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Studies have shown that resveratrol (Res) exerts significant antiproliferative effects in cancer, and regulating the expression of
microRNAs (miRNAs) is one the underlying mechanisms of these effects. Overexpression of miR-155-5p leads to oncogenesis.
However, it is unclear whether Res exerts antitumor effects by regulating the expression of miR-155-5p, and its specific
mechanism in gastric cancer remains unknown. In this study, qRT-PCR was performed to assess the expression of miR-155-5p
in gastric cells and clinical tissues, and the MTT assay, plate clone formation test, cell scratch test, Transwell assay, and flow
cytometry were performed to investigate the functions of Res on the growth of gastric cancer cells after treatment with miR-
155-5p. Western blot analysis was performed to detect the expression of claudin 1, c-Myc, cyclin D1, Bcl-2, and caspase-3
proteins in gastric cancer cell lines after treatment with miR-155-5p and Res. We found that miR-155-5p was overexpressed in
gastric cancer cells and clinical tissues, while Res inhibited gastric cancer cell growth by regulating miR-155-5p expression. The
results of MTT assay, plate clone formation test, cell scratch test, Transwell test, and flow cytometry showed that miR-155-5p
promoted the proliferation, invasion, and metastasis of gastric cancer cell lines and inhibited apoptosis, while Res addition
inhibited this effect (P < 0:05). When miR-155-5p was overexpressed, the expressions of claudin 1, c-Myc, cyclin D1, and Bcl-2
were upregulated and that of caspase-3 was downregulated. Collectively, these results suggest that miR-155-5p may be a
therapeutic target in gastric cancer, and Res may be a potential therapeutic agent based on its regulation of miR-155-5p.

1. Introduction

Gastric cancer was the fifth most frequently diagnosed cancer
and the third leading cause of cancer-related death in 2018 [1].
Furthermore, more than 90% of patients with gastric cancer
are diagnosed with distant metastases [2]. At present, radio-
therapy, chemotherapy, and targeted therapy are the main
treatments for gastric cancer. However, chemotherapeutic
drugs have high toxicity and low specificity [3, 4]. Therefore,
it is imperative to identify effective therapeutic agents.

In recent years, resveratrol (Res), a natural polyphenolic
compound widely present in both dietary foods and plant
species, has been reported to be an effective natural antican-
cer drug. Both preclinical investigations and experimental
studies have shown that Res can impact tumor initiation
and progression in a wide range of malignancies [5]. There-
fore, Res may be an ideal anticancer or prophylactic drug

[6]. Additionally, some studies have shown that Res can
exert its antitumor effect by regulating the expression of
microRNAs (miRNAs). For instance, Sheth et al. [7]
reported that Res inhibited cell growth and metastasis in
prostate cancer by regulating miRNA-21 expression.

miRNAs are endogenous single-stranded noncoding
RNAs that bind to the 3′-untranslated regions of target
miRNAs and can regulate gene expression at the posttran-
scriptional level [8]. To date, nearly 3000 miRNAs have been
identified in humans, and researchers predict that miRNAs
may modulate more than half of all human genes. The roles
of miRNAs in cancer biology have been extensively studied
over the past decades. Some miRNAs participate in tumor-
cell invasion and metastasis [9–12], while others are closely
associated with the prognosis of patients with cancer
[13–15]. Studies have shown that miR-155-5p is overex-
pressed in cancers of lungs, breasts, and cervix and is
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correlated with poor prognosis [14, 16, 17]. However, it is
unclear whether miR-155-5p is overexpressed in gastric can-
cer and whether Res regulates miR-155-5p expression in
gastric cancer to block tumor progression. In this study, we
examined the role of miR-155-5p and the effect of Res on
miR-155-5p in gastric cancer to determine a new therapeutic
target for this disease.

2. Materials and Methods

2.1. Patients and Tissue Samples. Forty-nine tissue speci-
mens were obtained from the Binzhou Medical University
Hospital from April 2018 to December 2019. The samples
were obtained from 35 men and 14 women. In addition,
fresh cancer tissues and paracancerous tissues were obtained
from 14 patients with gastric cancer, and tumor tissues were
immediately frozen in liquid nitrogen for western blot anal-
ysis. This study was approved by the Medical Ethics Com-
mittee of the Binzhou Medical University Hospital (Lun
Yan Grant No. 2016-26), and all patients provided informed
consent. None of the patients had received radiotherapy,
chemotherapy, targeted therapy, or other anticancer therapy
before surgery.

2.2. Cell Culture. The human gastric cancer cell line
SGC7901 was donated by the Central Laboratory of the
Binzhou Medical University Hospital. GES-1, MGC803,
and AGS cell lines were donated by the Laboratory of Path-
ogen of the Basic Medical College of Binzhou Medical Uni-
versity. MGC803 and GES-1 cells were cultured in high-
glucose DMEM supplemented with 10% fetal bovine serum
(FBS). AGS and SGC7901 cells were maintained in RPMI
1640 medium supplemented with 10% FBS. Gastric cancer
cells were treated with different concentrations (0, 25, 50,
100, and 200μM) of Res.

2.3. Transfection. Oligonucleotides, including scrambled
control, hsa-miR-155-5p-mimic, and hsa-miR-155-5p-
inhibitor, were synthesized and purified by Takara (Dalian,
China). SGC7901 and MGC803 cells were seeded (2 × 105
cells/well) in 6-well plates and transfected with scrambled
controls, hsa-miR-155-5p-mimics, or hsa-miR-155-5p-
inhibitor using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. The
sequences of these molecules were as follows: miR-155-5p-
mimic, 5′-UUAAUGCUAAUCGUGAUAGGGGU-3′;
miR-155-5p-inhibitor, 5′-ACCCCUAUCACGAUUAGCA
UUAA-3′; and scrambled control, 5′-CCCUAUCACAA
UUAGCAUUAAUU-3′.

2.4. MTT Assay. The cells showing good growth after trans-
fection were seeded into 96-well plates (3000 cells/well).
MTT reagent was added to the culture medium at a final
concentration of 0.1mg/mL. Next, 150μL dimethyl sulfox-
ide was added to the cells to dissolve the formazan crystals.
Optical density was measured at 490nm using a SpectraMax
M2 microplate reader (Molecular Devices, Shanghai, China).

2.5. Colony Formation Assay. After transfection, the cells
were seeded in 100mm Petri dishes (2000 cells/dish). The
medium was replenished every 3 days, and the cells were
allowed to grow for 12 days to form colonies. The colonies
were fixed with 4% paraformaldehyde (Biosharp, Anhui,
China), stained with 0.1% crystal violet solution (Solarbio,
Beijing, China), and those with >50 cells were counted.

2.6. Apoptosis Assay. Apoptosis was analyzed using the
FITC-Annexin V Apoptosis Detection Kit I (Becton Dickin-
son, Franklin Lakes, NJ, USA) according to the manufactur-
er’s protocol. The transfected SGC7901 and MGC803 cells
were incubated with Res for 24 h. Next, the cells were col-
lected and washed with phosphate-buffered saline (PBS)
precooled at 4°C. The cells (1 × 105) were suspended in 1×
Annexin V Binding Buffer, and 5μL Annexin V-FITC and
5μL propidium iodide were added to the cell suspension.
The samples were incubated at room temperature for
20min in the dark and then analyzed using a FACSCanto
flow cytometer.

2.7. Wound Healing Assay. The cells were grown in a 6-well
plate until they reached 90% confluence. Scratches were
made in the cell monolayer using a 10μL sterile pipette tip.
Next, the cells were washed with PBS, and the medium
was replaced with fresh medium supplemented with 1%
FBS to inhibit cell proliferation. The scratched areas were
photographed at the indicated time points using an Olym-
pus TL4 photomicroscope (Olympus, Tokyo, Japan) and
analyzed using ImageJ software (National Institutes of
Health, Bethesda, MD, USA).

2.8. Transwell Assay. Cell migration and invasion were mea-
sured in Transwell membrane chambers with 6.5mm inserts
and 8μm pore polycarbonate membranes (Corning Inc.,
Corning, NY, USA). For the invasion assay, the Transwell
membrane chamber was layered with Matrigel (Corning)
and incubated for 4 h at 37°C. The excess Matrigel was then
gently removed. Two hundred-microliter serum-free
medium and 600μL medium containing 20% FBS were
added to the upper and lower chambers, respectively.
SGC7901 and MGC803 cells (1 × 105 cells/mL) were seeded
into the upper chamber and incubated at 37°C for 24h. Sub-
sequently, the upper chamber was removed, and the cells
were wiped on a chamber filter with a cotton swab. After
washing with PBS, the membrane was fixed with 4% para-
formaldehyde for 1 h and stained with 0.1% crystal violet
solution for 15min. Excess dye was washed away, and the
cells were photographed in 5–10 randomly selected fields
under a microscope at 400× magnification (Canon, Beijing,
China). The cell migration assay was performed as described
above, except that Matrigel coating was not added.

2.9. Quantitative Real-Time Polymerase Chain Reaction.
Total RNA was isolated from cell lines and paraffin-
embedded tissue specimens using RNAiso Plus (Takara,
Dalian, China) according to the manufacturer’s instructions.
RNA was stored at -80°C until further use. cDNA was syn-
thesized using the Mir-X miRNA First-Strand Synthesis
Kit (Takara). The expression of target genes was detected
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by performing quantitative real-time polymerase chain reac-
tion (qRT-PCR) using TB Green Premix Ex Taq II (Takara)
according to the manufacturer’s instructions. The gene
expression was subjected to relative quantification using
the comparative threshold cycle (Ct) method. The expres-
sion of miR-155-5p was analyzed using U6 as an internal
control.

2.10. Western Blot Assay. Total protein from cells and gastric
cancer tissues was extracted using radioimmunoprecipita-
tion assay lysis buffer containing protease inhibitors. Protein
samples (20μg) were resolved by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (12% resolving gel) and
then transferred to a polyvinylidene difluoride membrane
(Millipore, Bedford, MA, USA). Membranes were then
blocked with 5% nonfat milk to block nonspecific binding
for 3 h at room temperature and incubated with primary
antibodies against claudin 1 (1 : 1000, Abcam, Cambridge,
MA, USA), caspase-3 (1 : 1000, Abcam), Bcl-2 (1 : 1000, Pro-
teintech, Rosemont, IL, USA), c-Myc (1 : 1000, Proteintech),
cyclin D1 (1 : 1000, Beyotime, Shanghai, China), and
GAPDH (1 : 1000, Goodhere, Hangzhou, China) at 4°C over-
night, followed by incubation with horseradish peroxidase-
conjugated secondary antibody (1 : 2000, ZSGB-BIO, Beijing,
China) at room temperature for 3 h. GAPDH was used as an
internal control for the relative protein expression. Protein
bands were quantified using ImageJ software (NIH).

2.11. Statistical Analysis. Statistical evaluation was per-
formed using mean ± standard deviation. Comparisons
between two groups were performed using Student’s t-test,
and multiple comparisons were assessed by performing
one-way analysis of variance. Among-group differences were
examined using a one-way analysis of variance. Statistical
significance was set at P < 0:05. All experiments were per-
formed in triplicate.

3. Results and Discussion

3.1. miR-155-5p Is Overexpressed in Gastric Cancer Tissues
and Cells, and Res Downregulates miR-155-5p Expression.
Results of qRT-PCR revealed that among the 49 gastric can-
cer cases, 40 (81.63%) showed high expression of miR-155-
5p, whereas 9 (18.37%) had low expression of miR-155-5p
(Figure 1(a)). Compared with adjacent normal tissue and
gastric mucosal cells, miR-155-5p expression was increased
in gastric cancer tissues and gastric cancer cell lines
(Figures 1(b) and 1(c)). The expression of miR-155-5p
decreased with Res treatment in a dose-dependent manner
(Figures 1(d) and 1(e)).

3.2. Res Inhibits Proliferation and Promotes Apoptosis in
Gastric Cancer Cells. MTT and colony formation assays
showed that transfection of miR-155-5p-mimics promoted
cell proliferation, whereas Res significantly inhibited cell
proliferation. Proliferation was also inhibited in cells trans-
fected with miR-155-5p-mimics and treated with Res
(Figures 2(a)–2(c)). Apoptosis assays showed that miR-
155-5p-mimics inhibited apoptosis, whereas Res treatment

significantly increased apoptosis, even in cells transfected
with miR-155-5p-mimics (Figures 2(d) and 2(e)).

3.3. Res Inhibits Migration and Invasion in Gastric Cancer
Cells. Results of wound healing and Transwell assays proved
that compared with scrambled controls, miR-155-5p-
mimics promoted the motility of gastric cancer cells. How-
ever, Res impaired the motility of gastric cancer cells
(Figures 3(a)–3(f)).

3.4. Res Affects Cell Morphology. The number of adherent
cells was significantly increased in the miR-155-5p-mimics
group but decreased in the miR-155-5p-inhibitor group;
however, neither treatment caused morphological changes
in cells. After treatment with Res, the number of adherent
cells overexpressing miR-155-5p was significantly reduced,
and cells underwent significant changes in morphology
(Figures 4(a)–4(b)).

3.5. Res Affects the Expression of miR-155-5p Target Genes.
We selected SGC7901 cell overexpressing miR-155-5p for
further experiments. After examining the related scientific
literature, three candidate target genes were selected: claudin
1, caspase-3, and c-Myc. We assessed the expression of these
genes after treatment with Res. We also examined the
expression of proteins regulating cell cycle such as cyclin
D1 and the apoptosis-related protein Bcl-2. Western blot
analysis showed that miR-155-5p-mimics upregulated clau-
din 1, c-Myc, cyclin D1, and Bcl-2 expression but downreg-
ulated caspase-3 expression. In contrast, Res significantly
downregulated claudin 1, c-Myc, cyclin D1, and Bcl-2
expression and upregulated caspase-3 expression, even in
the presence of miR-155-5p-mimics (Figure 5).

4. Discussion

Gastric cancer is an extremely complex malignancy and
involves the activation of proto-oncogenes and inactivation
of tumor suppressor genes, as well as the abnormal regula-
tion of related signaling pathways [18]. It is important to
elucidate the mechanism underlying gastric cancer progres-
sion and identify novel drugs to develop more effective ther-
apeutic approaches. Res is a multitarget antineoplastic drug
that exerts strong antitumor effects in different tumor types
[19]. For example, in hepatocellular carcinoma, Res inhibits
the cell growth via downregulation of MARCH1 expression,
and in pancreatic cancer, Res reduces the ability of tumor
cells to invade and migrate by inhibiting the expression of
miR-21 [20, 21]. However, whether Res can directly suppress
miR-155-5p expression in human gastric cancer remained
unknown. In this study, we identified that Res inhibited
miR-155-5p expression and further influenced claudin 1,
cyclin D1, c-Myc, Bcl-2, and caspase-3 expression, thereby
blocking the progression of the cell cycle.

miRNAs participate in several processes related to tumor
cell invasion and metastasis and are potential noninvasive
biomarkers [8, 22, 23]. First, we aimed to identify how Res
regulates miR-155-5p expression levels in gastric cancer.
We assessed the expression of miR-155-5p in gastric cancer
tissues and adjacent tissues.
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Accelerated cell cycle progression is a common feature of
most solid tumors. To prove that miR-155-5p overexpres-
sion can accelerate the cell cycle, we examined changes in

the cell cycle of gastric cancer cells after overexpressing or
inhibiting miR-155-5p expression in these cells. Our results
confirmed that overexpression of miR-155-5p promoted cell
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Figure 1: The expression of miR-155-5p in gastric cancer tissues and cells. (a and b) The expression of miR-155-5p in gastric cancer and
para-cancerous tissues. (c) The expression of miR-155-5p in gastric cancer cell lines. (d and e) The expression of miR-155-5p in SGC7901
and MGC803 gastric cancer cells treated with different concentrations of Res. ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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proliferation, migration, and invasion and inhibited apopto-
sis. Thus, miR-155-5p may function as a tumor promoter in
gastric cancer cells, consistent with its role in breast, lym-
phoma, and liver cancers [16, 24, 25].

Subsequently, we used miRNA bioinformatic prediction
databases, including miRBase and TargetScan, to further
elucidate the molecular mechanism underlying the cellular
and biological behaviors of miR-155-5p. Based on our
results and the related scientific literature, we selected genes
encoding claudin 1, cyclin D1, c-Myc, Bcl-2, and caspase-3
as miR-155-5p-target genes. Claudin 1 is an important
component of tight junctions and is abnormally expressed
in many different tumors [26–30]. In hepatocellular carci-

noma, the deletion of keratin 8 and keratin 18 promotes
the proliferation, invasion, and metastasis of HepG2 cells
by upregulating claudin 1 expression [31]. Cyclin D1 plays
a vital role in cancer pathogenesis as its upregulated expres-
sion drives unchecked cellular proliferation [32]. c-Myc acts
as a transcription factor and plays a vital role in controlling
cell growth, vitality, apoptosis, and cellular transformation
[33, 34]. In our results, compared with the control group,
the expression levels of claudin 1, cyclin D1, and c-Myc
were upregulated in the miR-155-5p-mimics group suggest-
ing that miR-155-5p plays an important role in cell cycle
initiation and progression, leading to accelerated
proliferation.
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Figure 2: Res inhibits proliferation and promotes apoptosis in gastric cancer cells. (a) Cell viability of SGC7901 and MGC803 cells treated
with Res was estimated with MTT assays. (b and c) Colony formation in SGC7901 and MGC803 cells treated with miR-155-5p and 80μM
Res was estimated by MTT assays. (d and e) Apoptosis of SGC7901 and MGC803 cells treated with miR-155-5p-mimics and 80μM
resveratrol. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 3: Continued.
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Apoptosis is a steady-state process that balances cell sur-
vival and death. Liu et al. [34] found that when c-Myc
expression was suppressed, cell growth was arrested, and
cells accumulated in the G0/G1 phase of the cell cycle, lead-

ing to accelerated apoptosis. Activation of caspase-3 is a crit-
ical process in apoptosis and increased caspase-3 activity is
considered a marker of apoptosis [35]. Bcl-2 is involved in
the apoptotic pathway and plays a prominent role in
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Figure 3: Res inhibits migration and invasion of gastric cancer cells. (a and b) Migration of SGC7901 and MGC803 cells treated with miR-
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Figure 5: Res regulates the expression of some miR-155-5p-targeted proteins in SGC7901 cells. Western blot analysis was performed to
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controlling apoptosis and enhancing cell survival [36]. Anti-
neoplastic drugs can inhibit Bcl-2 expression to promote
apoptosis [37]. However, targeting only one factor may have
limited efficacy in treating malignant tumors [21, 38]. Thus,
there is an urgent need to identify drugs that can regulate mul-
tiple genes and signal transduction pathways. Researchers
have shown that c-Myc, caspase-3, and Bcl-2 play key roles
inmaintaining cell survival and death. Our results showed that
miR-155-5p overexpression upregulated c-Myc and Bcl-2 pro-
tein expression and downregulated caspase-3 protein expres-
sion. miR-155-5p may inhibit apoptosis by regulating the
expression of c-Myc, Bcl-2, and caspase-3.

However, our study had certain limitations. Our results
are only based on cell behavior, the detailed molecular
mechanisms and cross-talk among claudin 1, cyclin D1, c-
Myc, Bcl-2, and caspase-3 warrant further studies. More-
over, our findings need to be verified in animal models to
assess whether these results can be extrapolated in humans.
In the future, we intend to conduct further research studies
to elucidate the mechanism related to the Res-mediated reg-
ulation of miR-155-5p expression and its downstream sig-
naling pathways and possibly identify therapeutic markers
for gastric cancer.

5. Conclusions

We identified that miR-155-5p was overexpressed in gastric
cancer and may be a potential molecular target for Res to
exert antigastric tumor effects. Our results provide new
directions and a theoretical basis for the treatment of gastric
cancer in the future.
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