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AbstrAct
Hepatocellular carcinoma (HCC) is one of the most common malignancies 

worldwide, and it remains a challenge to understand the genetic mechanisms 
underlying hepatocarcinogenesis. A global gene network of differential expression 
profiles in HCC has yet to be fully characterized. In the present study, we performed 
transcriptome sequencing (mRNA and lncRNA) in liver cancer and cirrhotic tissues 
of nine HCC patients. We identified differentially expressed genes (DEGs) and 
constructed a weighted gene co-expression network for the DEGs. In total, 755 DEGs 
(747 mRNA and eight lncRNA) were identified, and several co-expression modules 
were significantly associated with HCC clinical traits, including tumor location, tumor 
grade, and the α-fetoprotein (AFP) level. Of note, we identified 15 hub genes in the 
module associated with AFP level, and three (SPX, AFP and ADGRE1) of four hub genes 
were validated in an independent HCC cohort (n=78). Identification of hub genes for 
HCC clinical traits has implications for further understanding of the molecular genetic 
basis of HCC.

IntroductIon

Hepatocellular carcinoma (HCC) is one of the 
most common malignancies worldwide, with the highest 
incidences occurring in East Asia and sub-Saharan  
Africa [1]. In China, HCC is the second leading cause of 
cancer deaths. Infection with chronic hepatitis B virus 
(HBV) remains the major etiological factor of HCC 
globally with more than one half of HCC patients being 
chronic HBV carriers [2]. Due to high mortality and poor 
5-year survival rates [1], a better understanding of the 
genetic basis of HCC based on a more comprehensive 
approach will potentially provide novel strategies for its 
prevention and treatment.

The development of HCC is a complex biological 
process that involves the interaction of multiple genes [3]. 
With the advent of next-generation sequencing (whole 
genome/exome sequencing [4, 5] and transcriptome 
sequencing (RNA-seq) [6]), the genetic alterations 
underlying HCC at different molecular levels have 
been investigated. Multiple studies have characterized 
genome-wide mutational spectra of HCC [7–13], and 
identified at least 25 candidate driver genes with recurrent 
genetic alterations [14], including TP53, CTNNB1, and 
ARID1A. RNA-seq has identified new isoforms, fusion 
genes, and functional pathways that are altered in HCC 
[15–19]. In addition to protein-coding genes, long non-
coding RNAs (lncRNAs) have recently been implicated 
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in hepatocarcinogenesis, e.g., high expression of HOTAIR 
[20], H19 [21], and MALAT1 [22] have been observed in 
the liver cancer tissue. Although multiple genes involved 
in HCC have been identified, the relationship between 
gene expression and HCC clinical traits has been unclear.

In the present study, we performed a weighted 
gene co-expression network analysis (WGCNA) for 
HCC using mRNA- and lncRNA-seq data to investigate 
the association between differentially expressed genes 
(DEGs) and HCC clinical traits, e.g., tumor grade and the 
α-fetoprotein (AFP) level. We had the following aims: 1)  
investigate transcriptional patterns in liver cancer and 
cirrhotic tissues; 2) identify gene modules associated with 
HCC clinic traits and critical intramodular genes (i.e., hub 
genes); and 3) complement the characteristics of biological 
networks in the hepatocarcinogenesis.

rEsuLts

summary of rnA-seq data

We performed lncRNA and mRNA sequencing on 
nine pairs of liver cancer and adjacent cirrhotic tissues 
of hepatitis B virus-associated HCCs using the Illumina 
HiSeq™ 2000 (San Diego, CA) platform. RNA-seq 
generated 90 bp paired-end sequences and resulted in an 
output of a total 497 GB of raw sequence (approximately 
13 GB per sample). On average, 54 and 57 million raw 
sequencing reads were obtained in lncRNA and mRNA 
sequencing, and approximately 94.1% and 93.9% of these 
raw reads were aligned to the transcribed database (http://
genome.ucsc.edu/, hg19) (Table S1 and S2).

Identification of lncRNAs in the liver cancer and 
cirrhotic tissues

We used a pipeline for lncRNA annotation from RNA-
seq data (PLAR) to identify lncRNAs [23] (Figure 1A).  
The pipeline predicted 83,796 distinct transcript models 
that overlapped > 52% of the protein-coding genes 
(based on the RefSeq annotation in NCBI). After filtering 
predicted protein-coding transcripts and transcripts near 
coding genes, we finally obtained 2,799 non-coding RNA 
transcripts. The number of different types of non-coding 
RNA transcripts are shown in Figure 1B. In total, eight 
significantly differentially expressed lncRNA transcripts 
were identified, and none of these lncRNAs had been 
reported previously (Figure 1C).

Significantly differentially expressed mRNA and 
lncRNA

A total of 23,367 of genes were identified in nine 
liver cancer and cirrhotic tissues (Figure 2A). Using 
FPKM [24], we identified 747 significantly differentially 

expressed genes (DEGs) (fold change (FC) > 2, and false 
discover rate (FDR) < 0.05) between the liver cancer 
and cirrhotic tissues including 334 up-regulated and 413 
down-regulated genes. For eight differentially expressed 
lncRNA transcripts, six up-regulated and two down-
regulated genes were identified.

We estimated the statistical power for detecting 
significantly DEGs using ‘RnaSeqSampleSize’ [25] and 
‘ssizeRNA’ [26]. The genes with minimun read counts > 10  
across all individuals (n = 11,076) genes  was used. We 
also estimated the distributions of gene read count and 
dispersions using our RNA-seq data as reference. Given 
a minimal FC of 2 (i.e., the effect size) and a FDR < 0.05, 
the statistical power to reject the null hypothesis that the 
population means of the two groups are equal is 0.697 (by 
an exact test [27]) using ‘RnaSeqSampleSize’ [25]. Given 
the same effect size and significance level, the achieved 
statistical power is 0.265 in nine pairs HCCs (by a paired 
t-test) using ‘ssizeRNA’ [26].

Cluster analysis of the DEGs produced six 
significant clusters (Figure 2B). Functional annotation for 
each cluster according to the gene ontology (GO) terms 
using DAVID [28] indicated that there were 57 significant 
GO terms (p < 0.05 and FDR < 0.05) including 22 cellular 
component terms, 30 biological process terms and five 
molecular function terms (Table S3). The top 10 GO terms 
for each cluster are shown in Figure 2C.

A gene set enrichment analysis (GSEA) for RNA-
seq was performed to determine whether a set of genes 
defined a priori showed statistically significant, concordant 
differences between liver cancer and cirrhotic tissues. Five 
significant gene signatures (FDR < 0.05) were enriched in 
oncogenic signatures (Table S4). The β-catenin and Yes-
associated protein conserved signatures were well known 
functional pathways involved in HCC [29, 30].

The enrichment map analysis overcomes the 
limitation of redundancy in the GO system [31]. A 
functional map was constructed using 47 enriched gene 
sets (30 up- and 17 down-regulated gene-sets) (Figure 2D).  
We noted that the up-regulated gene set was enriched 
in ‘nucleic acid metabolic process’ and ‘biopolymer 
metabolic process’ genes and that the down-regulated 
gene set was enriched in ‘signal transduction’ genes. 
We then tested whether the enriched gene sets were 
associated with the known liver cancer gene set (http://
zldev.ccbr.utoronto.ca/~ddong/diseaseHub/index.html), 
which integrates data from multiple sources including 
OMIM (Online Mendelian Inheritance in Man), GAD 
(Genetic Association Database), HGMD (Human Gene 
Mutation Database), PharmGKB (Pharmacogenomics 
Knowledge Base), CGP (Cancer Genome Project) and 
GWAS (Genome Wide Association Studies). We found 
that the ‘immune response’ genes enriched in the known 
liver cancer gene set and two known liver cancer genes 
(CCL5 and CXCL12) were associated with the enriched 
gene set (p < 10−4, Fisher’s Exact Test).
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Gene co-expression network analysis of DEGs

We decided to construct gene co-expression 
networks using the weighted gene co-expression 
network analysis (WGCNA). We extracted modules 
containing at least 15 genes by combining modules 
with eigengenes. The co-expression network contained 
11 modules (Figure 3A), and the module sizes ranged 
from 21 to 94. However, 263 genes were not similarly 
co-expressed with other genes in the network (MEgrey), 
including eight lnc-RNA genes. The association between 
the modules and HCC clinical traits (i.e., sex, age, 
tumor location, tumor grade and the AFP level) were 
identified (Figure 3B). The correlation coefficient (r) of 
MEblack indicated that it was positively correlated with 
tumor grade (r = 0.78, p = 0.01) and that MEtan and 
MEblue were negatively correlated with the AFP level  
(r = −0.95, p = 8e−05) and the AFP high/low trait (r = −0.77,  

p = 0.02), where AFP > 25 ng/ml was considered to be 
high, respectively.

To verify the correlation between MEtan and the 
AFP level, a measure of module significance - the average 
gene significance of all of the genes in the module - was 
calculated. The distribution of the gene significance in all 
modules associated with the AFP level showed that MEtan 
had the highest mean gene significance (0.81) (Figure 3C), 
indicating that genes in MEtan may play an important 
role in affecting AFP level. Using Ingenuity Pathway 
Analysis (IPA®, http://www.ingenuity.com/products/ipa), 
we found that MEtan was enriched in genes involved 
in cell morphology (p = 0.03), embryonic development 
(p = 0.03) and hematopoiesis (p = 0.01) for molecular 
and cellular functions, and in the canonical eukaryotic 
pathways of CMP-N-acetylneuraminate biosynthesis I, 
phosphatidylcholine biosynthesis I, and mismatch repair.

Figure 1: Identification of lncRNA. (A) A pipeline for identifying and annotating lncRNA; (b) Number of distinct lncRNA 
transcripts identified in all samples. Linc: long intergenic non-coding transcript; LongAUGORFlinc: long intergenic non-coding 
transcript that contains open reading frames with in-frame codons enclosed within AUG and stop codons; EnsASCoding: an antisense 
transcript; EnsShortNoncoding: a precursor for small RNAs; LongAUGORFEnsASCoding: an antisense transcript that contains open 
reading frames with in-frame codons enclosed within AUG and stop codons; LongAUGORFEnsShortNoncoding: a precursor for small 
RNAs that contains open reading frames with in-frame codons enclosed within AUG and stop codons; LongORFlinc: long intergenic  
non-coding transcript that contains open reading frames; LongORFEnsASCoding: an antisense transcript that contains open reading frames; 
LongORFEnsShortNoncoding: a precursor for small RNAs that contains open reading frames; and (c) A list of significantly differentially 
expressed lncRNA transcripts.



Oncotarget38490www.impactjournals.com/oncotarget

Hub genes represent a series of genes that is 
significantly connected to a relevant module [32]. We 
identified the hub genes for the AFP level in MEtan based 
on the network property (the intramodular connectivity 
(IMC) and module membership (MM)) (Figure 3D). The 
top 15 hub genes were shown in Table 1 (FDR-adjusted 
p < 0.05), which explained 71% of the total variation in 
the module eigengene. Of the 15 hub genes, SPX was the 
gene most significantly associated with the AFP level 
(q.weighted value = 0.0025), and EXO1 and ADGRE1 
exhibited the highest IMC (7.92) and MM (0.95), 
respectively. We also noted that the well-known HCC 
biomarker - AFP [33] - was associated with the AFP level 
(IMC = 3.18, MM = −0.84, and q.weighted = 0.025).

A network visualization of the genes in MEtan 
associated with the AFP level is shown in Figure 4. A 
high interconnectivity among hub genes implies that 
the processes in which they are involved are potentially  
co-regulated. The most interconnected hub genes, with 13 
strong connections (TOM > 0.1), were SPX, EGR3 and 
ADGRE1. For example, SPX has strong interactions with 
EXO1, ADGRE1, EGR3 and GPR88.

Network preservation analysis and consensus 
analysis

To validate the modules identified in the training 
data (i.e., our RNA-seq data), we assessed the preservation 

Figure 2: DEGs identified by RNA-seq. (A) The correlation between genes expressed in the liver cancer and cirrhotic tissues;  
(b) Cluster analysis of significantly DEGs between nine liver cancer and cirrhotic tissues (fold change > 2 and FDR < 0.05). Rows represent 
genes, and columns represent samples. The dendrogram was generated from unsupervised cluster analysis of DEGs based on complete 
linkage and Pearson distances. The tree was cut by using the programme cutree for the hcluster at the h = max(hcluster$height)/1.2. 
Different coloured bars indicate different clusters. (c) GO terms for each cluster shown in B. (d) Network of enriched GO terms derived 
from the 747 DEGs between the liver cancer and cirrhotic tissues. Red nodes represent up-regulated terms, and green nodes represent 
down-regulated terms. The blue triangle represents the known liver cancer genes from the DiseaseHub database (http://zldev.ccbr.utoronto.
ca/~ddong/diseaseHub/index.html). The color intensity in each node is proportional to enrichment significance. Purple edges indicate 
overlap between the liver cancer signature and the enriched gene sets, tan-color edges indicate overlap between two gene sets, and the edge 
width is proportional to the overlap size between the two nodes.
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of modules in another two HCC RNA-seq data sets: a 
RNA-seq data set for 12 HCC patients (Zhang_testing_
data, n = 12, accession no.: GSE63863) [34] and TCGA 
database (TCGA_testing_data, n = 50). We used a 
measure of intramodular connectivity preservation (i.e., 
Zsummary) to assess preservation [35]. In Zhang_testing_
data, we found that MEbrown were moderately preserved 
(|Zsummary|>2), and the remainings modules were weakly 
preserved (|Zsummary|<2) (Figure 5A). In TCGA_
testing_data, the modules showed highly preserved 
(|Zsummary|>8) (Figure 5C), e.g., Zsummary for MEtan 
related to AFP level was 8.04. These results suggested 
that the modules identified in the training data were 
reproducible in independent testing networks and there 
was no significant change in intramodular connectivity 
patterns. In addition, consensus analysis of associating 

the training data with two testing data sets respectively 
showed that most of the training set-specific modules 
have a consensus counterpart (Figure 5B and 5D). Our 
validation results suggested a similar module structure 
between the training and testing data.

We then used quantitative real-time PCR (qRT-PCR)  
to experimentally validate the expression levels of the 
hub genes in an independent HCC cohort (n = 78). As 
shown in Figure 5E, three out of the four selected genes  
(SPX, AFP, EXO1, and ADGRE1) were validated. The 
qRT-PCR and RNA-seq results were similar.

dIscussIon

In the present study, we conducted an expression 
profile analysis for nine liver cancer tissues and their 

Figure 3: Identification of MEtan that was significantly correlated with AFP level. (A) Dendrogram of all differentially 
expressed genes clustered based on a dissimilarity measure (1-TOM). Each line of the dendrogram corresponds to a gene. Circular tree 
shows hierarchical clustering of all differentially expressed genes. The inner ring shows the 13 modules identified using the dynamic cutting 
method with each gene color-coded based on module assignment. The outer ring shows the 11 modules identified using the merged dynamic 
method with each gene color-coded based on module assignment; (b) A heatmap of the correlation between module eigengenes and HCC 
clinic traits; (c) Distribution of the average gene significance and errors in the modules associated with AFP levels; and (d) Relationship 
between MEtan module membership measures and intramodular connectivity.
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Table 1: Top 15 hub genes in MEtan module as defined by intramodular connectivity and module 
membership

Gene q.Weighted Intramodular 
connectivity Module membership Connections

SPX 0.0025 7.33 0.95 13
ADGRE1 0.0025 7.34 0.95 13
EXO1 0.0025 7.92 −0.96 12
GPR88 0.0025 7.58 0.96 12
LOC645166 0.0025 6.68 −0.93 12
EGR3 0.0028 6.51 0.92 13
MT1X 0.0034 6.08 0.92 11
VARS 0.0035 5.93 −93 12
C19orf48 0.0038 6.22 −0.94 12
HMGA1 0.0085 4.52 −0.86 11
TMEM56 0.0085 5.37 0.92 12
ABCA8 0.0086 4.62 0.88 9
GNE 0.0164 4.19 0.88 10
AFP 0.0254 3.18 −0.84 2
RGL1 0.0294 3.28 0.81 5

Figure 4: Hub gene interactions by co-expression pattern in MEtan module. Node size is proportional to the degree of 
weighted connectivity. The edge width is proportional to the strength of connectivity between two nodes. The internal color in each node 
is based on the mean of log2 (FC) (up-regulated in red and down-regulated in blue): eight up- and 12 down-regulated genes in the co-
expression network were noted. The outer ring color represents genes in MEtan (orange), non-validated hub genes (cyan) and validated 
hub genes (green), respectively.
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Figure 5: Validation of modules and hub genes. The Zsummary (y-axis) as a function of the module size between the training and 
Zhang_testing_data (A), or TCGA_testing_data (c). The horizontal line shows the threshold of Zsummary = 2. Correspondence between 
the training data set-specific modules and training-Zhang_testing_data consensus modules (b) or training-TCGA_testing_data consensus 
modules (d) was shown. Each row of the table corresponds to one training data set-specific module, and each column corresponds to one 
consensus module. Numbers in the grid indicate the gene counts at the intersection of the corresponding modules. Colouring of the table 
denotes −log (p), with p being the Fisher’s exact test for the overlap of the two modules. The stronger the red colour, the more significant the 
overlap is. The table indicates that most of the training data set-specific modules have a consensus counterpart. (E) Three of four selected 
hub genes were confirmed by qRT-PCR. Left: qRT-PCR; and Right: the FPKM values (mean  sd) by RNA-seq; FPKM: Fragments Per 
Kilobase of exon per Million fragments mapped.
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matched cirrhotic tissues using transcriptome sequencing. 
We identified 747 DEGs and eight novel significantly 
differentially expressed lncRNA transcripts. The weighted 
gene co-expression network analysis identified a module 
(MEtan) related to AFP level and detected hub genes 
in MEtan. The identified modules were validated by 
preservation and consensus analysis in another two HCC 
RNA-seq datasets. We validated at least three hub genes 
(SPX, AFP and ADGRE1) in the module associated with 
the AFP level. To our knowledge, this study is the first one 
to integrate mRNA- and lncRNA-seq data to identify the 
hub genes related to HCC clinical traits.

We identified 747 DEGs in the liver cancer and cirrhotic 
tissues, which were categorized into six clusters. The DEGs 
were enriched in five oncogenic signatures. For example, 
the signatures of ‘BCAT_GDS748_DN’ and ‘BCAT.100_
UP.V1_DN’ both source from β-catenin, a major effector of 
the canonical Wnt signaling pathway. The ‘CORDENONSI_
YAP_CONSERVED_SIGNATURE’ is a YAP (Yes-associated 
protein)-conserved signature; YAP is a driving oncogene in 
HCC [30]. However, no significant consistency between the 
clusters and gene signatures was noted.

WGCNA is a powerful approach for investigating 
the mechanisms underlying the tumorigenesis because 
co-expressed genes are likely to be jointly involved in 
carcinogenesis [36]. The down-regulated of eigengenes 
in MEtan suggested that AFP is partially modulated by 
specific mRNAs. MEtan was predominantly enriched 
with cell cycle progression genes, playing an important 
role in hepatocyte proliferation. WGCNA identified 
lncRNA co-expression network to be associated with 
actively transcribed enhancers, which is involved in cell 
cycle deregulation and liver metabolism during HCC 
development [37].

We identified 15 highly connected hub genes in 
MEtan, including ABCA8, AFP, EGR3, EXO1, HMGA1, 
MT1X and VARS, which play roles as major regulators in 
cell-cycle regulation and cancer development. ABCA8 is 
responsible for the transport of a variety of inflammatory 
mediators and lipids that have direct relevance to tumor 
progression in ovarian cancer [38, 39]. EGR3 is the 
bona fide target for ESR and involved in the estrogen-
signaling pathway in breast cancer cells [40]. HMGA1 
is involved in the carcinogenesis and invasiveness of 
HCC, which may be a potential prognostic marker [41].  
By interacting with β-catenin, HMGA1 positively 
regulates Wnt/ β-catenin signaling, leading to an increased 
formation of the β-catenin-TCF4 complex [42]. EXO1 is 
an important nuclease involved in mismatch repair system 
that contributes to maintain genomic stability, modulate 
DNA recombination and mediate cell cycle arrest. A 
polyporphism in EXO1 (K589E) was associated with 
increased risk of HCC development by influencing the 
activity of Exo1 protein [43].

We validated three of four selected hub genes 
in 15 hub genes (Figure 5E). Rucinski et al. [44] 
ascertained the role of spexin (SPX) in the regulation of 
cell proliferation (e.g., in adrenal gland cortex). The re-
expression of AFP occurs in 50 to 80% of HCC patients 
during tumor progression, and the serum AFP levels play 
an important role in HCC diagnosis and the monitoring 
of responses to treatment [33]. Chen et al. [45] found 
several polymorphisms in the AFP promoter region 
may be pathologically significant in HCC. ADGRE1 is 
an eosinophil receptor and a highly specific marker for 
eosinophils in humans [46]. Eosinophils reduce chronic 
inflammation linked to liver diseases in adipose tissue [47].  
The association of SPX and ADGRE1 with AFP level and 
HCC has not been reported previously. The underlying 
interactions between these hub genes affect AFP levels 
needs to be explored further.

Microarray data have been widely used in WGCNA 
for the identification of modules associated with cancer 
or intermediate traits [48–50]. However, several intrinsic 
limitations of microarray data should be noted; for 
example, each array contains only its own known genes, 
and microarray experiments are less reproducible [51].  
In the present study, we performed WGCNA for HCC 
clinical traits using RNA-seq data, which has been 
suggested to be more reproducible [51].

There are several limitations in the present study. 
First, the number of samples used for RNA-seq was 
small, and a large sample size is needed to demonstrate 
the reliability of the results. However, preservation and 
consensus analysis of the identified modules in two 
independent HCC RNA-seq data sets indicated that 
modules in the training data were preserved in the testing 
data, especially in TCGA_testing_data. In addition, we 
validated at least three hub genes (of four) by qRT-PCR. 
Second, although we have identified a specific module 
(MEtan) that is associated with AFP level and have 
analyzed the possible molecular/cellular functions and 
canonical pathways in the module, there may still be other 
functions and pathways that were overlooked. Third, in 
the present study, we assumed one etiologic class (i.e., 
homogeneity) using HBV-associated HCC patients in 
RNA-seq. We cannot exclude the possibility that these 
hub genes may be involved in non-HBV associated HCC. 
Finally, we acknowledged that there is lack of functional 
validation of the hub genes.

In conclusion, our study identified differentially 
expressed mRNA and lncRNA between the liver cancer 
and cirrhotic tissues. A weighted gene co-expression 
network based on mRNA and lncRNA identified a module 
that was significantly associated with AFP level. Hub 
genes within the module may have crucial roles in HCC 
progression and may therefore be candidates for functional 
studies. Our study provided evidence that data mining of 
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DEGs is an effective approach for the identification of 
novel genes associated with HCC clinical traits.

MATERIALS AND METHODS

Patients and tissue specimens

A total of 232 paired fresh-frozen tissue samples 
(the liver cancer and cirrhotic tissues) were collected from 
HBV-related HCC patients undergoing surgery in four 
hospitals (Table 2). All of the samples were immediately 
frozen in liquid nitrogen after surgical resection. Diagnosis 
of HCC for all of the cases was histologically confirmed 
by two independent pathologists at Peking Union Medical 
College Hospital. All of the tumour tissues were assessed 
by hematoxylin and eosin (HE) staining, and only tumour 
tissues with the percentage of tumor cells > 70% were used 
for analyses. Afterwards, the liver cancer and cirrhotic 
tissues of nine HCC patients were selected for RNA-seq. 
After pathological confirmation, 87 patients were used 
in the present study including nine pairs RNA-seq HCCs 
(Table 3) and 78 pairs HCCs used as an independent 
cohort for validation (Table S5).

The collection of human samples and the protocols 
for the investigations were approved by the an Institutional 
Review Board (IRB) in Peking Union Medical College 
Hospital, The First Affiliated Hospital of Chongqing 
Medical University, Henan Tumor Hospital, Suining 
Center Hospital and The Second Affiliated Hospital of 
Chongqing Medical University. The patient provided 
written informed consent in this study.

cDNA library preparation and RNA-sequencing

Total RNA was extracted from nine HCC and 
cirrhotic tissues. We performed whole transcriptome 
sequencing for mRNA and lncRNA, as described in 
our previous study [52]. All sequencing was carried 
out at the Beijing Genomic Institute at Shenzhen (BGI-
Shenzhen, Shenzhen, China). A detail description of the 
library preparation and sequencing is provided in the 
Supplementary materials.

RNA-seq data analysis

We used a previously described protocol [53] to 
perform differential gene expression analysis. We used 
Tophat [54] to map the RNA-seq reads to the genome. 
Alignments were used as input for Cufflinks [55] 
for transcriptome reconstruction. The reconstructed 
transcriptome from all of the samples were merged 
using CuffMerge. Expression levels in each sample in 
Fragments Per Kilobase per Million reads (FPKM) units 
were quantified using CuffDiff [55]. Finally, we used 
cummeRbund [56] for further analysis. All programs were 
used with default parameters.

Identification of lncRNA

We used a Pipeline for lncRNA annotation from RNA-
seq data (PLAR) to identify lncRNAs [23] (Figure 1A).  
A detailed description was shown in Supplementary 
materials.

Gene set enrichment analysis (GSEA) and 
enrichment map analysis

GSEA [57], which utilizes the gene rank derived 
from differential expression, is a computational method 
that determines whether a priori defined set of genes 
shows statistically significant, concordant differences 
between two biological states. An enrichment map 
organizes gene sets in a more intuitive way and is 
implemented in Cytoscape network analysis environment 
[31, 58]. Gene-sets derived from DEGs were enriched 
and filtered for significance (p < 0.05, FDR < 0.05). An 
enrichment map places similar significant gene sets near 
each other, resulting in a more concise global view of 
enriched biological functions. Overlap between significant 
gene sets is computed according to the overlap coefficient. 
The overlap between the DEGs found in the present study 
and the known liver cancer gene set was scored (Fisher’s 
exact test, nominal p < 10−4) (http://baderlab.org/Software/
EnrichmentMap).

Weighted gene co-expression network analysis 
(WGCNA)

WGCNA is a statistical approach for the 
construction of gene modules within a network based 
on correlations between RNA expression profiles [36]. 
Considering that the WGCNA was nearly a scale-free 
topology, the weighted coefficient β was selected based 
on the scale-free topology criteria, allowing for a maximal 
correlation coefficient. The adjacency coefficient α was 
computed using a power function (αmn = power (Smn β) 
= 1Smn 1

β), which measures correlation strength between 
two genes. The adjacency matrix was created based on 
α, which was subsequently transformed into a topological 
overlap matrix (see Supplementary materials). A 
topological overlap measure (TOM) was calculated, which 
assessed gene interconnectedness.

Identification of clinical significant modules

Genes were hierarchically clustered using the 
dissimilarity coefficient as the distance measure. We 
assigned modules containing at least 15 genes by using a 
mixed dynamic tree-cutting algorithm criterion, which was 
used to identify modules whose expression profiles were 
similar and then and merge them into new modules defined 
as merged dynamic modules. Module eigengenes associated 
with clinic traits were then used to calculate a correlation 
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coefficient (r) between each module and an HCC clinic 
trait. The module significance is defined as the average 
gene significance in a module, and the gene significance 
is defined as log(p), where p denotes the significance from 
the t-test for the identification of differential expression 
between two groups. High module significance values 
denote strong associations with a clinic trait.

Hub gene analysis

Genes with the highest degree of connectivity within 
a module (i.e., centrally located genes of co-expressed 
genes) are termed as ‘hub genes’ and are expected to 
be drivers required for signaling pathway of essential 
cellular function [36, 59]: n

i ijj  i
k  = a

≠∑ , i,j ϵ Module q,  
where ki = intramodular connectivity of gene i, and aij = 
adjacency between genes i and j [35]. Alternatively, it may 
also be defined as genes with high module membership 
[35, 60]: MMi

(q) = cor (xi, E(q)), where MMi = module 
memebership of gene i (in module q), xi = expression 
profile of gene i, and E(q) = module eigengene of module q.  
Both definitions were used to identify the hub genes of 
module associated with AFP level.

Network preservation and consensus analysis

Module preservation between our HCC data  
(the training data) and the testing data [34] was assessed 

using network preservation statistics [35]. Module density-
based and connectivity-based statistics were used to 
assess module reproducibility [35]. In this comparison, 
Zsummary, a Z statistic representing a weighted summary 
of module density and connectivity measures was 
computed for each module. The Zsummary score was 
used to evaluate module preservation; >8 indicating strong 
preservation, and 2–6 means moderate preservation [35].  
In addition, we performed consensus analysis of the 
training and testing data, which related training data 
modules to the consensus modules and calculated the 
overlaps of each pair of training-consensus modules.

Quantitative real-time PCR (qRT-PCR)

We used real-time quantitative PCR (Bio-Rad®, 
Hercules CA) to validate four hub genes that affected AFP 
level. The genes were selected by their significance levels 
and functional relevance. Paired t-tests were used to test 
for significance. A detailed description of the qRT-PCR 
method is presented in the Supplementary materials.

Data submission

The sequencing data in this manuscript were 
submitted to the BioSample database (hosted by the 
NCBI) (http://www.ncbi.nlm.nih.gov/biosample), and the 
BioSample accessions is SUB1305112.

Table 2: The number of liver cancer patients collected from four hospitals
Hospital Recruited No. Used No.

The First Affiliated Hospital of Chongqing Medical University (CQ) 130 59
Suining Center Hospital (SN) 50 17
Henan Tumor Hospital (HN) 50 10
Peking Union Medical College Hospital (PK) 2 1
Total 232 87

Table 3: The clinical and pathological features of the nine liver cancer patients

Id Sex Age (y) tumor 
size (cm)

% of 
tumor 
nuclei 

HBV DNA tumor 
grade HBV marker AFP1 (ng/

ml)

CQ78 M 59 4.6 × 4.2 95 < 1.3 × 104 Low HBsAg (+), HbeAg (−) 364
CQ83 F 31 13 × 12 70 Negative Moderate HbsAg (+), HbeAg (−) 36243
CQ88 M 44 11 × 10 90 1.5 × 106 Moderate HbsAg (+), HbeAg (−) 265196
CQ94 M 46 4 × 3 80–90 Negative High HbsAg (+), HbeAg (+) 8
CQ95 M 50 6 × 6 60 9.6 × 103 Moderate HbsAg (+), HbeAg (−) 147
CQ105 M 59 2.4 × 2.2 90 6.5 × 106 Moderate HbsAg (+), HbeAg (+) 9
SN01 F 46 3.5 90 3.3 × 106 High HbsAg (+), HbeAg (+) 1210
SN02 M 57 5.8 × 4.9 90 Negative High HbsAg (+), HBeAg (−) 2
BJ21 F 62 6.8 × 5.9 90 NA High HBsAg (+), HBeAg (−) 16189

1AFP = α-fetoprotein.
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