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Abstract: The neuromodulator noradrenaline (NA) is released in almost all brain areas in a highly diffused manner. Its 
action is slow, as it acts through G protein-coupled receptors, but its wide release in the brain makes NA a crucial regula-
tor for various fundamental brain functions such as arousal, attention and memory processes [102]. To understand how 
NA acts in the brain to promote such diverse actions, it is necessary to dissect the cellular actions of NA at the level of 
single neurons as well as at the level of neuronal networks. In the present article, we will provide a compact review of the 
main literatures concerning the NA actions on neuroplasticity processes. Depending on which subtype of adrenoceptor is 
activated, NA differently affects intrinsic membrane properties of postsynaptic neurons and synaptic plasticity. For exam-
ple, β-adrenoceptor activation is mainly related to the potentiation of synaptic responses and learning and memory proc-
esses. α2-adrenoceptor activation may contribute to a high-order information processing such as executive function, but 
currently the direction of synaptic plasticity modification by α2-adrenoceptors has not been clearly determined. The acti-
vation of α1-adrenoceptors appears to mainly induce synaptic depression in the brain. But its physiological roles are still 
unclear: while its activation has been described as beneficial for cognitive functions, it may also exert detrimental effects 
in some brain structures such as the prefrontal cortex. 
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INTRODUCTION 

 Neuroplasticity can be defined as the potential of neural 
elements to react with adaptive changes to intrinsic or extrin-
sic inputs. It is the principal flexible property of neurons, or 
rather neuronal networks, through which they temporarily or 
permanently change their biochemical, physiological and 
morphological characteristics. These characteristics make 
neuroplasticity a good candidate for the basis of learning and 
memory. 

 Classically, NA is thought to act on three main classes of 
plasticity changes in the nervous system, which are the de-
velopmental (which we shall not address in this article), neu-
ronal (or intrinsic), and synaptic plasticity. The literature 
highlights two points that 1) NA acts on the excitability of 
neurons, and that 2) NA modulates synaptic plasticity as well 
as itself inducing synaptic plasticity. 

 In the present article, we will first briefly introduce the 
NA system and adrenoceptor-related intracellular pathways. 
Second, we will review the literatures on how the stimulation 
of adrenoceptors modulates cellular excitability (i.e. neu-
ronal/intrinsic plasticity). Then, we will introduce studies on 
short-term and long-term synaptic plasticity, which are in-
duced or modulated by NA. Finally, the putative functional 
relevance of these plasticity processes will be briefly dis-
cussed. 
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NORADRENERGIC SYSTEM 

 NA is released in the entire brain areas with the excep-
tion of the basal ganglia, from the locus coeruleus (LC), the 
bilateral small nuclei located in the dorsal tegmentum. Corti-
cal NA innervation is described as mostly non-synaptic, 
which may support the evenly diffused release of cortical 
NA to the extracellular space, compatible with both its neu-
romodulatory role and the multiplicity of its actions on di-
verse cellular targets in the cerebral cortex [111]. A single 
LC neuron may project to both cortical hemispheres of dif-
ferent cortical areas [34]. This way, the LC may innervate 
functionally diverse target areas simultaneously with a 
global and uniform activity. This may be one way in which 
the LC coordinates the activity of multiple brain systems 
[124]. 

 There are three subtypes of adrenoceptors, β, α1 and α2 
[134], which are all known to be metabotropic receptors, i.e. 
a class of receptors linked to G protein. The affinity of NA is 
higher for α2- than for α1-receptors, and both of these recep-
tors have higher affinities to NA than β-receptors [8]. 

β-Adrenoceptors 

 Three types of β-receptors are described in the brain, i.e. 
β1-, β2- and β3-adrenoceptors [98, 118]. To date, these three 
β-receptors are not very well distinguished, since specific 
agonists/antagonists have not been extensively used in pre-
ceding studies.  

 The β-receptors are mainly located in postsynaptic neu-
rons, although a small proportion may exist in presynaptic 
components in some regions such as the dentate gyrus [80] 
and prefrontal cortex (PFC) [50]. These receptors are associ-
ated with the activation of Gs that activates adenylate cyclase 
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and produces cyclic adenosine monophosphate (cAMP), 
which can be further associated with CREB (cAMP response 
element-binding) protein activation. The three β-adreno-
ceptor subtypes are subject to a desensitization by means of 
uncoupling from their G proteins, the process being gov-
erned by G protein-coupled Receptor directed Kinases 
(GRKs) as well as by specific kinase like β-adrenergic recep-
tor kinase (β-ARK; [24]). 

α1-Adrenoceptors 

 α1-adrenoceptors are postsynaptic receptors and com-
posed of three subtypes: α1A, α1B and α1D. These three sub-
types are equally expressed in the hippocampus, the cerebral 
cortex and the brainstem, but in the thalamus and deep layers 
of parieto-frontal cortex, α1A-adrenoceptors are preferen-
tially expressed [53, 94]. 

 All three subtypes (α1A-, α1B- and α1D-adrenoceptor) are 
able to mobilize calcium ions from intracellular stores as 
well as to increase the calcium entry via voltage-gated cal-
cium channels. Stimulation of all three α1-adrenoceptor sub-
types leads to the hydrolysis of membrane phospholipids via 
G protein-mediated activation (Gq protein) of phospholipase 
Cβ. The resultant production of inositol triphosphate (IP3) 
mediates the α1-adrenoceptor-elicited calcium release from 
intracellular stores, thereby increasing cytosolic calcium 
concentrations. The simultaneously produced diacylglycerol 
(DAG) activates protein kinase C (PKC) [120], which is also 
activated by a group of calcium and calmodulin-sensitive 
protein kinases. Active PKC phosphorylates many cellular 
substrates including membrane channels, pumps, and ion-
exchange proteins. The α1-adrenoceptors also have been 
reported to modulate other signaling pathways: their activa-
tion may result in an increased accumulation of cAMP and 
cGMP, a potentiation of cAMP responses elicited by Gs-
linked receptors [51], the activation of phospholipase A2 and 
phospholipase D, the activation of cAMP phosphodiesterase, 
release of adenosine, and the stimulation of arachidonic acid 
release [134]. This class of receptors is also subject to desen-
sitization by GRKs [97]. 

α2-Adrenoceptors 

 Three subtypes of α2-adrenoceptors are described, known 
as α2A-, α2B-, and α2C-adrenoceptors. Their mRNA shows a 
widespread distribution in the brain and is expressed primar-
ily in regions of the brainstem that contain adrenaline- and 
NA-producing cells, but is also expressed in several other 
areas including the hippocampus and the cerebral cortex [90, 
108]. PFC neurons express principally the α2A-subtype [6]. 

 α2-adrenoceptors are located on both pre- and postsynap-
tic sites. The presynaptic localization indicates their func-
tions as autoceptors, involved in the control of NA release by 
LC neuronal axons. Sub-cellularly, α2A-adrenoceptors in the 
LC and PFC are associated with synaptic and non-synaptic 
dendritic and perikarya membranes [5]. In addition, the cor-
tical neurons, but not LC neurons, exhibit prominent im-
munoreactivity to α2A-adrenoceptors within dendritic spine 
heads [5].  

 α2-adrenoceptors are classically linked to Gi/o protein 
whose action is opposite to that of Gs. These receptors act 

through inhibiting adenylate cyclase via Gi protein and 
thereby inhibit the production of cAMP, while the βγ 
subunits of Gi protein increase potassium ion conductance. 
α2-adrenoceptors also suppress voltage-activated calcium 
channels via Go proteins, thus reducing the flow of extracel-
lular calcium ions into target cells. Moreover, growing lines 
of evidence suggest that α2-adrenoceptors are linked not only 
to the activation of Gi/o cascade but also, for example, the 
activation of phospholipase C (PLC) and PKC at least in 
some cell types [20, 119]. As in the case of the other two 
classes of receptors, α2-adrenoceptors can be desensitized by 
GRKs, resulting in a functional uncoupling from their G-
proteins [134]. 

INTRINSIC PLASTICITY 

 By the term neuronal or intrinsic plasticity, we shall refer 
to adaptive alterations of postsynaptic excitability, which are 
non-synaptic in nature and thus mechanistically internal to a 
given postsynaptic cell. Thus, NA activation of postsynaptic 
adrenoceptors results in the activation of various intracellular 
factors and triggers for example modifications of membrane 
ion channel properties (Fig. 1). This type of plasticity is cru-
cial for neuronal function given that it directly modulates 
cellular characteristics such as ion channel opening. This 
class of plasticity may be temporally short-lived (observed 
only in the presence of agonists, for example) or may be 
long-lasting (observed even well after washout of the ago-
nists or other induction agents or events). Importantly, as 
mentioned in the next section (see “Synaptic plasticity in-
duced by NA”), increases in postsynaptic excitability 
through the induction of intrinsic plasticity, particularly after 
β-adrenoceptor activation, may constitute the mechanistic 
basis for long-lasting potentiation of the population spike. 
However, this potentiation is detected by means of synaptic 
stimulation. We will therefore list this potentiation under the 
next synaptic plasticity section. 

β-Adrenoceptor Cellular Effects 

 The activation of β-adrenoceptors acts on three cationic 
currents and induces intrinsic plasticity (Fig. 1a).  

 1) It may decrease the potassium conductance [41]. This 
effect results in a depolarization of postsynaptic membrane 
usually associated with an increase in the input resistance as 
shown in rat CA1 pyramidal neurons [65, 66] and layer II-III 
neurons of frontal cortex [28] (but see [76] for a decrease of 
input resistance in the thalamus). Potassium conductance can 
also be decreased through, for example, a block of calcium-
dependent potassium channels as demonstrated in the hippo-
campus (dentate gyrus and CA1) [42].  

 This inhibition of potassium conductance may underlie 
the blockade of the slow after-hyperpolarization (AHP) cur-
rent in the cortex [33], the thalamus (paratenial thalamic nu-
cleus; [75, 76]), and the hippocampus [41, 42, 57, 65, 66].  

 2) β-adrenoceptor activation may enhance hyperpolariza-
tion-activated current (Ih) that is carried by sodium and po-
tassium ions, due to an increase of intracellular concentration 
of cAMP as shown in guinea-pig dorsolateral geniculate nu-
cleus [75, 95] and rat thalamic neurons [136].  
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 3) Finally, β -adrenoceptor activation allows the en-
hancement of certain voltage-dependent calcium currents in 
the dentate gyrus [40], hippocampal CA3 [32], and the PFC 
[50]. 

α1-Adrenoceptor Cellular Effects 

 α1-adrenoceptors exert a general excitatory effect with a 
depolarization of resting membrane potential often associ-
ated with enhanced input resistance [2, 77, 93] (but see [99] 
for no change in input resistance) (Fig. 1b). 

 1) α1-adrenoceptor activation decreases potassium cur-
rents [74, 76]. The particular types of potassium currents 
reduced by α1-adrenoceptors include IA [2] and the leak po-
tassium current (IKL) [77]. A decrease in the latter potassium 
current is associated with a change in the firing pattern of the 
neuron. A reduction of IKL induces a shift of firing mode 
from rhythmic oscillation to tonic single spike activity in the 
thalamus in guinea pigs and cats [74, 75] (see [77] for re-
view). A similar result was found in γ -aminobutyric acid 
(GABAergic) cells of the thalamus, where NA produces a 
prolonged increase of cellular excitability due to a slow de-

polarization, which is surprisingly accompanied by a de-
crease in the input conductance. α1-adrenoceptor activation 
also prolongs after-hyperpolarization in dorsal raphe neurons 
[37]. 

 2) Besides these potassium current modulations, α1-
adrenoceptors activation and their consequential augmenta-
tion of intracellular calcium concentration may potentiate the 
activation of Na/K-ATPase [69]. 

α2-Adrenoceptor Cellular Effects 

 α2-adrenoceptors induce postsynaptic membrane hyper-
polarization (Fig. 1c; [115]).  

 1) This hyperpolarization can be associated with de-
creases in input resistance, which may derive from the 
modulation of potassium channels, in spinal cord [92], hip-
pocampal CA1 pyramidal neurons [65], and neocortical neu-
rons [28]. The hyperpolarization may also be associated with 
a decrease in cAMP levels as shown in LC neurons [4], or 
can be due to an opening of ATP-dependent potassium 
channels (K-ATP channels) by Gi/o protein [137].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representations of the action of adrenoceptors that induce intrinsic plasticity. 
a. β-adrenoceptor activation generally induces depolarization of postsynaptic neurons with an increase of input resistance. It reduces K+ cur-
rents (1) and facilitates Ih current via cAMP pathway (2) and the entry of Ca2+ (3). 
b. α1-adrenoceptors can also induce depolarization of neurons with an increase of input resistance. They reduce K+ currents (1) and act on 
Ca2+ entry via the activation of phosphoinositide turnover (2).  
c. α2-adrenoceptors generally induce hyperpolarization coupled to an increase or decrease of input resistance via blockade of Ih current (2) or 
opening of K+ channels (1) respectively. They also inhibit Ca2+ channels (3). 
AC, adenylate cyclase; ATP, adenosine triphosphate; Ca2+, calcium; cAMP, cyclic adenosine monophosphate; DAG, diacylglyrerol; Ih, hy-
perpolarization-activated currents; IP3, inositol (1,4,5)-trisphosphate; K+, potassium; PIP2, phosphatidylinositol biphosphate; PLCβ, phos-
pholipase Cβ. 
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 2) α2-adrenoceptors have also been seen to induce hyper-
polarization with increases in the input resistance in medial 
PFC. In this case, opposite to β-adrenoceptors, α2-adreno-
ceptors block hyperpolarization-activated currents (Ih) [14] 
via blockade of hyperpolarization/cyclic nucleotide gated 
cation (HCN) channels. It is proposed that the overall effect 
of HCN channel inhibition is to suppress the response to 
isolated excitatory inputs while enhancing the response to a 
coherent burst of synaptic activity [20]. 
 In addition, α2-adrenoceptor agonists inhibit voltage-
activated calcium currents mediated by the N- or P-type cal-
cium-channels [26, 122]. This suppression of voltage-sensi-
tive calcium channels, as well as the inhibition of adenylate 
cyclase by Gi/o protein and the activation of potassium 
channels by α2-adrenoceptors, can all contribute to the re-
duction of neurotransmitter release [134]. 

SYNAPTIC PLASTICITY INDUCED BY NA 

 As described above, NA is generally thought to belong to 
the category of neuromodulators, which signifies function-
ally that NA acts on the neurons through modifications of 
currently ongoing events. From this aspect, NA has been 
extensively studied in the field of synaptic plasticity. But 
some evidence suggests also that NA itself can initiate syn-
aptic plasticity. The majority of studies have been conducted 
in the hippocampus and sensory cortical areas. The term 
“synaptic plasticity” signifies that modifications occur at the 
level of the synapse. In this sense, it may be directly related 
to, or independent of, the intrinsic plasticity described in the 
preceding section. 

 At present, two examples of synaptic plasticity are well-
known and have been extensively studied; i.e. long-term 
potentiation (LTP) and long-term depression (LTD). LTP is 
commonly defined as a lasting increase of synaptic efficacy 
and has been observed often in glutamatergic synapses in 
various brain regions such as the hippocampus and the PFC 
[39, 68]. LTD is, in contrast, a lasting decrease of synaptic 
efficacy and also observed in glutamatergic synapses across 
many brain areas [39, 68]. Modulation of LTP/LTD and the 
induction of LTP/LTD-like changes by NA are discussed in 
this section.  
 In addition, in the 1970’s, an important trend emerged 
which stated that NA might enhance the “signal-to-noise 
ratio”, which is in close relation with synaptic plasticity. The 
pioneers in this field were Foote et al. [35] and Segal and 
Bloom [109] who worked on auditory cortical and hippo-
campal neurons, respectively. This denomination suffers 
from the weakness that the basal or background activity can-
not be considered simply as “noise”. 

NA and Potentiation 

 A large part of the hippocampal literature describes the 
NA action of facilitating or inducing potentiation (i.e. LTP) 
through β-adrenoceptors. In vivo and in vitro studies con-
ducted in the dentate gyrus and in area CA1 of the hippo-
campus show that the application of NA by itself induces a 
potentiation of the population spike, augmenting "E-S 
(EPSP-spike) coupling" (e.g. [23, 43, 88, 100, 133]). This 
effect seems to be mediated by β-adrenoceptors [43] and 
cAMP [30], and is likely to be mechanistically supported by 

the induction of intrinsic plasticity mentioned in the previous 
section [30]. This LTP of the population spike appears also 
to require concurrent synaptic activation of NMDA receptors 
[18], suggesting the existence of convergent action of β-
adrenoceptors and NMDA receptors (but see [44] for NMDA 
receptor-independency of this NA effect). In the dentate 
gyrus in vivo, it was also shown that stimulation of β-
adrenoceptors by endogenous NA induces LTP of the popu-
lation spike [44, 84]. This NA-induced LTP was however 
shown to be mechanistically different from high-frequency 
stimulation-induced LTP of the population spike [58], al-
though this latter tetanus-induced LTP depends on NMDA 
receptors [1]. 

 NA also facilitates LTP induced by high-frequency affer-
ent stimulation. This was shown in area CA3 [46] and den-
tate gyrus [3, 18]. This NA facilitation of LTP is achieved 
through β-adrenoceptors [47] and can be mimicked by an 
adenylate cyclase activator (i.e. through the increase of 
cAMP; [52]) similar to the aforementioned case of LTP of 
the population spike induced by bath-application of NA. 
These examples of cAMP involvement in NA-induced or 
NA-facilitated LTP are consistent with another report sug-
gesting that β-adrenoceptor stimulation facilitates LTP in 
area CA1 through protein kinase A (PKA) activation [132]. 
This PKA involvement was shown to depend on the stimulus 
pattern used to induce LTP, where the β-adrenergic facilita-
tion of LTP induced by 5 Hz stimulation involves PKA [38, 
132] whereas a similar facilitation of LTP triggered by 100 
Hz stimulation does not [38]. Similarly, in area CA1, asso-
ciative LTP induced by low-frequency paired stimulation 
was facilitated by PKA activated through β-adrenoceptors 
[63]. These cases of PKA-dependent LTP facilitation were 
shown to involve the extracellular signal regulated kinase 
(ERK) pathway [63, 132]. 

 Depending on the strength of tetanus used to induce LTP, 
β-adrenoceptors also modulate the maintenance of the late 
phase of LTP (L-LTP) in the dentate gyrus [116]. A more 
recent report proposes that NA facilitates LTP induction in 
the hippocampus by phosphorylation of the GluR1 subunit, 
which facilitates the delivery of GluRs into synapses [48]. In 
the visual cortex also, NA facilitates LTP through β-
adrenoceptors stimulation, and in this case, NA acts syner-
gistically with muscarinic acetylcholine receptors [17]. Since 
the visual cortex LTP is dependent also on NMDA receptors 
[11], this result again indicates the convergent action of mul-
tiple neurotransmitters for LTP. In the medial amygdala, 
short-term potentiation induced by high-frequency stimula-
tion was shown to convert to LTP in the presence of β-
adrenoceptor agonist [128]. Interestingly, in the study of 
Watanabe et al. described above [48], it was shown that, 
although LTP is induced by tetanic stimulation combined 
with a β-adrenoceptor agonist in the medial part of the 
amygdala, the same protocol suppressed normal short-term 
potentiation in the lateral amygdala [128]. Similarly in the 
dentate gyrus, LTP or LTD can be facilitated depending on 
whether responses are evoked by medial or lateral perforant 
pathway stimulation [22, 96]. 
 α1-adrenoceptors have been, shown to enhance the fre-
quency of excitatory postsynaptic currents (EPSCs) in me-
dial PFC neurons [73]. This class of receptors also enables 
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the augmentation of synaptic density in rat visual cortex, 
which might be essential for the maintenance of synapses as 
well as for synaptic plasticity [86]. Moreover, Segal et al. 
[110] showed the enhancement of responses to NMDA in the 
presence of a α1-agonist in CA1 hippocampal neurons, an 
action achieved via the activation of phosphoinositide turn-
over. 

NA and Depression 

 NA has also been described to induce synaptic depres-
sion. In transverse slices of rat visual cortex, it was shown 
that paired-pulse stimulation induces NMDA receptor-
dependent acute and long-lasting homosynaptic depression 
in the presence of NA acting on α1-adrenoceptors [56]. A 
similar facilitation of synaptic depression was seen in the 
presence of acetylcholine [86]. These results parallel those 
reported by Scheiderer et al. [107] in the hippocampus, 
where muscarinic or adrenergic receptor activation induced 
LTD. In another study, Liu et al. [64] focused on NMDA 
receptor-mediated EPSCs in the PFC and showed that α1-
adrenoceptor stimulation induces depression. We have also 
found that NA induces LTD of glutamatergic transmission in 
PFC slices via the activation of α1- and α2-adrenoceptors 
(Marzo et al., unpublished data). The majority of the exam-
ples of synaptic depression induced by NA involves α1-
adrenoceptors, but not β-adrenoceptors [64, 78, 106]. Indeed, 
α- and β-adrenoceptors appear to exert opposite effects on 
synaptic transmission, i.e. facilitation of LTD and LTP, re-
spectively. This was further suggested by the fact that NA 
induces LTP in dentate gyrus when applied with a α-
adrenoceptor antagonist [22]. 

 The locus of the induction of LTD has been shown to be 
postsynaptic in the PFC (Marzo et al., unpublished data). 
Also, the absence of changes in paired pulse facilitation sup-
ports the postsynaptic locus of induction for the acute de-
pression of NMDA receptor-mediated synaptic responses in 
the PFC [64]. 

NA Effects on Inhibitory Transmission 

 The majority of studies on the NA effects on synaptic 
transmission focused on excitatory glutamatergic transmis-
sion. However, NA also acts on GABAergic transmission. 
Generally, increases of synaptic inhibition by NA are noted. 
For example, in the frontal cortex, NA induces an increase in 
the frequency of inhibitory postsynaptic currents (IPSC) re-
corded from pyramidal neurons, with NA acting through the 
enhancement of excitability of GABAergic neurons via α-
adrenoceptor stimulation [54]. Similarly in the entorhinal 
cortex, α1-adrenoceptor activation increases the frequency of 
miniature IPSCs, suggesting a presynaptic effect [60]. In 
area CA1 of the hippocampus, on the other hand, NA de-
creases inhibitory postsynaptic potentials via α-adrenoceptor 
activation [67]. In the somatosensory cortex, it was shown 
that NA enhances GABA-induced inhibition [129] which in 
this case is mediated by β-adrenoceptor-inducing augmenta-
tion of cAMP [114]. Similar results were found in lateral 
hypothalamus [113] and cerebellum [21, 81]. In cerebellum, 
α-adrenoceptors are also involved in the increase in the IPSC 
with distinct roles played by α1- and α2-adrenoceptors [45]: 
thus, α1-adrenoceptor activation increases the spontaneous 

and evoked IPSC, but α2-adrenoceptors rather decrease the 
spontaneous IPSC without affecting the evoked IPSC.  

FUNCTIONAL RELEVANCE OF NA INDUCED 
PLASTICITY 

 Different lines of evidence suggest that NA-induced plas-
ticity may have multiple functional roles. For example, the 
induction of intrinsic plasticity would increase the probabil-
ity of certain patterns or modes of neuronal discharge, and 
such changes may be related to the level of waking and 
arousal [12, 75]. NA system-related arousal in turn may par-
ticipate in the information processing as indicated by the fact 
that LTP induction is modulated by appetitive and aversive 
stimuli [112]. In this respect, Seidenbecher et al. [112] 
showed a reinforcement of hippocampal LTP triggered by  
a sub-threshold tetanus in the presence of an event known  
to activate release of NA in the hippocampus. This LTP  
reinforcement was blocked by the administration of β-
antagonist.  

 The crucial role of β-adrenoceptor activation for the 
maintenance of L-LTP [116] may be regarded as a basis for 
the consolidation of long-term memory. In fact, in behavioral 
studies, the NA system has been implicated in the consolida-
tion and retrieval of memory [79, 101], partly from the effect 
of enhanced arousal [19]. It appears that β-adrenoceptors are 
the subtype involved in the memory consolidation, since, for 
example, β-adrenergic antagonists cause amnesia in spatial 
memory paradigms [101, 103]. β-adrenoceptors in the rat 
prelimbic area are also involved in a late phase of long-term 
olfactory memory consolidation [123]. Moreover, it has been 
suggested that memory consolidation is achieved by a long-
term effect of NA on synaptic transmission, taking place 
during slow wave sleep (evidence demonstrates that the LC 
is transiently activated during this sleep phase after intensive 
learning [31]). 

 Retrieval is also an important step in memory processes 
during which NA appears to act. It was shown that mutant 
mice that cannot synthesize NA can still learn a contextual 
fear-conditioning task but are impaired in retention when 
tested 2 days later [85]. This retention deficit was rescued by 
the injection of a precursor of NA before the test, demon-
strating that NA is necessary for the access to a memory 
trace at this time [85]. These results taken together suggest 
that NA is important for consolidation and retrieval of some 
types of memory. However, it should be pointed out also that 
in the case of amygdala-dependent fear memory, NA 
through β-adrenoceptors participates rather in memory re-
consolidation but not its consolidation or retrieval [25, 85]. 

 Another main function related to the NA system is the 
information processing from sensory collections to the high-
order cognition [102]. Thus, NA has been shown to be cru-
cial in tasks involving changes of strategy [82, 89], and this 
effect appears to depend on α-adrenoceptors. But there is still 
a controversy as to the role of α-adrenoceptors in cognitive 
functions [10]. For example, the activation of α1-adreno-
ceptors in the PFC is classically related to the impairment of 
cognitive performance [9], whereas α2-adrenoceptors are 
known to improve it [61]. Nevertheless, blockade of α1-
adrenoceptors when NA levels are pharmacologically en-
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hanced actually blocks the NA-induced enhancement of per-
formance in the strategy switching [58]. 

 Mechanistically, the above flexibility for strategy adop-
tion may be related to LTD induction as shown in the hippo-
campus [29, 91]. It is thus possible that LTD generally 
weakens network efficacy so that it enables the neural 
network to select and encode new representations 
through the readily potentiable synapses. 
 Another line of evidence relates to novelty exploration. It 
is known that LC neurons show enhanced discharge in re-
sponse to novel stimuli and rapidly habituate after a few en-
counters with the same stimuli [125]. This characteristic of 
LC neurons suggests that NA may participate in the process 
of information acquisition [13, 27, 104, 105], perhaps 
through the induction of synaptic plasticity. Both directions 
of synaptic plasticity, i.e. potentiation and depression, can be 
enhanced by novelty exploration [62, 70, 135], and the en-
hancement effects depend on the activation of β-adreno-
ceptors [55, 117]. 

 Finally, these behavioral modulations by NA are closely 
related to stress and anxiety, since NA is known to be re-
leased during acute stressful episodes [87]. Following 
chronic stress, large cognitive impairments are observed, and 
they can be improved by antidepressants such as desipramine 
that blocks NA reuptake [15], suggesting down-regulation of 
NA transmission after chronic stress exposure. 

CONCLUDING REMARKS 

 NA participates in the modulation of a large spectrum of 
behaviors. NA appears to be related to the capacity of the 
organism to reach different levels of waking states, to inte-
grate sensory information, and to engage in central cognitive 
processes such as memory. These different functions seem to 
be associated with the release of NA in various distinct ar-
eas. 

 From a cellular point of view, NA has been described to 
act as a “gating” agent [129-131]. This action consists of its 
capacity to change the threshold of postsynaptic neurons 
necessary to induce a sensory response. For example, ionto-
phoretically applied NA induces a decrease in the discharge 
threshold in the majority of auditory cells and a global in-
crease in the “signal-to-noise ratio” [71]. Another similar 
concept of NA action is “tuning”. NA participates in the se-
lection of sensory responses to a specific class of sensory 
stimulation via inhibition of the response to adjacent classes 
of sensory stimuli [49, 72]. These effects were shown to last 
for more than 15 min [72] and were mediated by α-
adrenoceptors [121]. NA’s ability to enhance the “signal-to-
noise ratio” can be interpreted as a mechanism to select the 
most salient information within a neural network. Moreover, 
NA also modulates the integration of information by an im-
provement of spike timing precision [59]. These two last 
cellular actions of NA may be related to high cognitive func-
tions such as the selection of pertinent behavior, which 
sometimes needs behavioral switches to flexibly meet con-
textual demands [16]. 

 Considering the diverse actions induced by NA, the im-
portance of the concentrations used should be pointed out 

[36]. Armstrong-James and Fox [7] found an inhibitory ef-
fect with an elevated quantity of NA whereas with a lower 
level, it exerted an excitatory effect on the spontaneous ac-
tivity of somatosensory cortex. A similar effect was found in 
the hippocampus [83]. Globally, however, a general major 
action of NA in the brain seems to be inhibitory [35, 64, 106, 
126, 127, 129], as we have observed in PFC synaptic trans-
mission (Marzo et al., unpublished data). But some biphasic 
actions are also described, where the excitatory effect of NA 
was transient and followed by an inhibition [16, 126].  

 NA effects may also depend on layers within a single 
structure. In somatosensory cortex, middle layer neuronal 
activity was decreased by NA in the majority of cases, 
whereas neurons in deep and superficial layers showed NA-
induced excitation for both evoked and spontaneous activi-
ties [127]. Our laboratory also observed differential effects 
of NA in PFC slices where synaptic depression was observed 
in layer I-II to layer V pyramidal neuron synapses after NA 
application whereas layer VI synapses showed little change 
(Marzo et al., unpublished data). 

 A recent trend in the plasticity field highlights the impor-
tance of neuroplasticity not only in physiological regulations 
but also in pathological regulations of brain networks. In this 
respect, we note that another catecholamine dopamine plays 
a major functional role in the PFC [39], through up- or 
down-regulation of PFC glutamatergic synapses depending 
on developmental and behavioral conditions. A main differ-
ence of the manner of dopaminergic regulation of PFC syn-
aptic transmission from that of NA is that dopamine has to 
act temporally together with high-frequency conditioning 
input to glutamatergic synapses in order to exert its long-
term modulatory effects on synaptic efficacy. NA, in con-
trast, depresses, or in some cases potentiates (Marzo et al., 
unpublished data), PFC synapses without coincidental en-
hanced glutamatergic activity, suggesting global effects of 
NA on the signal-to-noise ratio. How these NA effects are 
related to behavior and whether there is any interaction be-
tween the dopamine-induced and NA-induced synaptic 
changes remain as important future questions.  

 In conclusion, the activation of noradrenergic system is 
able to induce and modulate intrinsic and synaptic plasticity 
in two different directions, depending on the concentration, 
the structure, and the engaged pathway. Further studies, giv-
ing more attention to these details, should reveal yet more 
specific links between behavior and NA modulation of brain 
networks. 
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