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The glassy random laser: replica 
symmetry breaking in the intensity 
fluctuations of emission spectra
Fabrizio Antenucci1,2, Andrea Crisanti2,3 & Luca Leuzzi1,2

The behavior of a newly introduced overlap parameter, measuring the correlation between intensity 
fluctuations of waves in random media, is analyzed in different physical regimes, with varying 
amount of disorder and non-linearity. This order parameter allows to identify the laser transition 
in random media and describes its possible glassy nature in terms of emission spectra data, the 
only data so far accessible in random laser measurements. The theoretical analysis is performed 
in terms of the complex spherical spin-glass model, a statistical mechanical model describing the 
onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows 
to discern different kinds of randomness in the high pumping regime, including the most complex 
and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared 
to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and 
providing a straightforward interpretation of qualitatively different spectral behaviors in different 
random lasers.

Light amplification and propagation through random media have attracted much attention in recent 
years, with present-day applications to, e.g., speckle-free imaging and biomedical diagnostics1, chip-based 
spectrometers2–4, laser paints5 and cryptography6. Whatever the amplifying medium, ordered or random, 
in a closed or in an open cavity, two are the basic ingredients to produce laser in any optically active 
system: amplification and feedback. In closed cavities the electromagnetic modes straightforwardly 
depend on the cavity geometry. In cavity-less random media, instead, some kind of modes are established 
by spontaneous emission and are localized in closed photonic trajectories by means of multiple scatter-
ing. Indeed, the phenomenon of amplified spontaneous emission (ASE) can occur even in systems without 
any optical cavity, whose fluorescence spectrum is simply determined by the gain curve of the active 
medium7–12. When, because of an external pumping, the multiple-scattering feedback process becomes 
strong, amplification by stimulated emission is established in the random medium and we have a Random 
Laser (RL)13. The feedback is, here, associated to the existence of well-defined long-lived modes, charac-
terized by a definite frequency and a spatial pattern of the electromagnetic field inside the material. 
Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms of 
spatial mode eigenvectors ( )E rk :
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The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in 
the statistical mechanical modeling of interacting modes14,15, while the irregularity of their spatial profiles 
results into quenched disordered mode interactions. By quenched we mean that the interaction strengths 
are time independent16, as it occurs, in practice, when they change on time-scales much longer then the 
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typical amplification time-scales, longer than the RL lifetime itself and possibly reproducible in a series 
of apart RL measurements on the same sample under the same experimental conditions.

At least in some random media, the RL action presents the peculiar property of displaying strong 
non-trivial spectral fluctuations17–22 from one excitation pulse of the pumping laser to another one23–26. 
These will be termed shot-to-shot fluctuations from now on. If in spectral fluctuation measurements the 
scattering particles and all external experimental conditions are kept constant, these fluctuations will 
only be due to the initial configuration of pre-pumping electromagnetic modes occurring because of 
spontaneous emissions.

A connection to statistical mechanical models with quenched disordered interaction, i.e., spin-glass 
models16,27–29, has been recently established14,15,30–33, providing a new point of view on the shot-to-shot 
fluctuations phenomenon. The leading mechanism for the non-deterministic activation of the modes is 
here identified with the frustration induced by the disordered interactions27 and the consequent presence 
of a large number of equivalent states. For state we mean a given ensemble of activated mode config-
urations, specified by their own wavelengths, phases and intensities, realized by very many emissions 
on time-scales of the order of the duration of the shot, that is, of the RL life-time itself. The diverse 
spectral realizations are, thus, conjectured to correspond to a glassy behavior consisting in many equiv-
alent degenerate states constituting the RL regime. This glassy light regime is associated to an effective 
thermodynamic phase where the tendency of the modes to oscillate coherently in intensity is frustrated: 
in the language of the replica theory27, it corresponds to a phase where the symmetry among equivalent 
replicas is spontaneously broken34 and the overlap (i.e., the similarity) between the configurations of the 
mode amplitudes display a nontrivial structure15,35. Identical copies of the system show different sets of 
amplitude equilibrium configurations, as the ergodicity is broken in many distinct states36.

From an experimental point of view, the direct evaluation of the overlap between complex amplitudes 
and its probability distribution, i.e., the standard order parameter of the theory, requires the measure of 
the mode phases in the coherent regime. Such measure is not available so far, because of the low intensity 
of the RL emission (with respect to standard cavity lasers). The lack of a direct experimental knowledge 
of the whole overlap probability distribution is common, as well, to the original prototype systems for 
which replica symmetry breaking (RSB) theory was first developed, i.e., spin-glasses37,38, and also to 
structural glasses, one of the fields of major application of the theory39–43.

An experimental validation of such random-glassy laser connection, and, particularly, of the RSB 
predicted by the theory, has, nevertheless, recently been put forward in ref. 44, measuring the overlap 
between intensity fluctuations of the spectral emission. In the present work, we adopt a general model for 
cavity-less random lasers, in which not only the mode phases30–33 but the whole complex amplitudes are 
considered as the fundamental degrees of freedom of the problem14,15. In this framework we are able to 
demonstrate that RSB occurring in the standard amplitude overlap can, in principle, be observed in the 
intensity fluctuation overlap (actually a coarse-graining of the former) and vice versa. This development 
provides a theoretical setting to explain existing experimental results and to motivate similar measure-
ments in diverse RL systems. Our approach also clarifies why RSB is found only in RL’s in which mode 
couplings can be considered fixed (termed quenched) for all shots. In liquid compounds, instead, as a 
TiO2 dispersion in Rhodamine B-ethylene glycol solution, no evidence for RSB is found44.

The Complex Amplitude Model
The statistical approach we adopt is based on the hypothesis of effective equilibrium. The non-equilibrium 
steady-state of a laser can be described as an effective equilibrium state at an effective temperature linked 
to the pumping rate of the source and to the true environment temperature (associated, e.g., to the noise 
of the spontaneous emission). In order to implement such description, the gain behavior is chosen in 
such a way to guarantee that the global optical power  = ∑ ak k

2 remains constant. As a consequence, 
in the mean-field limit, the complex amplitudes ak statistics is described by the general Hamiltonian14,15
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where the sums are unrestricted and ak are N complex amplitude variables subject to the global power 
constraint    =  const. The coupling strengths are here quenched independent random variables with 
mean /( ) −J N p

0
2 1 and variance ! /( )( = , )−p J N p2 2 4p

p2 1 , whose scaling with N  guarantees an extensive 
Hamiltonian and thermodynamic convergence. For large N , the corresponding probability distribution 
can be taken Gaussian without loss of generality. Let us also define the degree of disorder = /R J JJ 0  and 
the pumping rate P ε β= J 0  with = +( ) ( )J J J0 0

2
0

4  and = +J J J2 4, and where β is the inverse of the 
environment temperature.

This model can be derived in a multimode laser theory for open and irregular random resonators15. 
The openness of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., 
the system-and-bath approach of ref. 45, in which the contributions of radiative and localized modes are 
separated by Feshbach projection46 onto two orthogonal subspaces. This leads to an effective theory on 
the subspace of localized modes in which they exchange a linear off-diagonal effective damping cou-
pling45,47,48. In terms of the interaction parameters, we also define the strength of the openness as the 
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inverse strength of the nonlinear interaction coupling with respect to the off-diagonal linear coupling 
α = / = / ∈ ,( )J J J J [0 1]4 0

4
0 . In a closed cavity the linear dumping is absent and it corresponds to α =  1.

In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), 
where each mode displays a determined frequency. The lifetimes of these modes are assumed to be much 
longer than the characteristic times of population inversion and amplification processes, so that the 
atomic variables can be adiabatically removed and result in an effective interaction between the electro-
magnetic modes. The nonlinear couplings are, indeed, nonzero only for the terms ⁎ ⁎a a a aj k l m that meet 
the frequency matching condition49–51,

ω ω ω ω γ− + − , ( )3j k l m

γ being the finite linewidth of the modes.
The mean-field approximation of the model equation (2) is exact when the probability distribution of 

the couplings is the same for all the mode couples (j, k) and tetrads (j, k, l, m). This is true, e.g., when 
mode extensions scale with the volume occupied by the active medium and their spectrum has a 
narrow-bandwidth around some given central frequency ω0, i.e., ω ω γ| − | <j 0 , ∀ j, so that the fre-
quency matching condition, cf. equation (3), always holds.

Results
The Random Laser Transition.  Given the quenched randomness of the J ’s, any observable depends 
on the particular realization of the disorder. Thus, the relevant quantity is the disorder averaged free 
energy β= − /F Zln J , where the overline denotes the average over the distribution of quenched disor-
dered couplings. This can be analytically evaluated using the replica method27,37, as reported in the 
Methods. In this procedure the evaluation of the relevant thermodynamic quantities is achieved consid-
ering n identical replicas (i.e., copies) of the system that act as probes exploring the multi-state phase 
space of the system. Further on, evaluating the distance between the replicas in terms of their similarity, 
termed overlap, one can retrieve the physical overlaps of the thermodynamic states35.

In the complex amplitude spherical model, equation (2), the order parameter of the replica theory 
turns out to be given by the overlap between amplitudes of replica a and replica b:

∑= ( )
( )=

⁎
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N
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where ε E= /N . This overlap Q identifies the onset of a RL regime at a given critical value of the pump-
ing, or, otherwise, at a critical temperature at fixed pumping. We notice that the latter behavior is in 
qualitative agreement with the experimental results of refs 52–54 where random lasing appears to occur 
decreasing temperature, besides increasing pumping.

Any nontrivial structure of the values taken by Qab implies that identical copies of the system, with 
the same interaction network and submitted to the same thermodynamic conditions, show different sets 
of values for microscopic observables at equilibrium and the ergodicity is broken in distinct equivalent 
states.

To our knowledge, from an experimental point of view, no phase correlation measurements, required 
for the evaluation of the complex amplitudes ak

a and, consequently, of Qab, is available so far in random 
media. Only magnitudes ak  are measured and not their phases φ = ( )aargk k . The experimental recon-
struction of the distribution of the values of equation (4) is, thus, unfeasible.

Real Replicas.  In recent experiments44, shot-to-shot fluctuations of intensity spectra in an amorphous 
solid RL, a functionalized thiophene-based oligomer named thienyl-S,S-dioxide quinquethiophene 
(T5COx), are measured and analyzed. Since the sample remains under identical experimental conditions 
shot after shot, n different shots of RL emission correspond to n real replicas and one can measure the 
overlap between intensity fluctuations of two real replicas. In these experiments, the set of the activated 
modes emitting after the shot = ,…, na 1 , whose available coarse-grained degree of freedom is the 
intensity ( ) =I k aka

a 2, is observed to change from shot to shot.
When, during a single shot of the pumping source, the number of stimulated emission processes 

taking place is very large, the configurations of the mode dynamics can be considered as pertaining to 
a thermodynamic state. In terms of the photonic bomb language of Letohkov10, e.g., this is a situation in 
which the typical amplification time is much shorter than the photons lifetime inside the medium, i.e., 
of the lifetime of stochastic resonators supporting the localized optical modes. The possible observation 
of numerous different states from shot to shot is, consequently, an evidence of a thermodynamic phase 
described by a corrugated free energy landscape composed of many valleys separated by barriers.

Intensity Fluctuation Overlap (IFO).  Having as only experimentally available degree of freedom the 
intensities, one defines a suitable overlap based on their acquisition in different shots. To this aim, one 
first determines the average emission spectrum ( ) ≡ / ∑ ( )=I k n I k1 n

a 1 a . Then, terming 
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∆ ( ) ≡ ( ) − ( )k I k I ka a  the intensity fluctuation of shot a around the average profile, one can define the 
overlap between the normalized intensity fluctuation of shots a and b as44:

 ≡
∑ ∆ ( )∆ ( )

∑ ∆ ( ) ∑ ∆ ( )
,

( )

k k

k k 5

k

k k
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exp a b
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2
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where the index k denotes now the frequency, i.e., the experimental accessible equivalent of a mode 
index, depending on the spectral resolution. The overlap is measured between the fluctuations of inten-
sity, rather than the straight intensities, to exclude the effects due to the amplified spontaneous emission. 
From n measured spectra one can calculate the ( − )/n n 1 2 values of the IFO  ab

exp and its distribution 
( )P J

exp . Its average  ( ) = ( )P P J
exp exp  can be computed by repeated spectral measurements acquired 

on different samples. By different samples we, actually, mean different realizations of the microscopic 
disordered realization of scatterers positions as faced by the incoming pumping light beam. More pre-
cisely, one can realize a different realization by turning the material sample or, if the beam section is 
smaller than the random medium, by illuminating a different region with the pump laser spot.

If the variations of the normalization factors ∑ ∆ ( )kk a
2  in Eq. (5) are neglected with respect to 

fluctuations ∆ ( )ka , in the 2 +  4 complex amplitude spin-glass model given by equation (2), the matrix
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is the model equivalent of the IFO, up to an overall sign. Indeed, equation (6), defined in the dominion 
[0, 1], holds with the prescription that  ( = )P ab

exp  corresponds to  ( = )P ab . To compare with 
experimental results we will use symmetrized ( )P ,  ∈ −[ 1:1], without any loss of generality.

IFO vs. standard overlap relationship.  The average in equation (6) can be carried out using the 
replicated action derived in the Methods, cf. equation (14). This leads to the following relationship 
between the IFO and the standard order parameters:

 = − , ≠ ( )Q m
4

a b ; 7ab ab
2

4

where Qab is defined in equation (4), and
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is the parameter of global coherence (cf. Methods). According to equation (7), if a RSB occurs in the 
standard overlap Qab it propagates with the same structure to the IFO ab. We, thus, have a theoretical 
well funded tool to detect RSB in experimental data. We stress that this analysis could have not been 
possible in XY  models with quenched amplitudes considered in previous works30–32 because there the 
intensities of the modes are kept fixed during the mode dynamics.

In equation (7) we have considered the most general case in which a high pumping regime can display 
both a global coherence ( ≠m 0) and a multi-state non-trivial structure for the amplitude configurations 
( ≠Q 0ab ). This mixing physically occurs for a degree of disorder RJ  next to the tolerance value beyond 
which standard mode locking (SML) breaks down, leaving place to glassy random lasing. This is dis-
played in the phase diagrams in the central panels of the triptych Figs  1 and 2, as the boundary lines 
between SML ( ≠m 0) and glassy random laser (m =  0 but ≠Q 0ab ) at large .

The low pumping regime is replica symmetric for any RJ , with m =  0 and Qab =  0 for ≠a b14, imply-
ing a Dirac delta probability ( )P , peaked in zero, both in the incoherent wave (IW) and in the phase 
locking wave (PLW) in Figs 1 and 2 (cf. also Methods).

Replica Symmetric standard mode-locking laser.  For weak disorder at high pumping , for every 
≠a b the relationship = ± /Q m 2ab

2 , with ≠m 0, holds between the overlap and the (replica independ-
ent) global coherence parameter. In other words, the high pumping laser regime is replica symmetric, as 
well, and the ( )P  is a Dirac delta function in zero, once again. The laser regime for negligible disorder 
(

R 0J ) corresponds to a standard mode-locking laser in an ordered cavity49,50 with spectral resonances 
equispaced in wavelength and smoothly distributed in intensity. For weak, though not very small, disor-
der, as, e.g., in the open cavity phase diagram of Fig. 2 ( R 1J ), the laser regime could also correspond 
to a deterministic (i.e., non-glassy) random laser, with spectral resonances indeed at random wavelengths 
with random intensities, yet always with the same pattern for each experiment on the same sample under 
the same external conditions. From a classical statistical mechanics point of view these two cases are 
equivalent (in terms of the order parameters equations (4,8)) and they are referred simply as SML in the 
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phase diagrams. We will come back to this kind of random lasers when discussing known experimental 
realizations.

Remarkably, though in terms of the parameter m the standard mode locked regime is clearly different 
from the fluorescence regime, and so is ( )P Q , cf. left panels −a d of Figs 1 and 2 and refs 14,15, the IFO 
distribution does not change below and above the standard mode-locking transition. This has been observed 
in preliminary measurements on a Q-switched pulsed Nd-Yag standard laser in ref. 44. Indeed, the over-
lap of the model in equation (6) is between local fluctuations of intensity on different replicas, so a global 
ordering is invariably taken away (cf. Methods).

Onset of RSB across the random laser transition.  For strong disorder the distribution of the 
coupling J ’s yields a non-negligible amount of both positive and negative values, inducing frustration in 
the modes interaction. Take, for instance and simplicity, three complex amplitudes a, pairwise interacting 
on a triangle. Each of the three bonds connecting the three modes can randomly acquire positive or 
negative values. Modes connected by positive bonds will tend to align (in the complex plane), whereas 
modes connected by negative bonds will tend to counter-align. If, e.g., in the triangle two bonds are 
positive and one negative, no single configuration of modes alignments will satisfy all interactions, min-
imizing the Hamiltonian. The system will then settle into one of different degenerate configurations with 
the lowest realizable energy. Frustration is, thus, the impossibility of finding a unique way of satisfying 
all bonds. Frustration is a necessary condition for the onset of glassiness. When the pumping increases 
above threshold,  > c, the replica symmetry is broken and the distribution of ab becomes nontrivial, 
cf. panels f, g, h in Figs 1 and 2.

Phase Diagrams and Overlap Distributions.  Several scenarios are possible at the lasing transitions, 
exemplified in the paradigmatic cases of Figs  1 and 2. In Fig.  1 we show the phase diagram and the 
behavior of the overlap distribution ( )P Q  and its relative symmetrized IFO distribution ( )P  in a closed 
cavity (α =  1) where linear dumping is absent. In Fig. 2 the behavior of ( )P Q  and ( )P  is shown across 
the laser threshold in an open cavity (α =  0.4 <  1), where the linear dumping is competing with 
non-linearity. In both the closed and the open cavity scenarios we illustrate two different critical regimes: 
the onset of standard mode locking at low disorder and the transition to random lasing for large RJ .

Figure 1.  Laser transition triptych in a closed cavity for varying disorder. In the central panel the phase 
diagram ( , )RJ  is displayed for a closed cavity (nonlinearity strength α =  1) in terms of the four possible 
optical regimes14,15: incoherent wave (IW), standard mode locking (SML), phase locking wave (PLW) and 
random laser (RL). Two pumping paths across the lasing thresholds are shown as dotted lines, at = .R 0 01J  
 = . ( ), . ( ), . ( ), . ( )a b c d[ 4 00 7 90 8 30 10 5 ] and = .R 0 07J   = . ( ), . ( ), . ( ), . ( )e f g h[ 4 20 6 08 7 07 10 0 ]. In the 
left panels a to d the behavior the distributions of IFO, ( )P , and standard overlap, ( )P Q , across the ordered 
ML laser threshold are reported. The transition is discontinuous in the standard Parisi distribution ( )P Q , 
whereas ( )P  is invariant. In the right panels e to h the IFO and standard overlap distributions are shown for 
the RL transition: as   increases, we show that the low   solution is replica symmetric (e), while above 
threshold it becomes discontinuously 1RSB (f, g, h).
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In a closed cavity situation, α =  1, ( )P Q  is discontinuous at the standard mode-locking laser transi-
tion, while ( )P  is unaffected. In this case the transition itself is discontinuous in the thermodynamic 
sense: the internal energy14,50 and the coherence parameter m (or the overlap = ± /Q m 22 ) are discon-
tinuous, see left panel of the closed cavity triptych in Fig. 1. Here the distribution ( )P Q  has two values 
trivially linked to the two possible values of the nonzero parameter, = ±m m . At the RL transition 
( .R 0 07J ), alternatively, the ( )P Q , and similarly ( )P , changes in a nontrivial way: two different values, 
a zero and a nonzero one, are possible as the pumping is increased. In this situation the RL regime is 
one step RSB (1RSB) and the transition is a so-called random first order (RFOT) in glassy physics term-
ing16. In the RFOT scenario the static (ideal) glass transition is preceded by a glassy dynamic arrest 
(drawn as a dashed line in the central panel of Fig. 1)14,15: a photonic system in this case should show 
the typical two-step dynamical relaxation for the time correlation function of light modes, in the same 
universality class of the mode-coupling theory for structural glasses. In this kind of transition there is no 
latent heat15, yet a new value for the overlap discontinuously appears at the transition, cf. right panel of 
Fig. 1.

In the cavity-less scenario α =  0.4, instead, ( )P Q  is continuous at the ordered ML transition. Indeed, 
a nonzero value for m increases continuously from zero as it can be observed looking at the peaks of 
( )P Q  in panels a and b of Fig. 2, where = ± /Q m 22 . As in the closed cavity scenario, the ( )P  of the 

SML does not change across the threshold. At the onset of the RL regime, illustrated in Fig.  2 for 
= .R 1 1J , the change in ( )P  is rather meaningful. At and just above the threshold, ( )P  displays a 

continuous part between the central peak in  = 0 and the two side peaks, as displayed in panel h of 
Fig.  2. Here, the transition is thermodynamically continuous with a RL regime that is of the so-called 
full replica symmetry breaking (FRSB) kind, associated with a free energy landscape composed by a 
fractal hierarchy of valleys. As the pumping increases, the regime becomes 1 +  FRSB, a combination of 
1RSB and FRSB solutions, with both a continuous and a discontinuous contribution to the probability 
distribution, cf. panel g  in Fig. 2. The continuous parts in the ( )P Q  and ( )P  depend on the influence 
of the off-diagonal damping term in J ij in equation (2). For high enough pumping, well-above the 

Figure 2.  Laser transition triptych in an open cavity for varying disorder. In the central panel the phase 
diagram ( , )RJ  is displayed for an open cavity (nonlinearity strength α =  0.4) in terms of the four possible 
optical regimes14,15: incoherent wave (IW), standard mode locking (SML), phase locking wave (PLW) and 
random laser (RL). Two pumping paths across the lasing tresholds are shown as dotted lines, at = .R 0 07J  
 = . ( ), . ( ), . ( ), . ( )a b c d[ 1 30 3 80 4 30 4 90 ] and = .R 1 1J   = . ( ), . ( ), . ( ), . ( )e f g h[ 1 30 2 05 2 35 4 38 ]. In the 
left panels a to d the behavior of IFO and standard overlap distributions across the ordered ML laser 
threshold are reported. The transition is now continuous in the order parameters ( )P Q , while ( )P  does not 
change below and above threshold. In the right panels e to h the IFO and standard overlap distributions are 
shown for the RL transition. As   increases we show that the low optical power solution is replica 
symmetric (e), soon above threshold the solution is FRSB (f), further increasing   the solution becomes 
1 +  FRSB (g) and, eventually, for large pumping it is 1RSB (h). The transition is continuous in the order 
parameters ( , )P Q .
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threshold, the non-linear term eventually becomes dominant15 and the solution, cf. panel h in Fig.  2, 
eventually becomes 1RSB, as in the closed cavity case, cf. panels f, g, h of Fig. 1.

In the RL experiment of ref. 44 the distribution ( )P exp , with  exp defined in equation (5) is peaked 
in zero at low pumping, while it becomes nontrivial with a triple and, eventually, double peaked shape 
as the lasing threshold is overcome. Although in comparison with the theoretical predictions for N →  ∞ 
the peaks of ( )P exp  are smeared by noise effects and finite modes’ number effects, in all regimes 
 ( ) (− )P Pexp exp . In Fig. 3 we display a comparison between the analytic IFO distribution computed 

in our 2 +  4 complex amplitude spin-glass model, cf. equation (2), in an open cavity and the experimen-
tal measurements of  exp in refs 44,55.

Discussion
In this work we provide the theoretical analytical background for a recently introduced order parameter44 
that allows to probe the phenomenon known as replica symmetry breaking in random lasers by means 
of experimentally accessible observables. These are shot-to-shot intensity fluctuations and the order 
parameter is the distribution of the values of the overlap between intensity fluctuations in different shots, 
as analytically defined in equation (6). Replica symmetry breaking is a known property occurring in 
mean-field glasses, spin-glasses and hard optimization problems. The parameters of the theory have 
never been measured, though, in any real system in these fields. In, particular, no measurement of the 
overlap and its distribution has been provided. The only experimental measure, so far, of a quantity 
possibly related to the standard RSB overlap been recently carried out on a photonic system. The system 
is an amplifying and scattering random medium, the T5COx44 displaying random lasing at high pump-
ing. The parameter is the distribution of the shot-to-shot intensity fluctuations overlap (IFO). In the 
framework of a recently introduced general statistical mechanics theory of random photonic systems4, 
in equation (21) we give here an analytic proof of the relationship between the IFO and the standard 
overlap, equation (4), and we provide measurable predictions for its behavior in both ordered and ran-
dom lasing systems below and above threshold and, furthermore, both in the cases of discontinuous and 
continuous transitions to the laser regime at the threshold. In particular, the transition in the probability 
IFO distribution of a random laser is shown to be discontinuous (cf. Fig. 1) for closed (or controllable, 
limited open) cavities while it becomes continuous (cf. Fig.  2) for highly open cavity nonlinear wave 
systems. In the cavity-less case, where experimental measurements are available in at least one case, in 
Fig. 3 we compare theoretical and experimental behavior of the distributions of the IFO  from low to 
high pumping.

According to our results, a RSB is to be expected only, though not always, in random lasers whose 
random configurations of scatterers are fixed, i.e. quenched, for all analyzed shots. That is, the dynam-
ics of their positions evolves on time-scales much longer than the whole experiment and real replicas 
can be realized. This is the experimental case of the solid/powder samples of random lasers as GaAs 

Figure 3.  Comparison between theory and experiments in a cavity less random laser. In the top row we 
display the probability distributions of the IFO for α =  0.4, when linear and nonlinear interactions are 
competing, = .R 1 1J  and for increasing pumping. Vertical lines represent Dirac’s deltas, whose height is the 
probability of the argument value. Different regimes are represented from fluorescence to large pumping 
random lasing. They are chosen along the dotted line in Fig. 2 at = .R 1 1J . Form left to right the first 
distribution is at point e in Fig. 2, the second between f  and g , the third one between g  and h and the 
following above h. In the bottom row the same regimes are reproduced in the IFO distribution 
experimentally measured and reported in refs 44,55 in an amorphous solid oligomeric random laser, 
T5COx.
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powders54,56, core-shell colloidal CdSe/ZnS quantum dots57, ZnO powders58 or pressurized pellets25, and 
polymeric substances44,59,60.

Displaying fixed scatterers to realize real replicas is not sufficient to yield a glassy random laser, 
though. Indeed, as we previously discussed in the Results section, frustration is also necessary. A notable 
example of a frustration-less solid random laser might be porous gallium phosphide (GaP) filled with a 
solution of Rhodamine and methanol61,62, in which spectral fluctuations are reported to be minimal and 
the structure of the resonances, though random, appears to be reproducible from shot to shot. IFO 
measurements might yield, in this case, an ordered-like ( )P , peaked in zero both below and above 
threshold, as in the phase reported as SML in the diagram of Fig. 2 for R 1J .

On the other hand, experiments on optically active random media whose scatterer particles sensitively 
move between subsequent shots in a single experiment, as in liquid solutions of Rhodamine and meth-
anol with particles of Titanium oxide63, Zinc oxide64, pure Titania65, or colloidal CdSe quantum dots66 
could establish no real replicas. Not having the same quenched disorder in all shots might prevent the 
observation of RSB. The overlap between copies of systems with different realizations of the disordered 
couplings, indeed, is known to be replica symmetric, as it has been shown in models with continuous 
spherical variables67, of which our model in equation (2) is a generalization. Similarly to what happens 
in the ordered ML case, cf. left panels of Figs 1 and 2, in that case the occurrence of a trivial single peaked 
( )P  in  = 0 is expected, both below and above  c. Such a behavior has been observed in a liquid 

system of TiO2 scattering nano-particle suspensions in solution of Rhodamine and methanol44.
Eventually, we would like to stress that, besides a rigorous interpretation of recent experimental results 

for random lasers in terms of replica theory, our results provide an exciting and easily available test of 
spin-glass theory properties in continuous systems without local magnitude constraints, as disordered 
photonic systems.

Methods
Replica Theory and Order Parameters.  The most complicated system that we are considering in 
our theory is a random system with disordered mode couplings that possibly display a high pumping/
low temperature phase with ergodicity breaking and the occurrence of very many states. By “very many” 
we mean that their number scales with the size of the system, i.e. the number N  of optically active modes. 
These states are not related by any simple relationship among them. That is, e.g., no simple Z 2 spin 
reversal symmetry occurs between states, as in the Ising model, nor ( )SU 2  symmetry as in the XY model. 
In the complex glassy case, to probe the multi-state disordered thermodynamic phase, one, thus, consid-
ers n copies of the system with exactly the same set of disordered couplings, the J ’s, and evaluates the 
disorder averaged partition function ZJ

n  of the replicated system. A continuation to real n is, then, taken 
to evaluate

β− = =
−

( )→
F Z

Z
n

ln lim
1

9J
n

J
n

0

As a result, F is expressed as a functional in the replica space of the overlap matrices

∑= ( ) ,
( )=

⁎
Q

N
a a1 Re[ ]

10k

N

k kab
1

a b

∑= ,
( )=

R
N

a a1 Re[ ]
11k

N

k kab
1

a b

, = ,…, na b 1  being replica indexes. The diagonal parts are

∑= = ,
=

Q
N

a1 1
k

N

kaa
1

a 2

by definition of the total power constraint, and

∑≡ = ,
( )

φ

=

R R
N

a e1
12k

N

k
i

aa
1

a 2 2 k

yielding information about global phase coherence. This parameter discriminates between the IW (R =  0) 
and the PLW (R >  0) regimes (cf. Figs 1 and 2), in which all the other parameters are identical14.

Alternatively, writing ε σ τ= ( + )a ik k k , we can define the overlaps of the real parts σ  or the imag-
inary parts τ of the complex amplitudes:
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As the system size becomes sufficiently large, the free energy sample-to-sample fluctuations die out and 
the free energy, equation (9), becomes independent of disorder, i.e., it is self- averaging. For N →  ∞ the 
physical value of the matrices follows from the extremization of the free energy functional. Because of 
the fact that the number of independent elements of an overlap matrix is ( − )/n n 1 2 (taken away the 
diagonal) in the limit n →  0 the usual minimization of the thermodynamic potential actually becomes a 
maximization in the space of the overlap matrices. To maximize F, a non-trivial Ansatz on the structure 
of Q and R is necessary. Indeed, it can be shown14 that the most intuitive replica symmetric solution, with 
Qab and Rab independent of a and b, does not lead to a thermodynamically stable solution in the whole 
phase space: beyond the critical point, in the glassy phase, one must, hence, resort to spontaneous RSB. 
Following the Parisi scheme27 the overlap matrices are, then, taken -step RSB matrix, with  → ∞ for 
a continuous full RSB (FRSB). These are block matrices where the number of inner blocks  + 1 corre-
sponds to the number of hierarchical levels in the multi-state phase space.

Depending on the value of J2,4 the solution of the RL model Eq. (2) displays phases with different 
RSB structures, ranging from 1RSB, FRSB to a combination of discontinuous one step and continuous 
breaking (1 +  FRSB)68.

Replicated Action.  In the replica formalism, the averages of an observable O a[{ }] over the equilib-
rium Gibbs distribution and over the quenched disorder can be written as

H S∫ ∫∏ ∏= ≡β

→

−

=

−

→ =

⁎ ⁎Z da da O a e da da O a e O alim [{ }] lim [{ }] [{ }]
n

J
n

k

N

k k
a J

n a

n
a

0

1

1

[{ ; }]

0 1
a a

[ ]

where the average …  in the replica space is evaluated with the replicated action
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Here we have introduced the matrices

A B≡ − → ⊗ → , ≡ − → ⊗ → . ( )σ σ τ τA m m B m m 15

and the effective fields

≡ + ( ) + ( ) ( )σ τ σ τ σ τ, ,h m b b m m2 { 2 [ ]} 162 4
2 2

These are functions of the global coherence parameters
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analogous to the magnetization for spin models, with coefficients β= /( )b J 42 0
2 , β= /( )b J 964 0

4 2 . After 
some algebra (see ref. 15 for details), the field σ τ,h  can be expressed as

≡
∑

, ≡
∑

.
( )

σ
σ

τ
τ

h m
A

h m
B 18c ac c ac

For weak disorder (low RJ) the global coherence σ τ,m  is non-zero above the lasing threshold and must 
be included into the description. If disorder is strong, though, in the frozen glassy phase, the global 
coherence is null: =σ τ,m 0.

Because it turns out that σ τ = 0a b  14,15, the integrals in the σ,  τ space factorize and the IFO ab 
defined in equation (6) takes the form

 σ σ τ τ σ τ= (〈 〉 + 〈 〉 − 〈 〉 − 〈 〉 ), ( )
1
8 19ab a

2
b
2

a
2

b
2 2 2 2 2

where σ σ=2
a
2  and τ τ=2

a
2 , since single replica quantities do not depend on the replica index.
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The replicated action  given in equation (14) is quadratic. Thus, using the Wick’s theorem, for the 
averages in equation (19) we easily obtain

C
A A B B

= +
( )

+ +
( )

( )

σ τm m
4 2 4 2 20ab

ab
2

ab
2

ab
2

ab
2

Equation (20) can be further simplified since the physical solutions of the model are either of the form 
=Q Rab ab or = −Q Rab ab (a ≠ b). Since the two solutions are equivalent, without loss of generality we 

choose the first one, so that =τm 0 and equation (20) leads to

 = − , ≠ ( )Q m a b
4

; 21ab ab
2

4

 =
+

− ( )
R m1

2 4 22aa

2 4

where Qab is defined in equation (4),

 ∑≡ = ( )
( )=

R R
N

Re a1 [ ]
23k

N

kaa
1

a 2

is the parameter of partial coherence, cf. equation (12), and

∑≡ =
( )

σ

=

m m
N

Re a2 [ ]
24k

N

ka
1

a

is the parameter of global coherence14,15. Equation (21) is one of our main results and is discussed in the 
main text, cf. equation (7).
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