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ABSTRACT: Deep learning has been successfully applied to structure-based
protein−ligand affinity prediction, yet the black box nature of these models raises
some questions. In a previous study, we presented KDEEP, a convolutional neural
network that predicted the binding affinity of a given protein−ligand complex while
reaching state-of-the-art performance. However, it was unclear what this model was
learning. In this work, we present a new application to visualize the contribution of
each input atom to the prediction made by the convolutional neural network,
aiding in the interpretability of such predictions. The results suggest that KDEEP is
able to learn meaningful chemistry signals from the data, but it has also exposed the
inaccuracies of the current model, serving as a guideline for further optimization of
our prediction tools.

■ INTRODUCTION
Machine-learning methods have been widely applied in the
field of chemoinformatics, ranging from simple, regressor-
based QSAR models1−4 to more complex neural networks.
These latter methods have been reported to increase
performance in some critical tasks for drug discovery, such
as toxicity assessment,5,6 pharmacokinetics, physicochemical
property prediction,7−10 and protein−ligand binding affinity
prediction.11−15

In a previous work, we developed KDEEP−a 3D convolutional
neural network (CNN) that accepts as input a voxelized
representation of a protein−ligand complex and outputs a
prediction of binding affinity with state-of-the-art accuracy.11

However, it was unclear whether KDEEP was learning
meaningful chemistry or just exploiting shortcuts such as the
positive relationship between molecular weight and affinity.16

Learning these shortcuts instead of the underlying nature of
the problem is a topic of concern in the field.17 It is then
comprehensible for many machine learning methods to spark
criticism regarding the difficulty to understand the rationale
behind their predictions. It has been questioned whether a
pharmaceutical company would promote a given molecule into
a portfolio based only on an opaque prediction made by a
neural network, without any clear explanation to support it.18

Providing such an explanation would undoubtedly increase the
value, trustworthiness, and usability of machine learning
models in drug discovery.
Recently, advances in model interpretability,19,20 as well as

the availability of software libraries such as Captum21 and
Alibi,22 have allowed researchers to get a first glimpse of what
features of the input are more influential toward predictions

made by neural networks (i.e., feature attribution assignment).
One natural approach to measure this influence is to look at
the gradients of the output neuron with respect to the input. In
fact, in a CNN trained to discriminate accurate from inaccurate
binding poses and to predict binding affinity, visually
inspecting these gradients can reveal in which direction the
atoms should move to improve the score that the network
assigns it,23 providing some degree of interpretability.
However, backpropagating the prediction relative to the

input layer can produce very low gradients in the vicinity of the
input vector,19 a process which is known as gradient saturation.
The Integrated Gradients (IG) feature attribution technique19

helps to mitigate this problem, providing a better measure of
how each input feature influences the prediction. Instead of
evaluating the gradients at one particular input value (the
image in a traditional 2D-CNN), gradients are computed for
several variants of that image, ranging from a user-defined
baseline (typically, an image with all its pixel-channel values set
to zero) to the actual image. In each variant, the values of all its
pixels are multiplied by a scalar α, ranging from the zeroed-out
input to the original image. At low values of α, the resulting
input vector is far from the usual input space the network has
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been exposed to during training, circumventing the gradient
saturation issue.
In this article, we present an application to visualize the

contribution of the input features for the prediction of KDEEP
and similar CNNs. In addition to describing the methodology
used herein, we also showcase several relevant examples of
attributions which match with structural biology knowledge.
We analyze the prediction of three distinct models: a clash
detector, a docking pose classifier, and KDEEP. The clash
detector provides a baseline to which we compare the other
models and allowed us to validate the implementation of this
application. The docking pose classifier and KDEEP models were
evaluated to see if CNNs trained to perform chemically
relevant tasks were learning meaningful chemistry. The
application, called Glimpse, is available to use at https://
www.playmolecule.org/Glimpse/.

■ METHODS

Model Training. KDEEP is a 3D-CNN which accepts as
input a grid of size 24 Å3. This grid is generated by mapping
the atom positions of the ligand and its surrounding protein
residues to the corresponding voxel and channel in the grid.
KDEEP uses 8 different channels: hydrophobic, aromatic,
hydrogen bond donor, hydrogen bond acceptor, positive
ionizable, negative ionizable, metals, and excluded volume
(occupancy) for both protein and ligand. This gives a total of
16 channels and a grid of dimensions 16 24 Å3× (see Jimeńez

et al.11,24 for more details). The network was trained on the
latest version of the refined set of PDBbind,25 achieving a
Pearson’s correlation coefficient of 0.79 in the test set. Details
on the training and evaluation of the different models can be
found in the SI.
We also trained a clash detector. The objective behind it is

two-fold. First, there is a clear expectation in terms of what
attributions should look like: clashing regions or close contacts
would appear highlighted, while the remaining voxels would be
of little importance. We were able to validate the
implementation of Glimpse by checking if the computed
attributions matched this expectation. Second, the computed
attributions of this simple model served as a reference point to
which we compare the other models, both visually and
quantitatively. This model was trained to discriminate regular
protein−ligand poses from clashed poses and achieved 0.97
classification accuracy and 0.98 precision in a held-out
validation set.
We trained a third model−a docking pose classifier−for two

reasons: (i) it is a challenging task, comparable to that of
predicting binding affinity, and (ii) there is much more data
available from which the model can learn. This model was
trained on a large set of good (RMSD 1< Å) and bad poses
(RMSD 3> Å), showing an accuracy and precision of 0.94 and
0.83, respectively, on the validation set.
It must be noted that the performance of these three models

was evaluated on a random test and validation sets. In some

Figure 1. Main view of the graphical user interface. The protein−ligand complex is displayed, with the attributions of the most contributing voxels
superimposed. The attributions for the different channels can be seen individually using the corresponding sliders in the menu on the right, which
display isosurfaces at different isovalues. The full protein is shown in a cartoon representation, while residues in the binding site (defined by being
within 5 Å to the ligand) are shown in a transparent ball−stick representation (only heavy atoms and polar hydrogens). The all-atom representation
of the ligand is shown in a bold ball−stick. The region of space seen by the model (voxelization cube) is delimited by a transparent, gray box.
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cases, protein−ligand complexes in these sets might be similar
to those in the training set, either in terms of protein structure
or ligand composition. This yields overoptimistic results. In
fact, when trained and evaluated in more strict splits which
ensured sequence and ligand dissimilarity, the KDEEP perform-
ance ranged from r = 0.09 to r = 0.7 (see the SI for details).
The models analyzed in this work have been uploaded to

Glimpse with the following names: “KDEEP”, “Pose classifier”,
and “Clash detector”. Attributions for these models can be
computed and visualized in the app for any valid protein−
ligand complex.

■ IMPLEMENTATION
Integrated Gradients. The IG method works by

computing gradients of the output neuron with respect to
the input layer along an interpolated path from a given input
baseline (xi′) to the original input (xi) taking α infinitesimal
steps as in19

x x x
F x x x

x
dIG ( ) :: ( )

( ( ))
i i i

i0

1
∫ α α= − ′ ∂ ′ + − ′

∂α= (1)

where F denotes the forward pass of the neural network.
This effectively circumvents the issue of low gradients

(gradient saturation) in the vicinity of the input by averaging
the gradients along a range of different input values. Gradient
saturation can occur if a given input value leads to a neuron
being activated in a region of the activation function which is
very flat, for instance, the extremes of a sigmoid. Hence, using
the gradients of the prediction with respect to a given input
could assign an importance of zero to it, regardless of its real
importance.
The computed attributions provide a value for each voxel

representing their importance toward the prediction. Glimpse
uses the IG implementation from the Captum library.21

Attributions are computed by approximating the integral as a
series of discrete steps along the interpolated path from the
selected baseline (an input vector in which all voxels are set to
zero) to the evaluated, voxel map corresponding to the original
protein−ligand complex. In this implementation, we used 100
steps, as it was shown to offer a good balance between
computational expense and attribution quality.

Graphical User Interface. Glimpse provides a web-based
graphical user interface (GUI) that helps to trace attributions
to voxel maps. An overview of the GUI is provided in Figure 1.
The computed attributions for the input channels are displayed
as mesh isosurfaces whose isovalue can be tuned with a slider.
A detailed description of the input channels is provided in the
Model Training section of this manuscript. To offer a summary
of the results, the interface displays by default only the most
contributing regions. These regions are the result of
identifying, for each of the 16 channels, the voxel with the
highest absolute attribution value and the neighbors around it.
In this summary, only the channels containing the best 5 voxels
are displayed for simplicity. Additionally, the user can display
the attributions for the different input channels individually,
and the raw attribution maps can be downloaded as a Gaussian
cube format file (.cube) and explored in VMD26 or other
molecular visualization software.

Usage. Glimpse requires a protein−ligand complex
structure, either experimentally determined or predicted by a
docking software. The protein must be correctly protonated
and provided as a .PDB file. The PlayMolecule platform offers
proteinPrepare27 to protonate the protein. The ligands have to
be provided a valid SDF file. If needed, Glimpse provides an
option for protonation of these ligands. Only 100 ligands are
allowed per job. Finally, users can select which model to use
from a list, which by default is “KDEEP”. In terms of time,
evaluating 10 protein−ligand complexes takes around 150 s.
When inspecting the attributions, one would typically start

Figure 2. Comparison of computed attributions obtained for a complex of HSP90 with an analogue of benzamide tetrahydro-4H-carbazol-4-one
(PDB code: 3D0B) by the three models: Clash detector (1A and 1B), Pose classifier (2A and 2B), and KDEEP (3A and 3B). Pictures on the top row
show the attributions for the protein and ligand occupancy channels, in red and blue, respectively. The bottom row focuses on particular
interactions. 1B shows a clash between the ligand and the leucine and the attributions for the occupancy channels of protein and ligand (red and
blue). 2B and 3B show the hydrogen bond between the benzamide moiety in the ligand and the aspartate (D93) residue in the protein. Attributions
for the ligand donor channel are shown in pink, while for the protein acceptor channel, the attributions are shown in blue.
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looking at the visual summary, followed by an inspection of
individual channels. It is worth paying particular attention to
the voxels with the highest and lowest attribution values and
checking if the nearby atoms are involved in an interaction.
The occupancy channels offer a good overview of the whole
picture and constitute a good place to start.
Analysis. For each model, we visually inspected the

attributions computed for several protein−ligand complexes
to evaluate how well they match with structural biology
knowledge. We focused on interactions known to contribute
toward binding free energy, e.g., hydrogen bonds or π-stacking.
Another aspect we inspected was the reciprocity in the
attributions, that is, whether the two parties involved in the
protein−ligand interaction are reflected in their attribution
values.
While visual inspection can provide valuable insights, it can

also be misleading and prone to unintended biases. Therefore,
we designed a quantitative analysis, in which we computed the
IG for all the crystal structures (not clashed or docked) coming
from the PDBbind database. For each of the 16 channels, the
voxel with the highest, absolute value of the IG values was
identified. Then, we measured the distance between the top
contributing voxels in the complementary channels. We
evaluated the following pairs of channels: protein hydrophobic
and ligand hydrophobic, protein aromatic and ligand aromatic
(π-stacking), protein acceptor and ligand donor, protein donor
and ligand acceptor (hydrogen bonds), protein occupancy and
ligand occupancy (steric component). As a baseline, we took
the distance between two randomly selected voxels from the
appropriate channels, whose occupancy value was over 0.75,
ensuring that an atom was nearby the voxel.

■ RESULTS

As a leading example for the analysis, we selected a complex of
a molecular chaperone, heat shock protein 90 kDa (Hsp90)
sourced from the PDB (PDBid: 3D0B).28 This well studied
oncology target has been a subject of numerous structure
based virtual screening campaigns.29,30 In the analyzed
example, HSP90 forms a potent complex with an analogue
of benzamide tetrahydro-4H-carbazol-4-one (SNX), with an
affinity of 290 nM. Additionally, the complex possesses few
features that facilitate tight binding, mainly π-stacking and a
hydrogen bond with a conserved aspartate (D93)−a very
frequent interaction among HSP90 inhibitors.31 This helped us
to relate the predictions to structural features of the complex.
Clash Detector. As a sanity check, we started by evaluating

the attributions of the simplest model, the clash detector. The
visual inspection of multiple complexes revealed that, in all
inspected cases, clashing regions or close contacts were
highlighted, while residues far apart from the ligand remained
ignored. The clashes were clearly indicated by occupancy
channels of both protein and ligand, showing reciprocity
(Figure 2.1A). An example of HSP90 with a clashed pose
clearly highlights the clashed region between the ligand and a
leucine (L92) in the pocket (Figure 2.1B). This confirmed that
the protocol was working correctly and gave us a baseline for
the analysis of the following models.
Docking Pose Classifier. The next model was trained to

discriminate good and bad docking poses. The true binding
mode depends on an enthalpic factor which is determined by
formation of strong and stable interactions between the ligand
and the protein, like hydrogen bonds or π-stacking.32 Hence,

we expect models trained to perform such tasks to have learned
these interactions.
We found several examples where the attributions correctly

matched these expectations. Figure 2.2B shows a hydrogen
bond being highlighted in the appropriate channels: hydrogen
bond acceptor in the protein and donor in the ligand. An
amide moiety in the ligand is establishing a hydrogen bond
with the nearby aspartate (D93). It is indeed a key interaction
frequently featured in HSP90 inhibitors. In addition to this
hydrogen bond, a π-stacking interaction takes place between
the aromatic ring of the ligand and a phenylalanine (F123) in
the protein, as highlighted by the attributions for the
occupancy (Figure 2.2A) and aromatic channels (not shown)
of both the protein and the ligand.
After inspecting several examples, we saw that, as in the clash

detector model, residues far from the ligand were ignored for
the most part (Figure S7 shows one exception), and reciprocity
between the ligand and the protein atoms was observed in the
majority of inspected cases. However, the overall picture was
less clear than in the clash detector model as can be seen by
comparing the global view of the three models (sections 1A,
2A, and 3A of Figure 2). While in the clash detector model
high attributions are well focused on the clashing regions and
close contacts, the other two models exhibit a more disperse
view.

KDEEP. Similarly to the previous model, KDEEP is expected to
predict binding affinity by detecting and correctly weighting
the molecular interactions between protein and ligand. In the
majority of inspected cases, we saw reciprocity between the
ligand and the protein atoms that formed interactions (Figure
2.3A), while protein residues distant from the ligand remained
ignored (Figure S8 shows one exception). The overall
attribution maps seem to be more disperse than for docking
pose predictor.
For the example of HSP90, the predicted affinity value was

75 nM, reasonably close to the experimental value of 290 nM,
making it a suitable example for attribution analysis. As in the
case of the pose classifier, the network correctly identified the
key hydrogen bond with D93 (Figure 2.3B), as well as π-
stacking between the aromatic ring of the ligand and F123
(Figure 2.3A). In this case, however, only the phenylalanine
ring is highlighted. Nonetheless, the attributions of the
aromatic channels highlight the aromatic residues in close
proximity to the ring system of the ligand, including Phe,
ignoring all the other aromatic residues in the box.

Quantitative Analysis. The quantitative analysis con-
firmed, for the most part, the conclusions obtained by the
visual inspection. Figure 3 shows the distribution of distances
between the top voxels from protein occupancy and ligand
occupancy channels. Figures S1−S6 show the distance
distribution for the remaining relevant combinations of
channels. We can see that models have learned that ligand
and protein atoms close to each other are important, which is
exemplified by the different distributions being shifted toward
the contact range ( 4< Å). This hints that the networks are
learning relevant features of the complex: close contacts in the
case of clash detector and interactions for the two remaining
models. This is particularly clear for the clash detector, where
the distance distribution is radically shifted toward the range
under 3 Å. The pose classifier model follows and shows a
similar, shifted distribution, although not as clear as in the
clash detector. In these two models, the cloud of points
describes a 3-line pattern at 0 and 1 and around 1.5 Å, showing
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that the most contributing voxels were in very close proximity.
In fact, the high number of examples observed at 0 Å distance
indicates that, in a large fraction of complexes, the same voxel
in the two relevant channels was the most highlighted. The
distance distribution for KDEEP is slightly shifted toward higher
values but is still much better than the random baseline. This
difference could be related to the fact that, during training,
KDEEP is only exposed to crystal poses, in which the distances
between ligand and protein atoms should be uniform across
examples. This is obviously not the case in the clash detector
nor in the pose classifier, as docking might generate poses
which, in some areas, might be slightly too close or too far
away from the surface, which might correlate with a bad pose.
Hence, these two models would benefit more from paying
attention to this low range of values, while KDEEP might not. A
similar scenario occurs to the other combinations of channels
(Figures S1−S6): The clash detector is usually the best,
followed closely by the pose classifier and KDEEP, which show
similar distributions. The distributions of all three models are
significantly different from the random baseline in all channel
combinations studied according to a two-sided Mann−
Whitney U Test (all combinations had a p-value lower than
the significance threshold 0.0001). These results provide
evidence supporting the hypothesis that KDEEP and the pose
classifier models have learned to focus on the interface

between the ligand and the protein, as a trained chemist or
biologist would do.
After this test, we checked if there was any correlation

between the magnitude of the attribution of the two best
voxels and the distance between them as a means to test if the
quality of the explanation (reciprocity between the two parties)
was correlated with the magnitude of the attribution. As in the
prior experiment, we identified the voxels with the highest
attribution values in the same pairs of channels and annotated
the distance between them. We then evaluated the correlation
between the sum of the attributions in those two voxels and
their distance. For all models and combinations of channels
studied, the Pearson’s correlation coefficient ranged between
−0.48 and −0.15 (Figure S9). Hence, the higher the
attribution value of the two voxels, the more likely it is that
those two voxels are in proximity.
Furthermore, for the KDEEP model, we also evaluated if there

was a correlation between the attribution values and the
accuracy of the prediction (measured as an absolute difference
between predicted and actual pKD values). Neither the
maximum attribution value across all channels nor the sum
of the absolute attribution values correlated with the accuracy
of the prediction in the KDEEP model (Pearson’s r was −0.05
and −0.02, respectively). There was not any strong correlation
either between far away residues being highlighted and
prediction accuracy (r = 0.05, see the SI for details).
Finally, we evaluated how sensitive the attributions were to

minor changes in the input, namely (1) rotations of the
complex and (2) slight modifications of the protein−ligand
pose. Ideally, the attributions should be consistent across
different orientations and pose variants; hence, the same atoms
should be highlighted in the different variations. All three
models show a greater consistency than the expected by
random, both for protein and ligand atoms. Although on
average, the same atom was selected just around 2 times out of
the 10 input variants (random baseline is close to 1.0); in all
three models, in a great fraction of complexes, the same atom is
picked more than 4 times, which is not the case in the random
baseline (Figures S10−S13). These results show that the
attributions tolerate some degree of input variability. Details on
these experiments can be found in the SI.

■ CONCLUSION
The results indicate that the trained networks are able to learn
meaningful chemical interactions. However, for the pose
classifier model and KDEEP, some cases were observed where
the network had ignored strong interactions, highlighted
residues far from the ligand (Figures S7 and S8) or highlighted
ligand atoms whose interaction counterpart in the protein had
low attributions. This can be the result of the difficulty of
associating the occurrence of certain contacts or interactions
with affinity or with the quality of the pose prediction, leading
to shortcut learning. For instance, if all the complexes for
kinases in the training set have a pKd of 5.0, the network might
learn to identify this family by using a set of characteristic
residues (which could be far from the ligand) and simply
predict 5.0. In this sense, PDBbind is not an ideal training set,
as the total number of examples contains few samples for deep-
learning standards, and pKd values are distributed in a large
range from 2 to 12, scarcely populated in both extremes. In the
case of the clash detector model, we have more examples for
each class, the two classes belong to very different
distributions, and it is very easy to associate the occurrence

Figure 3. Distance distribution between the two voxels with the
highest, absolute value in protein and ligand occupancy channels.
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of a given pattern in the input (a clash) to the correct class,
discouraging shortcut learning, which manifests in the
attributions of this model being much clearer.
Furthermore, voxelization is limited to only 8 properties and

excludes crystallographic waters. Given that the latter are
known to mediate certain protein−ligand interactions (e.g.,
water bridges), a fraction of the variability in the binding
affinity can only be explained by the presence of these waters.
Additionally, hydrogen-bond donors and acceptors have
diverse strengths (thiol being a weak donor and hydroxyl
being a strong one); however, in the featurization, they are
grouped together in just two entities (donor and acceptor).
The same reasoning applies for the positive and negative
ionizable channels.
In this study, we have shown that Glimpse displays the

capability to expose some of the flaws of the networks herein
analyzed, suggesting that it can act as a useful diagnostic tool
for structure-based 3D-CNN models. We were also able to
identify atoms or regions of the protein−ligand complex that
play a bigger role on the predictions made by the networks,
which is key to improve the usability of CNNs in computa-
tional chemistry.
Data and Software Availability. Glimpse is available free of

charge at https://www.playmolecule.org/Glimpse/. The three
models studied in this article (“KDEEP”, “Pose classifier”, and
“Clash detector”) can be found and used in the web interface.
The protein−ligand complexes we used as input for generating
the images are available to download in the “Examples” tab in
the web interface. The databases used for training and
validating the models (BindingMoad33 and PDBbind25) are
publicly available, as well as the docking software (rDock34).
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