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Abstract: Presenilin-1 (PSEN1) is one of the causative genes for early onset Alzheimer’s disease
(EOAD). Recently, emerging studies have reported several novel PSEN1 mutations among Asians. In
this study, a PSEN1 Val96Phe mutation was discovered in two siblings from Malaysia with a strong
family history of disease. This is the second report of PSEN1 Val96Phe mutation among EOAD
patients in Asia and in the world. Patients presented symptomatic changes in their behaviors and
personality, such as apathy and withdrawal in their 40s. Previous cellular studies with COS1 cell lines
revealed the mutation increased the amyloid-β42 (Aβ42) productions. In the present study, whole-
exome sequencing was performed on the two siblings with EOAD, and they were analyzed against
the virtual panel of 100 genes from various neurodegenerative diseases. In silico modeling was also
performed on PSEN1 Val96Phe mutation. This mutation was located on the first transmembrane helix
of PSEN1 protein, resulting significant intramolecular stresses in the helices. This helical domain
would play a significant role in γ-secretase cleavage for the increased Aβ42 productions. Several
other adjacent mutations were reported in this helical domain, including Ile83Thr or Val89Leu. Our
study suggested that perturbations in TMI-HLI-TMII regions could also be associated with C-terminal
fragment accumulation of APP and enhanced amyloid productions.

Keywords: Alzheimer’s disease; mutation; whole-exome sequencing; presenilin1

1. Introduction

Early-onset Alzheimer’s disease (EOAD) occurs before than 65 years of age and rep-
resents only a minority of all AD cases (less than 5%). Presenilin1 (PSEN1, NC_000014.9)
was verified as one of the major causative factors for EOAD. More than 300 pathogenic
mutations were found in PSEN1 (http://www.alzforum.org/mutations/psen-1, accessed
on 1 September 2020). Mutations in PSEN1 may represent clinical heterogeneity, since
besides cognitive dysfunctions and memory decline, additional disease phenotypes could
present, such as spastic paraparesis, language-and behavioral dysfunctions or Parkinson-
ism [1]. Patients with PSEN1 mutation could usually develop disease in their 40s or 50s. In
addition, several cases of young onset AD were also reported with clinical phenotypes of
cognitive declines in their 30s or even earlier [2–4].

Presenilin proteins are members of gamma secretase complex, which plays a role in
the cleavage of APP protein. PSEN1 participates as a catalytic subunit of intramembranous
aspartyl protease, inducing γ-secretase cleavage at C99 for the production of β-amyloid
peptide (Aβ). Aβ peptide could exist in various lengths, such as 43, 42, 40, or 38 amino acids
residues. Pathogenic PSEN1 mutations would modify the γ-secretase activity, resulting in
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elevated ratio of Aβ42/Aβ40 [3,4]. Alternatively, PSEN1 mutations could reduce the α-
secretase cleavage, resulting in reduced production of Aβ40. In addition, low levels of Aβ40
against Aβ42 may reduce the degree of Aβ42 clearance and enhance the accumulations
of Aβ42 [3–5]. Elevated Aβ42 and reduced secretion of Aβ species could increase ratio of
Aβ42/Aβ40 [5–7].

Here, we reported a pathogenic mutation, PSEN1 Val96Phe (c.286G>T) in a Malaysian
family. PSEN1 Val96Phe mutation was initially described in a Japanese family, with
similar age of onset [8]. The Malaysian family was briefly mentioned in our previous
publication [9]. In the current study, detailed clinical phenotypic presentation and the
structure predictions will also be presented.

2. Materials and Methods

Patients provided written informed consent, which allowed the genetic and clinical
data to be used for research purposes. A diagnosis of probable AD was carried out, accord-
ing to the criteria of the National Institute of Neurological and Communicative Disorders
and Stroke Alzheimer’ Disease and Related Disorders Association [10]. Detailed clinical
phenotypes, family history and imaging data are presented in the Results (Section 3.1).

White blood cells (Buffy coat) have been separated from plasma after centrifugation
at 800 g for 30 min. Genomic DNA was extracted using the QIAcube system (Qiagen) and
both the quantity and quality of extracted DNA were measured using Nanodrop ND-1000
Spectrometer (NanoDrop, Thermo Fisher Scientific., Seoul, Korea). Whole-exome sequenc-
ing (WES) was performed on the two siblings by Novogene Inc (https://en.novogene.com,
accessed on 1 September 2020; Hong Kong). A total of 2 µg of genomic DNA used for
genetic analysis. After library preparation sequencing was performed on Illumina platform.
Whole annotation of data was received by excel file, and sequencing data were sent as a
“.bam” file, which were visualized by Integrative Genomics Viewer (IGV) software. Data
were analyzed by a “virtual gene panel” of 100 possible genes from different neurode-
generative diseases, including Alzheimer’s disease, Parkinson’s disease, frontotemporal
dementia, and prion diseases (Supplementary Table S1 and S2).

Probable pathogenic mutations were discovered by WES and verified by standard
sequencing [11], performed by BioNeer Inc. (Dajeon, Korea), using Big Dye Terminator
Cyclic sequencing, and data were analyzed using an ABI 3730XL DNA Analyzer (Bioneer
Inc., Dajeon, Korea). The data were aligned by NCBI Blast (http://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on 1 September 2020). Mutations were screened against the reference
databases, including Korean Reference Genome Database (KRGDB, http://152.99.75.16
8/KRGDB/menuPages/intro.jsp, accessed on 1 September 2020), GnomAD (https://
gnomad.broadinstitute.org/, accessed on 1 September 2020), and 1000 Genomes (http:
//www.1000genomes.org/, accessed on 1 September 2020) databases.

In terms of in silico analyses for the potential pathogenic mutations, each vari-
ant was analyzed by PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/, accessed on
1 September 2020), Sorting Intolerant From Tolerant algorithm (SIFT; http://sift.jcvi.org/,
accessed on 1 September 2020), PROVEAN (http://provean.jcvi.org/index.php, accessed
on 1 September 2020) and ExPASy (https://web.expasy.org/protscale/, accessed on
1 September 2020) tools, which provided the estimation of the putative pathogenic nature,
as benign or possibly damaging. Protein structure predictions were carried out by Raptor X
(http://raptorx.uchicago.edu/, accessed on 1 September 2020), and the structures of the
PSEN1 Val96Phe variant were compared to the normal X-ray structure [12]. Superimposed
images of variant and normal proteins were aligned by Discovery Studio 3.5 Visualizer
software (designed by Accerlrys Inc., San Diego, CA, USA).

3. Results
3.1. Subjects

Two Malaysian siblings (III-2, III-3) were affected with memory loss at the age of 48
and 44 years, respectively. Family history of AD was positive in this family. The eldest sister
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(III-1) developed AD at 50 years of age but could not be genotyped. Two younger siblings
(III-4, III-5) aged 39 and 35 years were asymptomatic at the time of reporting. Clinical
phenotype of grandparents (I-1, I-2) remained unclear. The father (II-1) and paternal aunt
(II-3) developed dementia at 57 and 50 years, respectively. The paternal aunt (II-3) has nine
children, ages ranged from 30–54 years, all of whom were asymptomatic at the time of
reporting (Figure 1 and Table 1). Detailed clinical description was provided on III-3 and
III-4 patients. Both patients carried the E3/E4 genotype for apolipoprotein E (APOE).
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Figure 1. Family tree of Malaysian family.

Table 1. Clinical details of Malaysian family with EOAD.

Age of Onset Memory Loss Cognitive
Deficits

Deficits in Spatial
Awareness

Behavioral and
Personality Change Seizures V96F

Mutation

II-1 57 + + + + - NA

II-3 50 + + + + - NA

III-1 50 + + - - - NA

III-2 48 + + + + + Positive

III-3 44 + + - + - Positive

III-4 No symptoms - - - - - Positive

III-5 No symptoms - - - - - Negative

Patient III-2 experienced medical decline at the age of 47 years. He visited the clinic at
the age of 49 years, with no background medical illness. His wife noted that he had short-
term memory loss, repeated himself often, and was unable to pay utility bills. The patient
also frequently lost items, such as glasses or phone, and had difficulties in driving. He also
resigned from his office job related to sales due to stress. At the age of 48 years, speech
impairment appeared such as paucity of speech, naming his children, and describing the
weather. In addition, he was unable to pronounce words clearly or speak in full sentences.
His MMSE on presentation was 16/30. His initial investigations showed normal full blood
count, liver and renal function, HbA1c and B12 level, mildly elevated total cholesterol of
5.9 mmol/L, and low folate of 9 nmol/L (12–44 nmol/L). The initial CT brain showed
mild cerebral atrophy with no evidence of cerebral infarctions. The MRI brain revealed
mild generalized cerebral volume loss prominently involving the temporal and parietal
lobes with profound diffuse volume loss over bilateral hippocampal formations and mild
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volume loss of the parahippocampal gyri. He was prescribed a rivastigmine patch and
folate supplements. No leukodystrophy, white matter changes, microbleeds, or cerebral
amyloid angiopathy were observed in his brain (Figure 2). A year after the first visit, the
patient did not recognize his children and wife, and his speech was no longer meaningful.
He started to have repetitive behaviour, motor and sleep disturbances, as well as aggression.
He developed apraxia, agnosia, and aphasia. He required help in bathing, dressing, or
going to the washroom. His MMSE dropped within a year from 16 to 7. Medications were
changed to memantine and donepezil. Two years into follow-up, at the age of 51, he was
completely dependent in his activities of daily living. He developed one episode of seizure
requiring admission. His MMSE score was 1/30.
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RAGE image of the brain shows widening of bilateral Sylvian fissure. Dilated occipital horn of both ventricles is also noted.

Patient III-3 was first seen at the clinic at age 44 years due to the suspicion of familial
early onset Alzheimer’s dementia. She was still working as an office assistant in tax
department; however, she was having problems making entries into the computer, and was
thus assigned simple tasks such as putting letters into envelopes. She was still able to cook
and do house chores but frequently forgot where she put her things. She was no longer
able to handle home finances. Her physical examination was unremarkable and her MMSE
was 18/30. She had normal full blood count, renal and liver function, calcium, phosphate,
HbA1c, thyroid function, cholesterol, and B12 levels. Her folate levels were low at 6.16
nmol/L (12–44 nmol/L). Her MRI brain showed mild reduction in right hippocampal
volume, with normal left hippocampus. An asymmetrical hippocampal volume with
prominent parietal sulci and ambient cistern is suggestive of early Alzheimer’s disease.
She was started on rivastigmine. A year into follow-up, she was still able to work and
do house chores but was unable to remember details regarding her children’s education
and work. She started developing aggressive behavior and psychotic symptoms. Eating
disturbances also appeared in her, and she often refused all food and drink. She also had
frequent sleep disturbances. Her MMSE scores declined from 18/30 to 13/30. Rivastigmine
was changed to donezepil. Risperidone was started for control of her psychotic symptoms.
Two years into follow-up, she was no longer able to work, cook, or do housework and
required supervision for showering and dressing. Three years into follow-up, at the age of
47 years, she was fully dependent on her husband and had very limited language. She was
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still able to move independently, mostly wandering around the house aimlessly. MMSE
was reduced to 1/30. Memantine was added to her medications.

3.2. Genetic and Structure Findings

A pathogenic G>T exchange was found in PSEN1 exon 4 in all two siblings (c.286G>T,
III-2, III-3), resulting in valine (Val) to phenylalanine (Phe) exchange at codon 96 (p.Val96Phe,
Figure 3). Two asymptomatic siblings were tested too, and III-4 was positive for mutation,
but III-5 was negative (Supplementary Figure S1). According to KRGDB database, the
mutation was missing among 1100 unaffected Korean individuals. It was neither observed
in 1000Genomes nor in GnomAD databases. PolyPhen and SIFT tools predicted the muta-
tion as probably damaging with the score of 1.0 and 0.002, respectively. Multiple sequence
alignment by Polyphen2 tool revealed that PSEN1 Val96 may be a conservative residue
between different species, since valine was detected in the same residue in the PSEN-like
sequence of other animal species. PROVEAN also predicted the mutation as deleterious
with the score of −4.643. ExPASY revealed higher hydrophobicity scores for Phe (Val: 0.6;
Phe: 0.712, Figure 4a). The polarity score for Phe was slightly reduced in comparison to Val
(Val: 6.3; Phe: 6.222, Figure 4b).

Mutation is located in the first TM helix of PSEN1 protein. Structure predictions
revealed the putative disturbances in Helix-I (Figure 5a). Even though both Val and Phe
are non-polar amino acids, the slightly higher hydrophobic property of Phe may disturb
the helix motion and dynamics of PSEN1. The larger size of benzyl group in Phe may also
result in extra stress inside the Helix-I.
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Intramolecular interactions may also be changed due to PSEN1 Val96Phe mutation.
Val96 could form a hydrogen bond with Ile100 and Cys92 (Figure 5b). In the case of Phe96,
interactions with Cys remained, but an additional hydrogen bond may be seen with Thr99
(Figure 5c). This putative novel hydrogen bond may result in limited helix motion, which
could possibly affect the PSEN1 function. The intra-helical interactions inside TM-I may be
stronger due to the mutation, which could potentially result in extra stress in the helix. In
addition, it may also disturb the interactions between TM-I and additional TM domains
inside PSEN1.

4. Discussion

We reported a known pathogenic PSEN1 mutation, p.Val96Phe, in a Malaysian family.
The family history strongly suggested it to be autosomal dominant, since two siblings (III-2
and III-3) with the mutation were diagnosed with EOAD. In addition, their elder sister
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(III-1), father (II-1), and aunt (II-3) also developed cognitive-and memory dysfunctions.
Their younger brother (III-4) also carried the mutation, but he did not develop any disease
phenotype yet. He is most likely in pre-symptomatic stage currently. PSEN1 Val96Phe
was reported previously as a pathogenic mutation in a Japanese family. All affected family
members from Japan were diagnosed with EOAD, and the symptoms appeared between
49 and 60 years of age. No detailed clinical description was presented in the previous
report from Japan. However, the mutation was segregated with the disease, which was
missing in 100 control individuals in Japan [8]. PSEN1 Val96Phe was also missing in
different reference databases (GnomAD or 1000Genomes), which may also further prove
its absence in unaffected individuals. Both Malaysian and Japanese cases were associated
with familial EOAD with a similar age of onset. Mutation was with cloned COS-1 cell line.
The elevated Aββ42/totalAβ (1.6 times) levels suggested that the mutation could enhance
gamma secretase activity, resulting in elevated Aβ42 levels [13,14].

PSEN1 Val96Phe is in the first transmembrane domain (TM1) in PSEN1 protein. Sev-
eral pathogenic mutations were discovered in the TM1 of PSEN1 (Table 2, Figure 6). The
age of onset associated with these mutations in TMI could be variable. The majority of
patients with the mutations reported the age of onset in their 40s or 50s [15]. In addition,
several mutations were associated with younger onset AD, such as PSEN1 Leu85Pro [16],
Pro88Leu [17], Val89Leu [18], and Val97Leu [19]. All patients with these mutations were
diagnosed with EOAD. Patients with Val82Leu [20], Val96Phe [8], or Thr99Ala [21] mu-
tations presented typical EOAD symptoms. Other clinical symptoms could also appear,
such as behavioral/psychiatric symptoms for patients with Ile83Thr [22], Met84Val [23], or
Val89Leu [18] mutations. Spastic paraparesis were prominent for patients with Ile83Thr [22],
del_Ile83/Met84 [24,25], or Leu85Pro [16]. Parkinsonism was also discovered in patients
with Pro88Leu [17] or Cys92Ser [26]. The following mutations, del_Ile83/Met84 [24,25],
Leu85Pro [16], Val96Phe [8,13], Val97Leu [19,27], were transfected into cells for the ver-
ification of their pathogenicity. Interestingly, the cloned Val82Leu mutation into CHO
cells revealed reduced Aβ42 levels, suggesting its participation in the pathogenic mecha-
nisms [28].
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Table 2. Mutations, described in TM-I domain of PSEN1. Majority of mutations were associated with relatively young onset
and positive family history of disease.

Mutation Clinical Symptoms Age of Onset (Year) Family History Functional Studies References

Val82Leu EOAD 53–58 Positive
(2 French family)

HEK293: 1.5 times
elevated Aβ42/Aβ40

CHO: 1.4 times
reduced

CHO-APP695

[20]

Ile83Thr

EOAD, behavioral
symptoms,
depression,

hallucinations

55–64 Probable positive
(Tunisian) NA [22]

del_Ile83/Met84

EOAD, spastic
paraparesis, cotton

wool plaques,
cerebral amyloid

antipathy

34–38 Positive
(Scottish)

HEK293: 4.8 times
elevated Aβ42/Aβ40
H4: 2.6 times higher

Aβ42/Aβ40

[24,25]

Met84Val EOAD, psychotic
symptoms 49–57 Positive

(Italian) NA [23,29]

Leu85Pro EOAD, spastic
paraparesis 26 De novo

(Japan)
HEK293: 1.9 times

elevated Aβ42/Aβ40 [16]

Pro88Leu
EOAD, myoclonus,

Parkinsonism,
apraxia

20s Unknown
(China)

Increased the long
amyloid peptides [17]

Val89Leu
G>C EOAD Late 30s Unknown

(China) NA [24]

Val89>Leu
G>T

EOAD with
personality changes 46–51 Familial

(Spain) NA [18]

Cys92Ser EOAD, parkinsonism,
hallucination 49–70 Familial

(Italy)
Fibroblast cells:

elevated Aβ42 levels [26]

Val94Met EOAD 53 De novo
(Columbia) NA [30]

Val96Phe EOAD 44–57 Familial
(Japan, Malaysia)

elevated
Aβ42/totalAβ in

COS1 cells
[8,13], our case

Val97Leu EOAD Late 30s, early 40s Familial
(China)

SH-SY5Y cells:
elevated intracellular

and extracellular
Aβ42

[19,27]

Thr99Ala EOAD 43 De novo
(Japan) NA [21]

TM-I domain was found to be relatively conservative between PSEN1 and PSEN2
for its critical role in γ-secretase activity. Hence, even slight alterations of structure might
have larger effects in Aβ metabolism. Experiments of deleting TM-I and TM-II domains
or the connecting loop (HL-I) in PSEN1 (Val82-Tyr154) could affect the endoproteolysis
of PSEN1, affecting the APP metabolism. The deletion of these domains may result in the
accumulation of CTF fragment of APP by delayed γ-secretase processing. A loss of PSEN1
function may also impair the APP trafficking. In addition, the deletion of TM1-HLI-TMII
region may also impair the Notch signaling [31,32]. Structure predictions by Queralt et al.
(2002) revealed that in normal PSEN1 protein, valine residues in TM-I may be in contact
with the hydrophobic residues in TM-VII. Mutations in TM-I may increase the distance
between TM-I and TM-VII, resulting in additional stress inside the PSEN1 protein [18].
All of these findings suggested that mutations in the TM-I may be responsible pathogenic
mutations in EOAD. Cell studies from different mutations (including Val96Phe) suggested
that TM-I may play a significant role in APP trafficking and amyloid peptide cleavage.
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5. Conclusions

In this study, a pathogenic PSEN1 mutation, Val96Phe, was described in a Malaysian
family. The mutation was initially discovered in a Japanese family in 1996. The Malaysian
case revealed a strong family history of disease, since at least two family members with
EOAD carried the mutation, and other relatives were affected with EOAD. This report may
add additional clinical details, associated with AD patients, binding PSEN1 Val96Phe mu-
tation. This is a second pathogenic PSEN1 mutation, which was described in a Malaysian
family [33]. Due to the algorithm of Guerreiro et al. (2010) PSEN1 Val96Phe is a pathogenic
mutation. The mutation was missing in different reference databases (1000Genomes, Gno-
mAD), suggesting that it may not be present in individuals without any neurodegenerative
disease. Multiple sequence alignment revealed that Val96 is a conservative residue among
vertebrates. Additionally, PSEN1 Val96Phe is located in a region which was verified as
conservative between PSEN1 and PSEN2 [34]. In addition, PSEN1 Val96Phe appeared in
patients from two independent families affected with EOAD [34]. Our in silico prediction
suggested that mutation could possibly disturb the intramolecular interactions inside the
PSEN1. In addition, it could probably result in abnormalities in PSEN1 and γ-secretase
functions by resulting in stress between PSEN1 TM-I and TM-VIII. Mutations in TM-I
could also potentially affect the endoproteolysis of PSEN1 protein, resulting in distur-
bances in APP cleavage, and elevated Aβ42 productions [31,32]. The limitations of this
study were that we were unable to perform cerebrospinal fluid (CSF) amyloid biomarker
study since patients refused CSF analysis. Additionally, full segregation analysis could
not be performed since several affected family members passed away and/or no sample
was available from them. Additionally, the currently asymptomatic cousins of the patient
refused the genetic test. Furthermore, no in vitro study was performed on this mutation by
our group. However, in the future, we will perform in vitro analyses on the mutation in
additional cell lines, such as HEK-293.
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