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As food intake patterns become less structured, different methods of dietary assessment

may be required to capture frequently omitted snacks, smaller meals, and the time

of day when they are consumed. Incorporating sensors that passively and objectively

detect eating behavior may assist in capturing these eating occasions into dietary

assessment methods. The aim of this study was to identify and collate sensor-based

technologies that are feasible for dietitians to use to assist with performing dietary

assessments in real-world practice settings. A scoping review was conducted using the

PRISMA extension for scoping reviews (PRISMA-ScR) framework. Studies were included

if they were published between January 2016 and December 2021 and evaluated the

performance of sensor-based devices for identifying and recording the time of food

intake. Devices from included studies were further evaluated against a set of feasibility

criteria to determine whether they could potentially be used to assist dietitians in

conducting dietary assessments. The feasibility criteria were, in brief, consisting of an

accuracy ≥80%; tested in settings where subjects were free to choose their own foods

and activities; social acceptability and comfort; a long battery life; and a relatively rapid

detection of an eating episode. Fifty-four studies describing 53 unique devices and 4

device combinations worn on the wrist (n = 18), head (n = 16), neck (n = 9), and other

locations (n = 14) were included. Whilst none of the devices strictly met all feasibility

criteria currently, continuous refinement and testing of device software and hardware

are likely given the rapidly changing nature of this emerging field. The main reasons

devices failed to meet the feasibility criteria were: an insufficient or lack of reporting on

battery life (91%), the use of a limited number of foods and behaviors to evaluate device

performance (63%), and the device being socially unacceptable or uncomfortable to

wear for long durations (46%). Until sensor-based dietary assessment tools have been

designed into more inconspicuous prototypes and are able to detect most food and

beverage consumption throughout the day, their use will not be feasible for dietitians in

practice settings.
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INTRODUCTION

In the past decade, there has been a shift away from traditional
eating patterns (1). The proportion of adults moving away
from the conventional three main meals per day toward smaller
but more frequent meals and snacks is increasing (1). These
dietary trends are more apparent in young adults whose food
intake pattern is less structured (2) and more spontaneous (3).
Thus, there are implications for self-reported dietary intakes as
snacking occasions are frequently omitted when using traditional
dietary assessment methods (4) due to users forgetting or
declining to self-report (5). There have been technological
advances in the collection and processing of dietary information,
with web- and mobile application (app)-based food diaries
and computerized adaptations of the 24-h recall such as the
National Cancer Institute’s Automated Self-Administered 24-
h recall (ASA24) (6, 7) and the Measure Your Food on One
Day 24-h Recall (myfood24) (8) becoming the norm. However,
digital food diaries still rely on user-initiation and self-report
(9) and the computerized 24-h recalls have similar limitations
to that of traditional dietary assessment methods and have been
documented to omit food items (10, 11).

Newer technologies utilizing wearable and non-wearable
sensors offer an objective and passive means to measure
behaviors related to food and beverage consumption. They
provide convenience for users by removing the burden of self-
report (12) and may be of higher measurement accuracy, thereby
presenting advantages over traditional dietary assessment
methods. The capabilities of these technologies are constantly
evolving and improving given the relatively new nature of this
field (13) and have the potential to advance the Nutrition
Care Process (NCP) (14), a framework that guides the Medical
Nutrition Therapy (MNT) dietitians provide.

Nutrition Assessment is the first step of the NCP, and
it involves the collection and documentation of information,
including food-related history (14). In addition to determining
what foods are eaten during meals and less structured eating
occasions, dietitians may examine how foods are eaten. This may
be enhanced via the use of sensors as their ability to detect hand-
to-mouth (HTM) actions and biting, chewing, and swallowing of
food enables them to provide valuable information about how
someone eats, including the timing of consumption, duration
of eating episodes, and frequency of eating occasions. Sensors
and wearables such as wearable cameras that take images at
frequent and regular intervals throughout the day (e.g., every
30 s) (15) may be used to reveal what people are eating and
combinations of sensors can be used to determine food type
and calorie intake when chewing motions are detected (16).
Furthermore, real-time detection of eating gestures allows for
the delivery of timely prompts that remind users to record
their dietary intake, reducing the chances of inaccurate dietary
recalls as a result of memory decay (5). This is a form of event-
contingent Ecological Momentary Diet Assessment (EMDA)
(17). Beyond their value in rigorous measurement, the use
of prompts in tandem with sensing technologies can assess a
person’s psychological and physical state and social and food

environmental surroundings when eating occasions are detected,
helping a dietitian understand why a client eats as they do.

The remaining steps of the NCP are Nutrition Diagnosis,
Intervention, and Monitoring/Evaluation (14), all of which
could also be enhanced with the use of sensor-based devices.
Nutrition Diagnosis involves the naming of a specific nutrition
problem based on data collected during nutrition assessment.
Sensors may be able to detect the signs and symptoms of
nutrition problems such as excessive or inadequate energy intake
based on the correlation between energy intake and HTM
motions (18); swallowing or chewing difficulties using devices
that measure these gestures to detect eating (19); and irregular
eating patterns based on the detected start time of eating
occasions and the consistency of these times across multiple days.
This type of information collected by the sensor-based devices
may assist dietitians in establishing a nutrition diagnosis more
efficiently. During Nutrition Intervention, the dietitian selects an
appropriate intervention to be directed toward the root cause of
the nutrition problem (14). Again, with the use of sensor-based
devices, timely prompts that remind users of this intervention,
may be delivered upon the detection of an eating event (20)
to enable clients to achieve their dietary goals. This can be in
the form of a short message that appears on a smartwatch or
a connected smartphone that informs the user of an action or
food choice that can be made to motivate them toward achieving
their dietary goal. During theMonitoring/Evaluation stage, users’
dietary habits in terms of the rate of eating (e.g., bites/chews per
minute) and dynamic pattern of food consumption (21, 22) may
be monitored and evaluated remotely and in real-time between
consultation sessions (23).

Although some authors from dietetic backgrounds have
already integrated sensor-based devices into their studies (24, 25),
specifically the wrist-worn device known as the Bite Counter that
detects HTM motions, there is currently no systematic process
in place to evaluate the feasibility of other devices for dietetic
practice. For sensor-based devices to be useful to dietitians in
real world practice, engineers building the devices need to be
cognizant of the practicality of devices. The sensor will need to be
discrete and comfortable to wear throughout the day so as not to
inhibit client/patient compliance with using the device. Battery
life will need to be sufficient to cover waking hours without
recharging. Ideally, multiple functions could be incorporated into
one device rather than requiring numerous sensors. The field
of physical activity demonstrates how passive sensing can move
from more obtrusive bulky accelerometers worn on the hip to
watch-like devices worn on the wrist (26).

In an area that is rapidly evolving, a scoping review
was selected as the most appropriate method to identify
both peer-reviewed studies and gray literature between
January 2016 and December 2021 that assessed the use of
sensor-based devices in detecting eating and/or drinking
occasions. These devices were then evaluated with a set
of five feasibility criteria to identify and collate those
that could potentially be useful for assisting dietitians in
performing dietary assessments as part of the NCP in real-world
practice settings.
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TABLE 1 | Inclusion and exclusion criteria of the scoping review.

Selection

criteria

Inclusion criteria Exclusion criteria

Population • Adult participants 18 years or older

• Participants 17 years or younger if the device can potentially be used

in adults

• Animal studies

Concept • Device identified and recorded, or had the capacity to identify and

record, the start time of an eating and/or drinking occasion over

multiple days in real-time

• Passive, sensor-based device that did not require user input

• The most recent paper published about the device by a particular

research group if it supersedes earlier papers

• Delay ≥20 mins between the detected gesture or proxy for eating or

drinking and the true occasion

• Instruments that measured usual, average or overall intake; did not

identify and record the start time of eating and/or drinking; were

used solely for administering dietary interventions; measured enteral

or parenteral feeding; were displaced or discontinued at the time of

the search; or required user input

• Web-, mobile app-, or paper-based dietary assessment tools

Context • Papers published between 2016 and 2021 inclusive and in English

• Case studies, conference proceedings, dissertations, and opinion

papers in both peer-reviewed and gray literature

• No limitations on geographic location

• Study could be conducted in laboratory, semi-controlled, or

free-living settings. However, the device had to be feasible for use in

free-living settings in terms of user acceptability and comfort.

• Any study or review of studies that evaluated the performance of

a device

• All papers published before 2016 and papers published in all other

languages

• Papers that did not evaluate the device’s performance

• Papers solely describing the data processing pipeline and algorithm

of the model without describing the design of the device hardware

MATERIALS AND METHODS

Protocol and Registration
Our protocol was drafted using the Open Science Framework
(OSF) Preregistration template and registered prospectively with
OSF on 11/01/2022 (https://doi.org/10.17605/OSF.IO/EYH5A).

Eligibility Criteria
The selection criteria informed the population, concept, and
context relevant to the review’s objective. This scoping search
was inclusive of any scientific paper published between January
2016 and December 2021 that used sensor-based devices to
passively detect and record the initiation of eating in real-time, as
shown in Table 1. As this field is rapidly advancing and sensor-
based technologies evaluated in earlier papers are likely to have
been further developed, we focus on the literature from the past
5 years.

Information Sources and Search
For the scoping review, seven databases were searched: ACM
digital library, CINAHL (EBSCO), EMBASE (Ovid) (EMBASE,
RRID:SCR_001650), IEEE Xplore (IEEE), PubMed, Scopus
(Elsevier), and Web of Science (Clarivate Analytics). Sources
of gray literature searched included: Google, Trove, MedNar,
OpenGrey and official websites of international and government
organizations. The search strategy was optimized to extract both
peer-reviewed studies and gray literature and was developed
and refined with the aid of an experienced librarian with
expertise in database searches. The complete search strategy
for Ovid MEDLINE can be found in the Appendix A in
Supplementary Material. The final search results were exported
into EndNote (EndNote, RRID:SCR_014001), and duplicates
were removed.

Screening and Selection of Evidence
The titles and abstracts of all studies were reviewed against
the eligibility criteria. If the title and/or abstract mentioned a
sensor-based device that detected eating, the study was included
in the initial screening stage to be assessed in the full-text
screening stage.

Studies were further excluded during the full text screening
stage if they did not evaluate device performance or if the
same research group conducted a more recent study describing
a device that superseded previous studies of the same device.
Studies evaluating a device that did not have the capacity to detect
and record the start time of food intake, did not use sensors, were
not applicable for use in free-living settings, or were discontinued
at the time of the search were also excluded (Figure 1).

Data Charting Process and Data Items
The data extraction table was developed specifically for this
review (Supplementary Table 1). In the table, the devices were
categorized according to device placement. For each device, the
following data items were included:

1. The type(s) of sensors used, and the number of each sensor
included in the device.

2. The type(s) of intake (e.g., food, beverages) and eating
proxy or gesture (e.g., HTM motions, chewing, swallowing,
etc.) measured.

3. Ground truth method, evaluation metric(s), and performance
of sensors.

4. Advantages and disadvantages of the study, including both the
study design as well as the feasibility of the device for assisting
with dietary assessment in real-world settings according to the
five feasibility criteria described below.

5. Experiment details including the setting, duration, number of
food and/or beverage types tested, and number of participants.
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FIGURE 1 | Flow chart of included studies.

6. The data processing pipeline including the classification
algorithm used, sampling rate, and the number of
features. The number of papers using each type of
classification algorithm was tabulated in a separate table
(Supplementary Table 2). This table was developed by
a dietitian (LW) and a geospatial data scientist (JY). A
short description of each algorithm using plain language
is provided.

Synthesis of Results
Devices in the data extraction table were further evaluated against
a set of five feasibility criteria to identify those that were suitable
for assisting dietitians with performing dietary assessment (Step
1 of the NCP) in real-world settings (Table 2). The five feasibility
criteria were: (i) the study’s evaluation metric showing an average
accuracy or F1-score of ≥80% in detecting individual eating

proxies such asHTMmovements, biting, chewing, or swallowing;
eating bouts (periods of eating within an eating episode); or entire
eating episodes (ii) in free-living, semi-free-living, or laboratory
settings where participants were free to choose their own foods
and activities. The feasibility cut-off score of ≥80% was selected
based on the performance of the Bite Counter device employed
in dietitian-led trials (24, 25). This device achieved an F1-score
of 82% in free-living settings (81). (iii) The device had to be
discreet, socially acceptable, and comfortable for the user to wear
for long durations. This was determined based on user feedback
where available and the appearance and description of the device
hardware. Due to the emerging nature of this field, the design of
the hardware did not need to match the quality and appearance
of off-the-shelf wearables at this stage. However, devices that were
large, obtrusive, and not disguisable as everyday accessories such
as glasses were considered socially unacceptable. (iv) The battery
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TABLE 2 | An overview of all identified devices compared with the five feasibility criteria used to determine suitability for use by dietitians in real-world settings.

Reference Accuracya Real-world

applicabilityb
Social

acceptabilityc
Battery lifed Real-time

processinge

Both eating &

drinkingf

Wrist-Worn Devices (n = 18)

Ortega Anderez et al. (27)
√

× – × ×
√

Stankoski et al. (28)
√ √ √

× × ×

Solis et al. (29)
√ √ √

× × ×

Lin and Hoover (30)
√

×
√

× – ×

Sharma et al. (31) ×
√ √

× × ×

Kyritsis et al. (32)
√ √ √

× × ×

Gomes et al. (33) ×
√

× × –
√

Sen et al. (34)
√

–
√ √ √

×

Zhang et al. (35)
√

× × × – ×

Gan et al. (36)
√

× × × – ×

Fortuna et al. (37)
√

×
√

× × ×

Zhang et al. (38)
√

×
√

× – ×

Kim et al. (39)
√

×
√

× – ×

Siddhartha Varma et al. (40)
√

× × × –
√

Lee et al. (41)
√

×
√

× – ×

Navarathna et al. (42) ×
√ √

× – ×

Kamachi et al. (43) × ×
√

× × ×

Hnoohom et al. (44)
√

×
√

× × ×

TOTAL “
√
” 14 6 13 1 1 3

Neck-Worn Devices (n = 9)

Shin et al. (45)
√

× × ×
√

×

Bi et al. (46)
√

× × ×
√ √

Hussain et al. (47)
√

× × ×
√ √

Chun et al. (48) ×
√ √ √

× ×

Kalantarian et al. (49)*
√

×
√

× –
√

Kalantarian et al. (49)* × × × × –
√

Lee et al. (50) × × × × –
√

Zhang et al. (51) ×
√

×
√

× ×

Nguyen et al. (52) × × × × –
√

TOTAL “
√
” 4 2 2 2 4 6

Ear-Worn Devices (n = 9)

Kondo et al. (53)
√

×
√

× × ×

Bi et al. (54)
√ √

×
√ √

×

Bi et al. (55)
√

×
√

× – ×

Islam et al. (56)
√

×
√

× – ×

Taniguchi 2018 (57)
√

×
√

×
√

×

Taniguchi et al. (58) – ×
√

× × ×

Blechert et al. (59)
√ √ √

× × ×

Papapanagiotou et al. (60)
√ √

× × × ×

Bedri et al. (61)
√ √

× ×
√

×

TOTAL “
√
” 8 4 6 1 3 0

Glasses Devices (n = 7)

Farooq et al. (62)
√ √

× × ×
√

Farooq et al. (63)
√

× × ×
√

×

Zhang et al. (64)
√ √

– ×
√

×

(Continued)
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TABLE 2 | Continued

Reference Accuracya Real-world

applicabilityb
Social

acceptabilityc
Battery lifed Real-time

processinge

Both eating &

drinkingf

Chung 2017 (65)
√

× – × – ×

Ghosh et al. (66)
√ √ √

×
√

×

Bedri et al. (67)
√ √

×
√ √ √

Selamat et al. (68)
√

×
√

× – ×

TOTAL “
√
” 7 4 2 1 4 2

Other Devices (n = 10)

Lin et al. (69)
√

× – × – ×

Nyamukuru et al. (70)
√

× – ×
√

×

Wang et al. (71)
√

× × × – ×

Zhang et al. (72)
√

×
√

×
√

×

Chun et al. (73)
√ √

× × × ×

Lin et al. (30) – × × × – ×

Gan et al. (36)
√

× × × – ×

Chun et al. (74)
√ √

× × × ×

Yang et al. (75) × × × × × ×

Chen et al. (76)
√

×
√

× – ×

TOTAL “
√
” 8 2 2 0 2 0

Multi-Position Devices (n = 4)

Johnson et al. (77)
√

× × × – ×

Hussain et al. (78)
√

×
√

× –
√

Farooq et al. (79) ×
√

× × ×
√

Mirtchouk et al. (80) ×
√

× × × ×

TOTAL “
√
” 2 2 1 0 0 2

aAn average accuracy or F1-score of ≥80% in detecting individual eating proxies, eating bouts, or entire eating episodes.
bDevice testing occurred in free-living, semi-free-living, or laboratory settings where participants were free to choose their own foods and activities.
cA device that was discreet, socially acceptable, and comfortable for the user to wear for long durations determined by user feedback or the appearance and description of the

device hardware.
dThe study reported a battery life on a single charge of >12 h or one waking day.
eSensor data were classified in real-time as either eating or not eating within 5 mins.
fDevices that could detect, but not necessarily distinguish between, eating and drinking events. All devices could detect eating events. This was not one of the five feasibility criteria.
*Two devices were evaluated by this study. The first was an air microphone and the second was a piezoelectric sensor. Both were worn on the neck.

“
√
” indicates that the criterion has been met; “×” indicates that the criterion has not been met; and ‘–’ indicates that the criterion was not reported by the study and could not be

inferred by the authors.

life of the device on a single charge needed to exceed 12 h or one
waking day and (v) the data processing pipeline and algorithm
used needed to be able to classify a segment of data in real-time
as either eating or not eating within 5 mins. Five minutes was
chosen to capture all meals, including snacks.

Table 2 was formatted as a checklist, where each
criterion occupied a column, and each device occupied
a row. An additional column for the detection of
beverages was also included. Like the data extraction table
(Supplementary Table 1), devices were categorized by device
location (wrist, neck, ear, glasses, other, multi-position).

RESULTS

Study Selection
The search yielded 5,732 results in total: 5,718 studies were
identified by searching scientific databases and another 14 were

identified by searching the gray literature and the reference
lists of identified eligible studies. After removal of duplicates,
3,101 abstracts were screened by title and abstract and then full
text for eligibility (Figure 1). A total of 54 studies for sensors
were identified in this review. Reasons for full-text exclusions
included: (i) the devices not identifying or recording the start
of food and/or beverage intake time, (ii) the study not having
an experimental section or only evaluating the data-processing
pipeline without describing the hardware, (iii) the study not
describing a sensor-based device, (iv) the device not being
applicable to free-living settings, (v) the study describing a
discontinued device, and (vi) the study being superseded by a
more recent paper of the same device by the same research.

Study Characteristics
Fifty-three unique devices and four combinations of devices (77–
80) identified from 54 studies were included in the data extraction
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table (Supplementary Table 1). Of the 53 unique devices, 18
devices were placed on the wrist (27–44); nine were worn around
the neck (45–52); nine were placed in or around the ears (53–61);
seven were glasses-like devices (62–68); and ten were categorized
as “Other Devices” (30, 36, 69–76) where devices were worn in
less common locations of the body or were non-wearable (69, 72).

Most of the devices were trained and/or tested in laboratory
settings (n = 32). This was followed by devices trained and/or
tested in free-living settings (n = 22). Two of the devices were
trained and tested in both free-living and laboratory settings for
different food types (58, 74) and one was tested in semi-free-
living settings (60).

Most of the devices (n = 47) were assessed using one or more
validation methods as the “ground truth” for comparison with
inferred eating and/or drinking occasions. The ground truth was
captured by objective methods such as video or image recording,
researcher annotation or observation, and electromyography
(EMG) waves and voltages (n = 23); subjective methods such as
user annotation of recordings, human memory and self-report,
activity logging, and the use of a push button to mark chewing or
swallowing events (n= 21); or both (n= 3).

Results by Device Type
A summary of the devices’ performance, including the
advantages and disadvantages of each device category as well
as the study design used to evaluate the device(s) are described
below. Further details are available in Supplementary Table 1.

Wrist-Worn Devices

Devices worn on the wrist measured intake via the HTM
movement. Therefore, a major advantage of wrist devices is the
potential for it to detect both eating and drinking as it does not
rely on chewing or swallowing activity. Both food and beverage
intake were able to be identified in 5/18 wrist devices (27, 33,
37, 40, 44) and three of these could also distinguish between
eating and drinking movements (27, 33, 40). The algorithms
used by the wrist devices to detect HTM movements could be
adapted to different handedness depending on the individual.
Most were worn on the dominant wrist whilst one was worn
on the utensil-operating hand (32). Wrist devices are assumed
to have a high user acceptability especially with the use of
commercial smartwatches (28, 29, 32, 42) or models that are
compatible with popular commercial health tracking devices
(37). However, user acceptability was not formally tested for
most wrist devices. Whilst none of the devices could provide
an assessment of the actual foods consumed or the energy and
nutrient intake, one device could distinguish between the use of
different types of cutleries (28), one could distinguish between
a limited number of food types (ramen, pasta, bread, onigiri,
gyudon, cake) (43), and one could capture (but not provide an
assessment of) food type via an embedded camera (34).

The main disadvantages of the studies that used wrist devices
included: generating false positives for hand actions close to the
face (33, 42), and using a limited number of foods, utensils,
and/or behaviors to train and test the model, leading to overly
optimistic results (27, 30, 34, 36, 38); and users being required to
wear the wrist device on both wrists (35).

Neck-Worn Devices

Devices placed on the neck used a variety of sensors
such as microphones, piezoelectric sensors, and proximity
sensors to identify chewing and/or swallowing activity. Unlike
microphones, the use of piezoelectric sensors (pressure sensor)
does not generate privacy concerns (47, 49, 52). Most
sensors used in neck-worn devices captured both chewing and
swallowing signals and were therefore capable of differentiating
between food and liquid intake based on the pattern of chewing
and swallowing (46, 47, 49, 50). These four devices could also
differentiate between a limited number of food types ranging
from three to 17 individual foods.

Like wrist-worn devices, a drawback of the studies that
described devices worn on the neck was the strict experimental
protocols that did not reflect real-world eating scenarios. This
included experiments being conducted in settings with low
environmental noise (46, 49) and using a limited number of
foods or behaviors (46, 47, 49). Reduced performance was seen
in neck devices for users with a higher (51) or lower body mass
index (BMI) (46) and for users with dysphagia (50). Both tight-
fitting and loose-fitting neck sensors scored modestly for user
comfort (47, 50) and it was also common for loose-fitting devices
to move out of place during physical activity (45, 48). None
of the neck devices could provide an assessment of energy and
nutrient intake.

Ear-Worn Devices

Similar to wrist-worn devices, a major strength of using devices
in and/or around the ears is the potential user acceptability of an
in-ear earphone device (56, 58) or two discrete electrodes behind
the ear (59). Seven of the nine ear-worn devices used chewing as
a proxy for eating (54, 55, 57–61), two of which deliberately used
soft foods such as yogurt, ice cream, puree, and custard to train
the devices’ algorithms as they are more prone to being missed
(55, 60). However, it was unclear how the devices performed in
detecting these specific foods as the authors did not report on
these foods separately.

Despite being unobtrusive, subjects reported that they would
only wear the earbud-like device continuously for 4 h due to
discomfort (60). Other ear-worn devices were still in preliminary
stages, testing only two food types (57, 58) and requiring manual
adjustments by researchers before consuming each food type
(57). Some devices were only worn during mealtimes, so it was
difficult to determine whether these algorithms were able to
classify eating from other activities (53, 58). Studies that used
chewing as a proxy for eating saw a lower performance in
subjects with bruxism and/or nail biting (59). Movements such
as walking (54), talking (56), and strong head movements (59)
were commonly confused with chewing. None of these devices
were evaluated for drinking detection, could identify or capture
food type, or were able to provide an assessment of energy and
nutrient intake.

Glasses-Like Devices

Like most ear-worn devices, glasses-like devices also used
chewing activity to detect eating. However, rather than detecting
chewing via jaw motions, it was detected via temporalis muscle
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activation located on the side of the forehead. Despite this,
one device was still able to detect drinking where the duration
between sips was <30 secs (67), although it was not capable
of differentiating between eating and drinking occasions. Two
devices were designed as a pair of glasses embedded with a
small camera and were able to capture but not classify food
type (66, 67). One of them could detect chewing within 1.1002
milliseconds (66). Another device with EMG sensors (64) was
able to detect eating start time with an error of 24.8 secs. The
sensor(s) used in three devices (62, 63, 66) were detachable from
the device and could be mounted onto any off-the-shelf glasses,
increasing user acceptability in those who regularly wear glasses.

All glasses-like devices identified in the scoping review
required the frame of the glasses to be in contact with
the temporalis muscle to measure chewing. This meant that
the glasses had to be tightly fitted and could be affected
by perspiration or hairs between the skin and the glasses.
Thus, users who do not wear glasses regularly may experience
discomfort (68). Subjects also raised privacy concerns regarding
the continuous capture of the cameras attached to the glasses
(67). Other disadvantages associated with using chewing activity
to identify eating occasions included having a lower performance
when detecting soft foods. None of the devices in this category
could provide an assessment of energy and nutrient intake.

Other Devices

Devices that were categorized under “other” included wearable
(n = 8) and non-wearable apparatuses (n = 2). Non-wearable
technology included a WiFi transmitter and a receiver, using
interferences in the WiFi signaling between a WiFi access point
and a smartphone to deduce human body motion (69). Another
non-wearable was a smart fork that detected food pick-up
gestures and bite quantity using a load cell embedded inside
the fork to measure the weight of each bite (72). This could
potentially be used to estimate caloric intake. Other wearable
devices included a headband (70, 71), a pin (76), a sensor placed
on the chin (73), on the finger (30, 36), on the lower teeth
(74), and a hip-worn Global Positioning System (GPS) and
accelerometer (75).

Most of the devices in this category were still in preliminary
developmental stages and were tested on a limited number of
foods and/or behaviors in laboratory settings (30, 36, 68–72).
However, devices worn on the chin (73) and teeth (74) were
small and discreet and had been tested in free-living settings. One
device was able to broadly categorize food by type (moist/dry and
hot/cold) using changes in intraoral temperature and jawbone
movement (74). Another device that included an accelerometer
andGPSworn on the hip (75) was able to predict food purchasing
and eating events up to 4 mins ahead of time with 74 and 73%
mean accuracy respectively, even in in-home settings. This was
the only device that could detect eating prior to the event which
is ideal for providing just-in-time dietary feedback or reminders
to guide users toward their dietary and health goals. None of the
devices in this category were evaluated for drinking detection.

Multi-Position Devices

Devices in this category involved sensors placed on multiple
locations of the body. Using a combination of devices has the

advantage of being able to counteract each other’s drawbacks
(79, 80). The study by Mirtchouk and Kleinberg (80) used one
earbud and two smartwatches worn on both wrists. Whilst the
earbud only detected chewing sounds associated with eating,
the smartwatch detected HTM movements for both eating and
drinking occasions and also mitigated any false positives that
may be picked up by the microphone on the earbud. The sounds
picked up by the earbud can also help to reduce false positives
generated by the smartwatches when the user performs other
hand gestures close to the face. Two devices in this category were
able to distinguish between eating and drinking events (78, 79),
with one also able to distinguish between six food types, including
water (78).

A major drawback of using multiple devices would be
user comfort and acceptability, especially when worn for long
durations in social settings. Only one device combination, a wrist
and neck sensor, evaluated user experience (78) and reported
that most participants were comfortable with wearing the two
instruments, especially the wrist sensor (smartwatch). This study
(78), as well as one other (77), was conducted in laboratory
settings with a limited number of activities, subjects, and food
types. None of the devices could provide an assessment of energy
and nutrient intake.

Summary of Devices Most Promising for
Dietetic Practice
Based on the five feasibility criteria, none of the devices identified
in this scoping review were deemed feasible for use by dietitians
to assist with conducting dietary assessments. The feasibility
criteria were, in brief, consisting of an accuracy ≥80%; tested in
settings where subjects were free to choose their own foods and
activities; social acceptability and comfort; a long battery life; and
a relatively rapid detection of an eating episode.

The most common reason for exclusion was an insufficient
or lack of reporting on battery life, accounting for 91% of the
devices. The wrist-worn category had the highest proportion of
devices that did not meet this criterion. This was followed by
the use of a limited number of foods and/or behaviors to test
device models (63%), where devices from the “other” category
had the highest proportion not meeting the criterion. Forty-six
percent of devices predominately from the neck-worn category
were socially unacceptable or uncomfortable to wear for long
durations. Thirty-five percent of devices had not been tested or
calculated for real-time applicability. This was mostly seen in the
multi-position device category. Twenty-one percent of devices
did not meet the accuracy or F1-score of ≥80% criterion. This
was also predominately contributed by the neck-worn devices.
Note that the percentages do not add up to 100% as studies
could have hadmore than one reason for exclusion. Twenty-three
percent of devices, predominately from the neck-worn category,
were evaluated for the detection of behaviors related to both
eating and drinking. Table 2 provides an overview of the 57
devices and device combinations and the feasibility criteria they
fulfilled and did not fulfill.

Select features of devices that fulfilled four out of the
five feasibility criteria (34, 54, 66, 67) can be used to
highlight their potential application in dietitian-led MNT. These
devices included:
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A pair of glasses embedded with gyroscope, accelerometer,
and proximity sensors (67) (feasibility criterion iii unfulfilled);
a wrist-worn device (34) (feasibility criterion ii unfulfilled), a
pair of off-the-shelf eyeglasses with an attached sensor system
(accelerometer) (66) (feasibility criterion iv unfulfilled), and a
headband that housed a contact microphone beside the ear (54)
(feasibility criterion iii unfulfilled).

Dietitian-led MNT is guided by the four step NCP. During
Nutrition Assessment (Step 1), dietitians will usually conduct a
diet history to estimate nutritional adequacy and meal patterns
but will sometimes ask patients to keep a diet record in advance
of their consultation. However, patients sometimes miss meals
and snacks or forget to record in paper- or app-based dietary
records (82). The headband device detects eating passively using
chewing sounds, with a 3-mins delay between the start of eating
and eating detection (54). This type of device may be used to
remind users to document food intake retrospectively in the
form of an event-triggered EMDA. This may reduce the burden
of self-initiation and reduces the number of missed occasions
resulting from when users forget to report. The wrist-worn and
two glasses-like devices have a relatively quick processing time
(60 sec or less) and can be used to passively detect and capture
the types of foods and beverages consumed via the embedded
camera. This eliminates the need for users to self-report dietary
intake altogether.

A Nutrition Diagnosis (Step 2) can be determined via sensor-
based devices including the intake domain for excessive or
inadequate energy and fluid intake; clinical diagnoses, such
as difficulties with swallowing or chewing; and behavioral-
environmental aspects, such as eating patterns and physical
activity. Hand-to-mouth motions measured via wrist-worn
devices have a moderate correlation with energy intake (18)
and may be used to estimate over- and under-eating. The
two eyeglasses and headband use chewing and/or swallowing
motions to detect eating and irregularities in the sensor
signal may potentially be developed and used to identify
chewing/swallowing difficulties. All four devices are also able
to detect the number of eating occasions (food consumption
occasions) throughout the day as well as their clock times,
revealing the patient’s food consumption pattern, including
whether they follow a regular eating schedule or engage in more
“grazing” styles of eating. This information can help with the
establishment of a nutrition diagnosis.

After a Nutrition Intervention (step 3) is agreed upon
between the dietitian and the patient, the devices can be used
to assist patients with adhering to the planned action(s) of
the intervention. A reminder about a pre-determined goal or
a strategy delivered a few seconds into a meal can guide
patients’ food decisions especially in settings where food is self-
served throughout the meal. This is potentially feasible with
the off-the-shelf glasses device as it can detect eating gestures
within a very short duration of 1.1002 milliseconds from the
start of the occasion. Although the devices may not be useful
in settings where the user prepares or purchases their own
food as the food choice would have already been made when
the reminder is delivered, it may help to guide their next
eating occasion.

As consultation sessions can range from weeks to months
apart, sensor-based devices can enable dietitians to Monitor and
Evaluate (step 4) patients’ progress between sessions. By setting
up web- or mobile app-based communication systems such as
Healthie (83), Cronometer Pro (84), and Ascend (85), dietitians
may be able to view patients’ sensor-triggered dietary records in
real-time and adjust the dietary intervention accordingly without
delay or postponing until the next appointment. This may help to
maintain patient motivation and adherence to dietary goals and
plans between consultations (86).

DISCUSSION

Currently, traditional dietary assessment methods such as food
frequency questionnaires, 24-h recalls, and food records or
diaries are still the most commonly used in dietetic practice (87).
However, online adaptations of these methods including web-
based programs, mobile phone and smartphone applications,
and other technologies have become the norm in supporting
the delivery of nutrition care (88, 89). Although some authors
from both dietetic and engineering backgrounds have already
employed sensor-based devices into their studies (21, 24, 25),
previous literature reviews in this field have not considered the
real-time applicability and feasibility of sensor-based devices
when used in dietetic practice settings (13, 90). This review
provides an overview of the latest sensors used to detect
eating occasions. The sensors were evaluated against a set of
five feasibility criteria outlined in this discussion to determine
whether they could feasibly be implemented into dietary
assessment and potentially improve the accuracy, efficiency,
and effectiveness of the NCP. This set of criteria may also
be helpful for guiding engineers in the development of future
devices to incorporate features that are important and practical
for dietitians.

Summary of Evidence
This scoping review identified a total of 57 devices or device
sets, spanning across six categories: wrist-worn, neck-worn, ear-
worn, glasses, “other” (non-wearable devices and devices worn
on less common locations of the body), and a combination of
devices. Of the 57, none of the devices met the feasibility criteria
as suitable for dietitians to incorporate into practice settings.
The most responsive device with the shortest time resolution
could detect eating and/or drinking occasions within 1.1002
milliseconds from the start of an eating event, which can be used
to provide timely feedback. Devices with longer time resolutions
can instead be used to remind users to record their dietary intake
as an automated, event-contingent EMDA.

Feasibility Criteria for Sensors in Dietetic
Practice Settings
The five criteria for feasibility of use by dietitians in real-world
practice settings were: accuracy in detecting all eating episodes;
evaluation of device performance in settings where participants
had the freedom to select their own food and nutrition behaviors;
user comfort and acceptance when worn in social settings and for
long durations; detection of episodes in real-time and with little
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delay; and a sustainable battery life of at least one waking day on
a single charge.

An average F1-score or accuracy of ≥80% in detecting eating
and/or drinking was selected as the cut-off for a satisfactory
performance. Only studies achieving these results in free-living,
semi-free-living, or laboratory settings where participants were
free to choose their own foods and activities are appropriate
for real-world use. Only a small number of devices that met
these two criteria had been evaluated to detect both eating and
drinking occasions (62, 67, 79, 80) despite beverages contributing
to up to one quarter of total daily energy intake (91, 92).
This may be because beverages that are consumed continuously
throughout the day such as water, tea, and coffee are difficult
to detect (67) and distinguish from eating using current sensors
(62, 80). Most of the devices that were able to distinguish
between eating and drinking were tested on a limited number
of foods and beverages (27, 37, 40, 44, 47, 49, 50, 76, 78),
using differences in chewing and swallowing patterns (47, 49,
50, 78), sounds (49, 76), or wrist movements (27, 37, 44) to
distinguish between the two. Additional evaluation using more
food types in settings where subjects are free to choose their
own foods and activities is required. The detection of beverages
may also require supplementary tools such as the use of sensor-
embedded drinking utensils (92) for a more accurate assessment
of beverage intake.

Dietary assessments typically involve the collection of dietary
data over several days and may require repeated sampling to
determine nutrient intakes and food patterns. However, during
dietary intervention and monitoring, food consumption may
need to be measured at multiple time points over weeks, months,
or even seasons to determine the amount of progress made and
to continue to elicit behavior change toward nutrition-related
goals (93). Therefore, it is important that the devices do not
cause wearer burden (94). Few studies addressed user comfort
and acceptability (34, 48, 51, 56, 60, 66, 78). Privacy concerns
were raised for continuously capturing cameras (34, 67, 95)
and air microphones (49). Neck devices (48, 51) and earphone-
like devices (60) scored modest ratings for comfort (48, 96),
whilst wrist-worn devices were readily accepted by users (78, 96).
Further adjustments need to be made to the hardware of the
earphone prototype to improve the fit of these devices and
camera capture should only be triggered when eating is detected
to address privacy concerns. For devices such as neck-worn
and glasses devices, a smaller and thinner or a customizable
appearance would be more socially acceptable (48, 51, 67).

Unlike traditional event-contingent EMDA, passive sensor-
based devices do not require participants to initiate the self-
reporting of each eating event (19), reducing the number of
missed occasions resulting from when users forget or decline to
report (97). However, these devices will only be effective if eating
or drinking gestures are detected instantly at the start of a main
meal, snack, or beverage or even predicted before the event (74).
Although many papers stated that real-time data collection and
processing was possible, few tested the entire data processing
pipeline in real-time or calculated the anticipated time delay
between eating and gesture identification (34, 45, 54, 61, 66, 67).
It is important that the time delay is kept to a minimum so that

dietitians are able to deliver just-in-time feedback and positively
influence the user’s food choice before it has been consumed.
Devices should continue to be tested in real-time to ensure near
instant detection or prediction before the event.

As people may eat at any time during the day, an important
requirement for passive dietary monitoring is a battery life that
can sustain continuous day-long monitoring. Only five papers
evaluated and reported on the battery life of the device, all
of which could last for at least 12 h or one waking day on
a single charge either during real-time implementation or as
estimated using power measurements (34, 48, 51, 54, 67). Further
evaluation is required to ensure that the battery life of sensor-
based devices can last or exceed the waking hours of one day even
whilst operating at maximum performance.

Devices that meet the five feasibility criteria have the potential
to assist in all four stages of the NCP. By passively detecting eating
gestures, the sensors can be developed to remind users to record
their food intake, reducing the reliance on human memory
and increasing the accuracy of dietary assessment. A nutrition
diagnosis can be established more efficiently via the pattern and
frequency of food consumption as well as the estimated energy
intake captured by the sensors. Dietary interventions can be
mademore effective when users are reminded of a predetermined
goal or strategy during food intake. By remaining online,
dietitians can continuously monitor and adjust the intervention
without delaying until the next appointment.

Strengths and Limitations
Our scoping review has some limitations. Studies that used
discontinued device models were excluded which may have
potentially omitted software and data processing pipelines that
were accurate, high speed, and computationally inexpensive. In
addition, there were several limitations with the data extraction
process. We were not able to compare results across studies
due to the lack of standardized eating or drinking outcome
and evaluation measure of intake. We also only selected the
“best” evaluation metric as indicated by authors to report in
Supplementary Table 1. Although this was only as reported
in the most realistic scenario. For example, if performance
in laboratory and free-living settings were both included in
the study, only the free-living performance was reported in
our table. The feasibility criteria used to assess the devices’
suitability for use in dietetic practice settings may also have
been overly restrictive. It is possible that there were devices that
were computationally inexpensive with real-time applicability
but were excluded because these attributes were not evaluated
in the current study identified by the scoping review. The field
of wearable and non-wearable sensors is relatively young and
most of the devices identified at this point in time are likely to
be in preliminary stages, particularly as the review was limited to
studies published in 2016 or later. They are likely to be developed
further to overcome challenges such as hardware obtrusiveness in
the near future.

A major strength of this scoping review is that it was written
using plain language and limited technical computer science
terminologies by accredited dietitians with experience in dietary
assessment and MNT, making it useful for a dietetic audience.
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Theoreticians, nutritionists, and geospatial data scientists also
contributed to the writing and development of this paper as well
as the interpretation of studies identified by this review. The
systematic process of the PRISMA-ScR framework used to guide
this review produced replicable, transparent, and comprehensive
results. The wide scope of the search (Appendix A) and inclusion
of both published and unpublished literature further maximized
the capture of relevant information to synthesize evidence in this
emerging field.

CONCLUSIONS

Methods of assessing food and beverage consumption that detect
food consumption patterns in a more dynamic and objective
manner are needed to more robustly capture a broader range of
food and nutrient intakes. In this review, we identified all recently
published studies describing sensor-based devices that passively
detected and recorded the initiation of eating in real-time. A set
of feasibility criteria based on high accuracy, user acceptability,
real-world and real-time applicability, and a sustainable battery
life, was applied to these studies to filter for those that were most
promising for use in dietetic practice settings. Whilst most of
the identified sensors and devices only embodied some of these
attributes, we have demonstrated how sensor-based devices may
be useful for assisting with the assessment of dietary intake as
well as other stages of the NCP. As sensor-based capture of eating
is a rapidly evolving field, further development, refinement, and
testing of device hardware and software are likely to occur over
the next few years which point toward the potential positive and

tangible benefits of utilizing sensor-based devices to assess food
consumption patterns.
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