing each 
sample by the mean CPM of the paternal insertions and multiplying by 1/2 (for leaf, root, and pollen) or
1/3 (for endosperm); the difference in normalization factor for endosperm is because the endosperm is
triploid with a 2:1 maternal:paternal ratio, and so paternal DNA makes up 1/3 of the DNA in this tissue. 
The random error for normalization is estimated to be 6.2% (standard error of the mean for the 
paternal insertion sites).

Sample assessment and quality control

In total, 46 Mu-active samples were collected and sequenced for this study. All samples were used 
when identifying inherited insertions (paternal and historical insertion sites), but 17 were excluded from
further analysis because of concerns with library quality: 6 samples were excluded because they did 
not meet a minimum VAF detection threshold of 10-3. This set included the first 5 pollen samples, 
which had consistently low molecule counts, and one endosperm sample. Subsequent pollen libraries 
incorporated an additional round of DNA purification (see ‘DNA isolation’ section, above) and resulted 
in much better sequencing depth. Second, the first 11 endosperm libraries were excluded because 
they showed evidence of cross-contamination; in these libraries, paternal insertions from one library 
consistently showed unusually high abundance in the others. For subsequent endosperm libraries, all 
non-disposable items used for tissue disruption (mortar, pestle, metal spatula) were subjected to a 
more stringent washing protocol that included soaking in 10% bleach for 5 min (see ‘DNA isolation’ 
section, above); this additional cleaning step resolved the cross-contamination issue. These sample 
exclusion criteria were set prior to analyzing the data further.

Interpreting the allele frequency distribution of   de novo   Mu insertions  

To estimate the mean allele frequency distribution for each tissue (e.g. Fig. 4A), the cumulative 
number of de novo Mu insertion sites at or above a given VAF was first calculated for the individual 
samples. The single-sample allele frequency distributions were then log-transformed and interpolated 
at 200 evenly spaced points between log10(10-5) and log10(1) using the R function approx (R version 
4.3.0). The mean and 95% confidence interval (CI95) for each tissue was then calculated by 
bootstrapping with 2000 bootstrap replicates. As the sequencing depth varied between samples, the 
mean was reported down the minimum VAF covered by at least 75% of samples in a tissue. Power-
law fits to the allele frequency distributions were performed using the R lm function after log10 
transformation.

Simulating the Robertson (1980) experiment from   pollen allele frequency data  

Robertson (1980) performed a series of outcrosses between Mu-active plants (F0) and Mu-inactive 
donors. The F1 progeny were then evaluated to determine if they segregated new mutations and 
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whether any of the mutations were shared with siblings. In total, 1541 F1 offspring were tested, of 
which there were 171 mutant plants (11.1%) carrying an estimated 154 distinct mutations.

To simulate the results of one Mu outcross from Robertson (1980), a MuSeq pollen sample was first 
randomly selected. This sample represents a single Mu-active F0 plant from Robertson’s study. 
Mutations (Mu insertion sites) were then randomly drawn based on the measured pollen allele 
frequencies. For instance, a mutation with a VAF of 0.1 was drawn with a 10% chance of occurring in 
each F1 offspring. After simulating 50 such F1 offspring (roughly the average number of offspring 
evaluated per outcross in ref. 27), the number of times a mutation occurred 1, 2, or >3 times among the
offspring was recorded. Robertson’s entire study had ~30 such outcrosses, for a total of 1541 F1 
plants. Thus, to simulate a full iteration of Robertson’s study, 30 simulated outcross experiments were 
performed using 30 different pollen samples (randomly sampled with replacement) and the totals were
added together.

To estimate confidence intervals, it is important that the simulated study reflects the variation expected
under the conditions of Robertson (1980). From the pollen data, an average of 32,038 mutations were 
recovered for each simulation, far more than the 154 mutations recovered by Robertson (1980). This 
discrepancy is explained because Robertson tracked mutations with visible seedling phenotypes, 
which would represent only a small portion of the total. To better match the counting noise during 
Robertson (1980), the simulated mutations were downsampled so that an average of 154 were 
recovered per simulation. This downsampling makes the simulation-to-simulation variation better 
matched to Robertson (1980), but does not affect the mean estimates: 83.1% of mutations were found
to be unique prior to downsampling, compared to 83.3% after downsampling.

54
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Details of theoretical model comparisons 

In Fig. 3B and S9 we show the experimental cumulative distribution for leaf compared to the 

predictions of a variety of theoretical growth models. The model details are as follows: 

Exponential growth: Starting with a single cell in generation 𝑘 = 0 , we consider a simple doubling 

process where in the 𝑘 th generation there are 𝑑(𝑘) = 2𝑘 cell divisions. If the probability of a mutation 

(i.e. a transposon insertion) per cell division is 𝜇 , then on average 𝜇𝑑(𝑘) novel mutations occur in the 

𝑘 th generation (assuming each mutation is distinct). The cumulative number of mutations that occur 

from generation 𝑘 = 0 through 𝑛 is 𝑐(𝑛) = 𝜇 ∑ 𝑑(𝑘)𝑛
𝑘=0 = 𝜇(2𝑛+1 − 1). Let 𝑁 be the total number of 

generations of growth, so the total cell population is 𝑁𝑐𝑒𝑙𝑙 = 2𝑁. An insertion in the 𝑛 th generation will 

ultimately spread to 2𝑁−𝑛 copies by the final generation, so the associated frequency is 

𝑓 = 2𝑁−𝑛 𝑁𝑐𝑒𝑙𝑙 = 2−𝑛.⁄  Inverting this relation, 𝑛 = − log2 𝑓, and plugging it into the expression for 

𝑐(𝑛), we find our final form for the cumulative distribution as a function of frequency: 

𝑐(𝑓) = 𝜇 (
2

𝑓
− 1), 

consistent with the scaling 𝑐(𝑓) ∼ 𝑓−1 at small 𝑓  we expect for the case of neutral mutations under 

exponential growth. 

 

Linear growth: Here we consider a process where after each cell division only one daughter cell is 

capable of dividing further. Hence 𝑑(𝑘) = 1 and 𝑐(𝑛) = 𝜇 ∑ 𝑑(𝑘)𝑛
𝑘=0 = 𝜇(𝑛 + 1). After 𝑁  

generations there are 𝑁𝑐𝑒𝑙𝑙 = 𝑁 + 1 total cells, and the frequency achieved by an insertion in the 𝑛 th 

generation is 𝑓 =
𝑁−𝑛+1

𝑁𝑐𝑒𝑙𝑙
=

𝑁−𝑛+1

𝑁+1
. Solving for 𝑛  in terms of 𝑓  and plugging into 𝑐(𝑛) we find: 

𝑐(𝑓) = 𝜇((𝑁 + 1)(1 − 𝑓) + 1). 

 

Exponential + linear growth: In this case there are 𝑀 generations of exponential growth, followed by 

𝑁 − 𝑀  generations of linear growth. Following an analogous argument as the previous two cases, we 

find: 

𝑑(𝑘) = {  2𝑘      𝑘 ≤ 𝑀
 2𝑀      𝑘 > 𝑀

 , 

𝑐(𝑛) = {
 𝜇(2𝑛+1 − 1)                                𝑛 ≤ 𝑀

 𝜇(2𝑀+1 − 1 + 2𝑀(𝑛 − 𝑀))     𝑛 > 𝑀
 . 

The total number of cells is 𝑁𝑐𝑒𝑙𝑙 = 2𝑀(𝑁 − 𝑀 + 1), and the frequency associated with an insertion in 

the 𝑛 th generation is: 

𝑓 = {
 2−𝑛                             𝑛 ≤ 𝑀

 2−𝑀
𝑁 − 𝑛 + 1

𝑁 − 𝑀 + 1
     𝑛 > 𝑀

 . 
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Inverting this expression to find 𝑛 as a function of 𝑓 and plugging into 𝑐(𝑛) we find: 

𝑐(𝑓) = {
 𝜇 (

2

𝑓
− 1)                                                                      𝑓 ≥ 2−𝑀

 𝜇(2𝑀(𝑁 − 𝑀 + 3) − 4𝑀𝑓(𝑁 − 𝑀 + 1) − 1)     𝑓 < 2−𝑀

 . 

This expression recovers the purely exponential result when 𝑁 = 𝑀 and the purely linear case when 

𝑀 = 0. 

 

Boundary-driven growth (BDG) simulations: As a final type of growth model, we consider a more 

complex scenario that requires numerical simulations to determine 𝑐(𝑓). We adapted the spatial 

model of bacterial range expansion in ref. 14, which in turn was derived from the Eden model54. The 

system consists of a 𝑑-dimensional lattice (square lattice in 𝑑 = 2, cubic lattice in 𝑑 = 3) with each grid 

point either empty or containing a single cell. A cell can only divide if there is at least one empty 

neighboring grid point which can be occupied by a daughter cell. At each time step one cell that is not 

totally surrounded is chosen at random to divide, replaced by two daughter cells (one at the current 

grid point, one at a random empty neighbor). As in the above models, at each cell division a novel 

mutation can occur with probability 𝜇 and gets inherited by both daughter cells (and all subsequent 

descendants). We keep track of the mutations carried by each cell in the population. The simulation is 

initiated by a single cell in the center of the lattice, and the cell colony expands in a roughly radially 

symmetric pattern, with the total lattice size at least four times the desired final population size 𝑁𝑐𝑒𝑙𝑙  

(so no cells reach the edge). After reaching the population 𝑁𝑐𝑒𝑙𝑙 , we tally the mutations to obtain the 

cumulative distribution 𝑐(𝑓). Since there is stochastic variation between replicates of the same 

simulation, in Fig. S9 we show 𝑐(𝑓) averaged over 300 replicates in 2D, and 50 replicates in 3D. 

 

Comparison to experimental data: The largest possible frequency in the theoretical models is 𝑓 = 1, 

for a mutation that occurs in the first cell division. The corresponding value of the cumulative 

distribution 𝑐(1) = 𝜇, since this mutation will occur with probability 𝜇. To align the models with the 

experimental data, we extrapolated the large frequency limit of the leaf distribution to find 𝜇 = 0.076. 

Note that the largest frequency that appears in the experimental data is 𝑓 = 1/2, since maize is 

diploid. To compare against the implicitly haploid growth models described above, we divided all 

frequencies in the theory plots in Fig. S9 by a factor of 2. We also chose a total population value of 

𝑁𝑐𝑒𝑙𝑙 = 106 for all the models, as a typical experimentally plausible sampling size. Different value of 

𝑁𝑐𝑒𝑙𝑙  would shift the plateau value of 𝑐(𝑓) at small frequencies, but the qualitative features of the 

theory predictions (and the discrepancies with the experimental curve) remain similar. Fixing 𝜇 and 

𝑁𝑐𝑒𝑙𝑙  completely determines the theory curves, except in the case of the exponential + linear model, 

where there is still a free parameter 𝑀 (the number of exponential generations). Here we did a best-fit 

to the leaf distribution (in log-log space), to find 𝑀 = 10.  
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Figure S1. Sequencing depth limitations make it difficult to assess rare de novo mutations

(A) Relationship between VAF detection limit vs genomic coverage for selected studies. Numbers reflect the 
citation number in the main text references. Here, ‘100% genomic coverage’ implies there was not intentional 
selection for a subset of the genome; in practice, this means the ‘mappable genome’ and excludes regions that
are repetitive or otherwise difficult to amplify or sequence. VAF, variant allele frequency; SBS, single-base 
substitution; SV, structural variant. 

(B) Comparison between targeted (amplicon) sequencing and MuSeq. While both approaches limit the 
sequencing to a portion of the genome, they do so in different ways. In these cartoons, 10 example DNA 
sequences are illustrated as dark gray lines; there are three mutations at different abundances, colored as 
green, red, and purple ‘X’s. For targeted sequencing, the ‘X’s could represent any class of mutation (SBS, SV, 
transposon); for Museq, these must be Mu transposon insertions. The region targeted by each technique is 
highlighted in gray.

Targeted sequencing selects a predefined set of genome loci to sequence deeply. Both wild type and mutant 
alleles are sequenced and any mutations outside of the target region are missed. MuSeq, in contrast, 
sequences transposon insertion sites throughout the genome, and reduces sequencing depth by avoiding the 
wild-type (transposon-free) alleles. In this hypothetical example, targeted sequencing would require at least 10 
reads but only capture a single mutation; MuSeq would require fewer reads yet would capture all 3 mutations. 
While MuSeq is limited to transposons (Mu in this case), the opportunity is that it enables orders of magnitude 
greater sensitivity and dynamic range than is possible for other classes of mutation.

S1
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Figure S2. Overview of the MuSeq2 protocol

MuSeq2, similar to MuSeq, uses an adapter ligation followed by a series of nested PCR reactions to 
specifically amplify fragments spanning the transposon genome junction. Several changes to the adapter were 
made in MuSeq2, including incorporating a Unique Molecular Identifier (UMI) for molecular counting and 
updating to modern Illumina adapter sequences. USER treatment cleaves the adapter at the Uracil, making the
ends compatible with the downstream PCR reactions.

S2
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Figure S3. Reducing non-specific amplification through changes to adapter structure and suppression 
PCR

(A) Quantitative PCR for libraries prepared using an adapter design similar to the original MuSeq: the adapter 
was unphosphorylated and the reverse primer (SP2) matches the adapter-ligated sequence only. TIR6 is a Mu-
specific primer; the SP2 primer matches the Illumina sequence ligated onto sheared genomic DNA. Three 
independent DNA samples were sheared and ligated, then the ligated DNA was split for qPCR with different 
primer combinations. The amplification is not specific, as SP2 alone amplifies similarly to when the Mu-specific 
primer was included. Cq was normalized to TIR6+SP2; in this experiment, the average number of cycles at 
ΔCq = 0 was 16.4.

(B) The reason for non-specific amplification with the SP2 primer is that the majority of DNA fragments from 
sheared genomic DNA do not contain a Mu element. Fragments without Mu are estimated to outnumber Mu-
containing fragments by more than 10,000 fold. The background fragments will have adapter DNA on both 
sides, forming a potential priming site for PCR with the SP2 primer. The adapter structure limits background 
amplification in part because it has a 5’ overhang and does not initially have the sequence needed for primer 
binding (the primer binds to the reverse complement of the overhang; this was also true in the original MuSeq);
however, the 5’ overhang can be copied by DNA polymerase at the start of PCR. This is likely an inefficient 
process, but given the excess of fragments without Mu it still contributed meaningful background (panel A).

S3
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(C,D) One modification to reduce non-specific background in MuSeq2 was to replace the unphosphorylated 
oligo with a phosphorylated one. With a 5’ phosphate on the adapter, both adapter strands can be ligated to 
the sheared genomic DNA. After a Uracil on the adapter is cleaved to release the hairpin, it leaves a 3’ 
phosphate overhang. By ligating the adapter on both strands, there is no free 3’ hydroxyl available – blocking 
extension by DNA polymerase. Panel C shows the same experiment as panel A, except using a 
phosphorylated adapter. Cq was normalized to TIR6+SP2; in this experiment, the average number of cycles at 
ΔCq = 0 was 16.2.

(E,F) A second modification in MuSeq2 was to use a longer primer, UDz, in place of SP2 during the first PCR. 
Fragments with adapter sequence on both sides do not amplify as efficiently because they have self-
complementary ends and can form a hairpin (suppression PCR). The UDz primer adds the entire Illumina 
adapter sequence during PCR. Because this primer makes the self-complementary region longer, it favors 
hairpin formation and increases the amount of suppression PCR for non-specific fragments. Panel E shows 
qPCR using the same adapter-ligated samples as in panel C, except that PCR was performed with the UDz 
primer. Cq was normalized to TIR6+SP2 from panel C and so the ΔCq values are directly comparable between
these panels. There was no decrease in specific amplification when switching to the UDz primer, but non-
specific amplification was completely suppressed.
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Figure S4. Specificity of MuSeq2

(A) A representative 1 Mb region showing all insertion sites identified in a single Mu-active leaf sample. In total,
333 insertion sites were found in this region, covering a range of molecule abundances (UMI counts).

(B) The same region as in A, but for a Mu-inactive leaf sample. No insertion sites were observed in this region.

(C) Sequence composition for a portion of read 1, which covers the transposon-genome junction. The last 6 bp
of the transposon were not included in any primer used during library prep, and provides independent 
validation that the sequencing is specific to Mutator. The ‘validation sequence’ matches the known transposon 
sequence TATCTC for the vast majority of reads.
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Figure S5. Mu excision rates have a negligible impact on normalization

Allele frequencies were normalized using the paternal insertions, which were assumed to be at their original 
abundance (VAF = ½ in most tissues, 1/3 in endosperm). In the presence of excisions, the true allele 
frequency of paternal insertions would be less, resulting in systematic error during normalization. We estimate 
the endosperm excision rate in our line is ~10%, based on the proportion of endosperm surface that has 
reverted to purple (this line carries a mutable bz1-Mum9 reporter allele that allows for purple pigment 
expression after excision). To be conservative, we used double this rate – 20% – and calculated the effect this 
would have on the measured allele frequencies. This figure shows the allele frequency distribution for a 
representative endosperm sample before (black line) and after (purple line) adjusting for normalization error 
due to a 20% excision rate.  Even with double the observed excision rate, normalization error has a minimal 
impact on the allele frequency spectrum. This is because a change on the order of 20% is small when the 
measured frequencies vary by many orders of magnitude (log-scale). As a result, we did not consider excision 
further in our analyses; all main text results were not adjusted for excision (e.g. the black line above).
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Figure S6. The number of Mu insertion sites has not reached saturation

Random subsets of samples were drawn and then the total number of genomic insertion sites was calculated. 
The total number of insertion sites has not reached saturation under the conditions of this study.
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Figure S7. Mu insertions and excisions behave differently in endosperm

(A) Example sector sizes in Mu-active kernels with the bz1-Mum9 reporter. The kernel on the top left with 
many small spots is representative. The very large sector on the kernel in the middle is exceedingly rare; we 
observed 7 out of 1844 kernels with sectors making up at least 5% of the kernel area. Prior quantitative data 
on excision spot size found even fewer large sectors, with 0 sectors at a frequency under 28 (VAF ~ 10-3) out of
2000 kernels (Levy and Walbot, 1990).

(B) A simulated ear with sectors drawn to represent Mu insertions. Spot size was defined by randomly drawing 
de novo endosperm insertions based on the measured allele frequency spectrum. This is intended as a simple 
visual representation to highlight the qualitative difference between excisions and insertions. The frequency of 
large spots in this diagram is dramatically higher than what is seen for endosperm excision sectors. In this 
simulation, we assumed all divisions happen within a 2D plane, which may be approximately true for aleurone 
(the outer cell layer of endosperm where the visible pigment is produced).
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Figure S8. Power-law fits to the allele frequency spectra from various tissues

Best linear fit parameters to log-transformed data. Fitting was performed on individual samples and the results 
plotted as a boxplot separated by tissue. Letters indicate statistical significance: groups not sharing a letter 
have a significantly different mean (p ≤ 0.05; Tukey’s honest significant difference test). N = 6 samples for leaf 
and root; N = 9 samples for endosperm and pollen.
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Figure S9. Fit of experimental leaf data to various models of mutation accumulation

Details of the theoretical models are described in the SI Text. All models assume no cell death, a constant 
mutation probability μ=0.076 over time (chosen to agree with the experimental curve at the largest frequency),

and a final cell population size of N cell=10
6. The experimental data for leaf is shown in dark green, with the 

95% confidence interval shaded in light green. Linear = linear growth, where after each cell division only one 
daughter cell is capable of further cell division. Exponential = exponential growth, where both daughters are 
capable of division (Luria-Delbrück model). Exponential + linear = 10 generations of exponential growth, with 
the remaining generations linear. BDG = boundary-driven growth simulations based on the Eden model, which 
were carried out on both 2D and 3D square lattices.
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Figure S10. During simulations of Robertson (1980), F1 offspring that share the same mutation as their 
sibling are most often derived from pollen insertions at high allele frequencies. 

For the simulations of Robertson (1980) in Fig. 5B, we recorded the VAF for any Mu insertion transmitted to 
the simulated F1 offspring. In this histogram, the bars are color coded based on whether the pollen mutation 
was inherited by 0, 1, or 2+ F1 siblings. Simulated F1 offspring were derived from Mu insertions at a wide 
range of allele frequencies, suggesting these occurred throughout development. For mutations present in 
larger clusters of F1 offspring (2+ siblings with the same mutation), the average VAF in the parent was 0.13; 
this corresponds 1 insertion in every 3.8 diploid pollen progenitors, roughly the number of meristematic cells in 
the seed that ultimately form the maize tassel (the male flower; ref: Poethig, Coe, and Johri, 1986). VAF, 
variant allele frequency.
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