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Chronic widespread pain (CWP) is one of the most difficult pain conditions to treat due
to an unknown etiology and a lack of innovative treatment design and effectiveness.
Based upon preliminary findings within the fields of motivational psychology, integrative
neuroscience, diaphragmatic breathing, and vagal nerve stimulation, we propose a
new treatment intervention, motivational non-directive (ND) resonance breathing, as a
means of reducing pain and suffering in patients with CWP. Motivational ND resonance
breathing provides patients with a noninvasive means of potentially modulating
five psychophysiological mechanisms imperative for endogenously treating pain and
increasing overall quality of life.
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INTRODUCTION AND BACKGROUND

Chronic widespread pain (CWP), including fibromyalgia syndrome (FMS), is a particular type
of chronic primary pain where biological causalities may or may not be present and can not
be identified as either musculoskeletal or neuropathic pain (Treede et al., 2015). CWP is a
multifactorial pain condition characterized by prolonged pain that lasts for 3 months or more in
multiple regions of the body. It is often associated with significant psychophysiological distress
in the form of anxiety, anger, frustration, depression, insomnia, and social isolation (Maletic and
Raison, 2009; Mansfield et al., 2017; World Health Organization, 2018). CWP is estimated to have
a global prevalence of about one in every ten adults (Mansfield et al., 2016; Andrews et al., 2017)
with a societal cost more than that of cancer and diabetes combined (Vos et al., 2013). Among
all of the chronic pain conditions today, CWP is one of the most difficult to treat and manage
(Lee et al., 2014).

Many of the symptoms associated with CWP overlap with those of functional somatic
syndromes (FSS) (Henningsen et al., 2007) and medically unexplained symptoms (MUS)
(Konnopka et al., 2012) where pathologically unexplainable patterns of persistent bodily complaints
are present, some of which include pain in various locations, functional disturbances in different
organ systems, and complaints centering around physical exhaustion and mental fatigue (Loeser
and Melzack, 1999). Currently available treatments for FSS or MUS conditions provide modest
improvements in pain and minimal improvements in both physical and emotional functioning
(Turk et al., 2011). The difficulty to manage CWP in particular may be due to an unknown
etiology (Sommer et al., 2008), an unstandardized definition (Butler et al., 2016), and a lack of
both mainstream and alternative treatment modalities that are specifically designed to meet the
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psychophysiological profile of those suffering from it (Bee et al.,
2016). General practitioners still have difficulty recognizing CWP
and FMS as a valid diagnosis and often have limited awareness
of diagnostic criteria and clinical models that may describe its
psychosomatic interface (Mansfield et al., 2017).

Interdisciplinary theories which include the neurovisceral
integration model (Thayer, 2007, 2009), the polyvagal theory
(Porges, 2009; Kolacz and Porges, 2018), the biological behavioral
model (Grossman and Taylor, 2007), the resonance frequency
(RF) model (Lehrer, 2013), and the psychophysiological
coherence model (McCraty and Childre, 2010) have all proposed
that vagal tone (i.e., parasympathetic activity) is an arbiter for
nurturing both psychological and physiological wellbeing. The
neurovisceral integration model states that high vagal tone leads
to better cognitive and emotional functioning as well as health
regulation (Thayer, 2009). The polyvagal theory states that
high vagal tone also leads to better social functioning (Kolacz
and Porges, 2018). The biological behavioral model (Grossman
and Taylor, 2007) understands vagal tone as a mediator and
regulator of energy exchange through the synchronization
of respiratory and cardiovascular processes during metabolic
and behavioral changes. This model understands high vagal
tone as a means of adaptation. In order to increase vagal tone,
the RF breathing model was put forth which states that slow
paced breathing at RF can increase vagal tone. Lastly, the
psychophysiological coherence model (McCraty and Childre,
2010) takes it one step further by postulating that slow-paced
breathing practiced with positive emotions can increase
personal, social, and global health. Even though these theories
share a common notion that vagal tone may be an important
factor to consider when optimizing psychophysiological
health, they lack a formalized means of methodologically
applying the theory to practice within the field of CWP
research and management.

Our unified theoretical approach herein referred to as
the motivational nondirective resonance model attempts to
bridge the aforementioned theories and describe a mechanism-
based interventional approach, motivational non-directive (ND)
resonance breathing, for treating CWP. To our knowledge, we
are the first to propose such a unified theory and describe how it
can be applied and tested as an innovative treatment for CWP.
Interventions which have been previously developed in order to
apply these theoretical findings to the development and delivery
of new pain treatments have failed to sufficiently treat CWP.

None of the most commonly used pharmacological,
psychological, medical, or surgical treatments are, by themselves,
sufficiently able to remove pain or to significantly enhance
physical and emotional functioning for patients suffering from
CWP (Turk et al., 2011). However, primary care physicians
continue to treat persistent pain conditions with chronic opioid
therapy (Turner et al., 2016) despite the fact that opioids
generally fail to alleviate pain intensity and function (Sullivan
et al., 2008; Boudreau et al., 2009; Chou et al., 2015) and
cause a myriad of adverse side effects (Ivanova et al., 2013;
National Academies of Sciences Engineering and Medicine,
2017). This may be a reason as to why nearly half of those
diagnosed with CWP/FMS still receive inadequate pain relief

and often report partial or whole work incapacity (Breivik
et al., 2006), increased sick-leave, poor quality of life and
health (Gerdle et al., 2008; Mayer T.G. et al., 2008), and
continue to suffer from a wide variety of psycho-social issues
(Järemo et al., 2017).

Non-pharmacological treatments for FSS and MUS that
involve the active participation of patients, such as exercise
and psychotherapy, have been shown to be more effective
than treatments which only involve passive physical measures
(i.e., injections and operations) (Henningsen et al., 2007).
Therefore, many patients decide to seek psycho- behavioral
treatment plans that include adjunctive therapy or alternatives
to medication (Chiesa and Serretti, 2011). A complementary
and alternative medicine (CAM) survey report (Barnes et al.,
2008) found that 4 out of 10 United States adults had used
CAM therapy in the past 12 months. One of the most
commonly used CAM therapies is deep breathing exercises
for treating back pain, neck pain, and joint pain — all
common symptoms inherent in those diagnosed with CWP
(Barnes et al., 2008; Häuser et al., 2017). However, treatment
modalities such as cognitive behavioral therapy, acceptance and
commitment therapy, and mindfulness-based therapies — all
of which commonly employ training modalities in intra and
interpersonal psychology, deep breathing, positive affect, and
executive control — have overall weak to moderate effect sizes
for treating CWP when compared to treatment as usual, passive
controls, and/or educational support groups (Morley et al., 1999;
Hofmann and Asmundson, 2008).

In particular, research on mindfulness-based meditation
interventions show contradictory findings (Farias et al.,
2016), differences in conceptualization and practice
(Chiesa and Malinowski, 2011), positive report biases
(Coronado-Montoya et al., 2016), and only small to
moderate effect sizes for treating pain in clinical populations
(Veehof et al., 2011; Williams et al., 2012). Due to these
findings, CWP continues to pose a tremendous burden
on society and individuals (Hilton et al., 2016) who are
searching for effective and integrative means of treatment.
The overall inadequacy of mainstream and alternative
treatments illustrates the necessity to develop innovative
approaches for safely and effectively treating the specific
psychophysiological framework of CWP. One promising
avenue for treating CWP may be through the manipulation of
respiratory mechanics.

Subsequent data shows a strong bidirectional relationship
between pain and respiration (Perri and Halford, 2004; Smith
et al., 2006; Jafari et al., 2017). Pain can cause faulty respiration
(such as hyperventilation and breath-holding) which has a
stronger association with chronic low back pain than obesity
and physical activity (Borgbjerg et al., 1996; Nishino et al.,
1999; Kato et al., 2001; Smith et al., 2006). Clinical studies
demonstrate that deep breathing techniques may have positive
effects for treating acute pain conditions (Jafari et al., 2017).
However, the positive analgesic effects deep breathing may have
on some acute pain conditions has failed to be established for
CP conditions such as CWP. Experimental evidence elucidating
the underlying psychophysiological mechanisms of how deep
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breathing may be used to treat CWP is lacking and often
inconsistent (Jafari et al., 2017).

Due to the strong bidirectional relationship between pain
and respiration, a recent systematic review (Jafari et al., 2017)
called for future research to identify the autonomic and
cardiovascular mediators that link respiration and pain; identify
the physiological (i.e., respiratory) mechanisms needed to reduce
pain; identify the central mechanisms responsible for producing
respiratory hypoalgesia; and identify the psychological (i.e.,
behavioral) mechanisms needed to reduce pain.

In this paper, we propose that the autonomic and
cardiovascular mediators that link respiration and CWP
are baroreceptor sensitivity (BRS) and heart rate variability
(HRV); the physiological mechanism needed to reduce pain
in those with CWP is diaphragmatic breathing (DB) (i.e., RF
breathing); the central mechanism responsible for producing
respiratory hypoalgesia is vagus nerve stimulation; and the
cognitive and affective psychological mechanisms needed to
reduce pain in those with CWP is ND attention and motivation.

We believe that DB practiced at one’s RF has the potential
to increase HRV and BRS by stimulating the vagal nerve in
those suffering from CWP. Indeed, stimulation of the vagus
nerve targets several pathophysiological factors associated with
CWP. If diaphragmatic RF breathing is practiced with a ND
quality of attention, we believe that this may be the ideal means
of modulating specific brain activity (i.e., the default mode
network) and thus remodel the relationship between CWP and
emotion. Furthermore, motivating CWP patients to practice
ND diaphragmatic RF breathing everyday while increasing
their positive treatment expectations may aid in targeting the
immune-mediated parameter of CWP. We hypothesize that
motivational ND resonance breathing (MNRB) is a potential
psychophysiological intervention for endogenously treating pain
intensity and disability in those who suffer from CWP.

CARDIOVASCULAR AND AUTONOMIC
MEDIATORS: BARORECEPTOR
SENSITIVITY AND HEART RATE
VARIABILITY

Baroreceptor sensitivity and heart rate variability are among the
most important factors for evaluating the health and functionality
of the cardiovascular and autonomic systems in those suffering
from CP (Bruehl et al., 2018). BRS is a measure of the baroreflex,
a homeostatic negative feedback loop important for maintaining
healthy constant blood pressure levels in accordance with the
requirements of a given situation (Mason et al., 2013). Changes
in BRS may be involved in modulating the activity of endogenous
pain modulatory systems (Kamibayashi and Maze, 2000). Recent
research has also suggested that BRS may play a key role
in the relationship between cardiovascular, respiratory activity,
and pain dampening through the cardiovascular or central
branches of the baroreceptor system (Jafari et al., 2017). HRV
represents the change in the time interval between successive
heartbeats and is used as an index of cardiac vagal tone (also

known as cardiac vagal control), which is the contribution
of the parasympathetic nervous system (i.e., vagal tone) to
cardiac regulation (Brodal, 2004; Nahman-Averbuch et al., 2016;
Laborde et al., 2017).

Among all of the time- and frequency-domain HRV
parameters, the standard deviation of NN intervals (SDNN),
the percentage of successive RR intervals that differ by more
than 50 ms (pNN50), the high- frequency power (hf), and the
root mean square of successive RR interval differences (RMSSD)
are considered to reflect cardiac vagal tone (Telles et al., 2016;
Laborde et al., 2017). However, due to their strong correlation
(Kleiger et al., 2005) and ability to index self-regulation at the
cognitive, emotional, social, and health levels (Thayer et al.,
2009; McCraty and Shaffer, 2015), both RMSSD and hfHRV
(specifically between 0.15 and 0.40 Hz) (Laborde et al., 2017) are
considered the most optimal parameters for measuring cardiac
vagal tone (Thayer and Lane, 2000).

The largest and broadest population study to date (Bruehl
et al., 2018) has shown that beyond the effects of age, sex,
and body mass index, those with CP have overall lower
BRS and lower HRV in both the time domain (SDNN and
rMSSD) and in the frequency domain (hfHRV) when compared
to pain-free controls. In particular, those with CWP have a
significantly lower BRS when compared to healthy subjects
without CWP; persistent stress, pain behavior, and classical
and operant conditioning mechanisms can all contribute in
reducing BRS in those with CWP (Chung et al., 2008).
Moreover, the inverse relationship between resting BP and
pain sensitivity in healthy subjects becomes impaired in those
with CWP (Meller et al., 2016). Instead of diminishing
central sensitization and enhancing descending pain inhibition,
elevated resting BP in those with CWP increases central
sensitization and weakens descending pain inhibition. In turn,
this can increase pain intensity (Coderre and Melzack, 1987;
Chung and Bruehl, 2008).

A large study (Barakat et al., 2012) has also shown that there
is a strong association between high pain intensity and low
parasympathetic tone (as indicated by lower SDNN and lower
RSA) for those with CWP when compared to healthy controls
without CWP. The fact that low parasympathetic tone is not
associated with the presence of CWP, but instead associated with
high pain intensity, suggests that the experience of intense pain
is a chronic stressor interfering with parasympathetic activity
(Geenen and Bijlsma, 2010; Barakat et al., 2012; Evans et al., 2013;
Pittig et al., 2013).

Pioneering research within the field of respiratory hypoalgesia
has shown that DB performed with a high respiratory volume
and low frequency could activate the anti-nociceptive effects
of BRS (Dworkin et al., 1979; Dworkin et al., 1994) and
concomitant increases in hfHRV (Triedman and Saul, 1994;
Bruehl and Chung, 2004). This is in line with current evidence
which does not support a direct causal association between
DB and pain reduction, but instead, strongly suggests that a
more indirect mediation through autonomic and cardiovascular
changes is plausible (Jafari et al., 2017). We believe that an
indirect mediation of pain through changes in HRV (autonomic)
and BRS (cardiovascular) may be the most effective and
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plausible way DB can lower pain intensity and disability
for those with CWP.

PHYSIOLOGICAL MECHANISM:
DIAPHRAGMATIC RESONANCE
FREQUENCY BREATHING

Diaphragmatic Breathing (DB) is a pattern of expiration and
inspiration in which most of the ventilatory work is executed
by the diaphragm (Cahalin et al., 2002; Mosby, 2009). The
diaphragm is a large, dome-shaped muscle located at the base of
the lungs and is considered the most efficient muscle of breathing
(Maitre et al., 1995; Cleveland Clinic, 2018a). DB is typically
practiced by either laying in the supine position or sitting
comfortably in a chair; the practitioner is instructed to emphasize
a slow deep outward abdominal movement during inspiration
and a slow deep inward abdominal movement during expiration
(Cancelliero-Gaiad et al., 2014; Cleveland Clinic, 2018a). Factors
which determine the physiological response of DB on pain are
typically breadth frequency (breadths per minute) (Raghuraj
et al., 1998; Park et al., 2013) and breadth volume (as indicated
by respiratory depth) (Jafari et al., 2017).

The normal respiratory frequency for an adult at rest is
around 12 to 20 breaths per minute whereas the respiratory
frequency for performing DB can range from 5 to 8 breaths
per minute (Shannahoff-Khalsa and Kennedy, 1993; Cleveland
Clinic, 2018b). Many studies which have investigated DB for
the treatment of CWP have been unclear in regard to what
respiratory frequency patients should perform (Lehrer et al.,
2000; Mohammed and Mohammed, 2014; Celhay et al., 2015;
Jafari et al., 2017). Due to the significant relationship between low
HRV and high pain intensity in CWP (Barakat et al., 2012), a DB
frequency that can yield the greatest increase in hfHRV would
be ideal. Experimental studies with healthy subjects (Pal and
Velkumary, 2004; Jafari et al., 2017; Steffen et al., 2017) suggests
that performing DB at a rate of around 6 breaths per minute (i.e.,
0.10 Hz) may yield significant analgesic effects.

Breathing at a rate of 6 breaths per minute causes spontaneous
oscillations in blood pressure (BP) to synchronize with BP
oscillations caused by DB (Jafari et al., 2017). In turn, this can
cause heart rate (HR) and breathing to synchronize, also known
as RF breathing. The most common RF breathing rate is 5.5 or
6 breaths/min (Vaschillo et al., 2002) however, each person may
have a unique RF breathing rate that typically ranges between 4.5
and 7.0 breaths/min. As people slow their breathing down and
approach RF, the highest levels of HRV are typically obtained
(Courtney et al., 2011; Steffen et al., 2017). Maximal fluctuations
in HR (hfHRV) causes an increase in BP and BRS (Lehrer et al.,
2003; Lagos et al., 2008).

Harmonic coupling between HRV, respiration, peripheral
BP, and skin blood flow in a 0.15 Hz rhythm band (range:
0.12–0.18 Hz) has been demonstrated in healthy long- term
practitioners of autogenic training (AT), a practice which uses
visual imagery, body awareness, and DB exercises to promote
a state of deep relaxation (Perlitz et al., 2004). In regard to
pain treatment, medium-range positive effect sizes of AT and

of AT versus control in a meta-analysis were found for several
common symptoms and conditions inherent in those with CWP,
some of which include somatoform pain disorders (unspecified
type), anxiety disorders, and functional sleep disorders (Stetter
and Kupper, 2002). Even though breathing at RF does matter
when considering the optimal means of endogenously achieving
hfHRV while increasing BRS (Vaschillo et al., 2002), it is still
not clear whether breathing at RF would help treat CWP
(Downey and Zun, 2009).

Efferent parasympathetic activity to the heart (i.e., cardiac
vagal tone) elevates during expiration relative to inspiration
due to the central respiratory gating of vagal outflow (Eckberg,
2003) and stimulation of the baroreceptors (Stancák et al., 1991b;
Jafari et al., 2017). Prolonged duration of the exhalation phase
during DB causes cardiac vagal tone to increase along with
hfHRV across the entire respiratory cycle (Strauss-Blasche et al.,
2000). FMS patients who breathe at half their normal rate
are able to decrease pain and depressive symptoms more than
when they are breathing normally (Zautra et al., 2010). This
strongly suggests that the vagus nerve may be a prime target
when considering a central mechanism responsible for producing
respiratory hypoalgesia in CWP.

CENTRAL MECHANISM: VAGAL NERVE

The vagal nerve is the tenth cranial nerve composed of
approximately 80% afferent fibers (which carry essential
information from the body to the brain) and 20% efferent
fibers (which send signals from the brain to the body)
(Howland, 2014). Vagus nerve stimulation (VNS), which
typically involves electrical stimulation of the vagal nerve,
is an approved therapy for both refractory epilepsy and
treatment-resistant depression (Howland, 2014; Vonck
et al., 2014). Due to its central role in the bidirectional
transmission and mediation of sensory information between
the brain and the body (Howland, 2014), the vagus nerve may
also be a promising mechanism for potentially treating the
pathophysiology of CWP.

Experimental studies on animals (Ren et al., 1993, 1988)
and preliminary intervention trials on humans (Lange
et al., 2011; Busch et al., 2013) have shown that VNS
can modulate multiple pathophysiological mechanisms
inherent in CWP: VNS has shown to strongly reduce
peripheral inflammatory cytokines in animals and in humans
(Tateishi et al., 2007; Meregnani et al., 2011), decrease
sympathetic tone by modulating descending serotonergic
and noradrenergic neurons (Randich and Gebhart, 1992),
decrease malondialdehyde (a biological marker of oxidative
stress) (Pavithran et al., 2008), reverse pain-related brain
activity patterns by reducing hippocampal and amygdala
activity and increasing insular cortical and left prefrontal cortex
activity (Kraus et al., 2007), and drive the antinociceptive
effects of opioids and their derivatives (Tarapacki et al., 1992;
De Couck et al., 2014).

VNS as a means of pain treatment has been traditionally
administered through invasive procedures, known as invasive
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VNS (iVNS), which typically involve the surgical implantation
of electrodes around the cervical vagus nerve (Chakravarthy
et al., 2015). iVNS has a high risk for adverse events that
include voice alteration, paresthesia, cough, headache, dyspnea,
pharyngitis, and pain at the site of stimulation (Ben-Menachem
et al., 2015). These adverse events often require a decrease
in stimulation strength or even permanent deactivation and/or
removal of the iVNS device. An effective non-invasive alternative
to iVNS is transcutaneous VNS (tVNS). The tVNS system
sends electrical impulses through the skin (transcutaneous)
of the outer ear straight into the auricular branch of the
vagus nerve (Peuker and Filler, 2002). Intensity, pulse duration,
and frequency of the tVNS can be adjusted accordingly
(Frangos et al., 2015).

Even though a number of studies using high intensity
tVNS have not found any major side-effects, tVNS can still
be accompanied by slight pain, burning, tingling, or itching
sensations near the sight of the electrodes (Kraus et al.,
2007; Dietrich et al., 2008). tVNS devices, like implantable
VNS systems, are expensive to obtain, maintain, and have
a narrow patient distribution (Howland, 2014). There
is also no scientific consensus regarding the frequency
and strength of tVNS stimulation for pain treatment
(Chakravarthy et al., 2015) nor is there a clear understanding
of how a constant pulse frequency mirrors endogenous
vagal nerve activity (it likely does not communicate in
consecutive 30 s intervals as most of the tVNS devices do)
(Chapleau and Sabharwal, 2011).

Another important factor to consider is that the vagus nerve
is not one uniform structure. It is instead composed of a
diversity of molecularly distinct neuron types with different
anatomical projections and functions (Chang et al., 2008).
Artificial means to either transcutaneously or surgically stimulate
the entire vagus nerve without cell specificity may be a main
cause of unwanted side effects and lack of effect in CWP
patients. Habituation (the loss of efficacy over time) or the
appearance of new adverse events during chronic therapy
limits VNS usefulness and should be assessed (Morris and
Mueller, 1999). In addition, the risk, cost, and benefits of
each type of vagal nerve–enhancing intervention, in relation
to pain reduction and side effects, must be considered
(De Couck et al., 2014). Therefore, DB as a means of
endogenously stimulating the vagal nerve may be a better option
for CWP patients.

Various forms of paced slow breathing have shown to
influence brain electrical activity which may be mediated
by VNS arising from the diaphragm (Stancák et al., 1991a,
1993). This cardio-respiratory stimulation of the vagus nerve
may explain some of the overall positive emotional and
cognitive benefits of DB (Howland, 2014). DB as a means of
VNS may potentially decrease the pathophysiological processes
involved in central sensitization as seen in CWP. This action
may be the mechanism by which VNS reduces widespread
musculoskeletal pain in FMS and other comparable pathologies
(Lange et al., 2011; Chakravarthy et al., 2015). Among the
many distinct neuron types within the vagus nerve are
nerve fibers that specifically innervate the lungs and airways

and which have been found to be vital for DB. These
sensory neurons provide critical information needed to control
respiration rate and regulate airway tone (Widdicombe, 2001;
Canning et al., 2006). Within the airways, these vagal sensory
neurons detect markers of inflammation, illness, and the
mechanical stretch of the lungs during cycles of inhalation
and exhalation while performing DB (Widdicombe, 2001;
Carr and Undem, 2003).

Afferent vagal axons enter the brain bilaterally and primarily
target the nucleus of the solitary tract (NTS), the first synapse
in the baroreflex. This brainstem nucleus transmits sensory
information to the limbic system and other deeper brain
structures (Berthoud and Neuhuber, 2000; Kubin et al., 2006;
Howland, 2014) and acts as an important interface between
autonomic and regulatory centers within the brainstem and
the central nervous nociceptive system (Bruehl and Chung,
2004; Duschek et al., 2013). This permits a central modulation
of both cardiorespiratory and nociceptive activity (Chalaye
et al., 2009; Jafari et al., 2017). The baroreceptor system
connects the NTS with higher cerebral regions related to
pain emotion, cognition, and autonomic control such as the
periaqueductal gray, nucleus raphe magnus, locus coeruleus,
anterior cingulate cortex, hypothalamus, and thalamus (Duschek
et al., 2013). The periaqueductal gray’s involvement in central
pain processing implies that local alterations within this
region during DB may underlie a main component of the
antinociceptive effects of VNS in humans (Kirchner et al., 2000;
Henry, 2002; Subramanian and Holstege, 2010). The ability
of VNS to reverse pain-related brain activity patterns during
DB and target both affective and cognitive networks associated
with pain raises the question as to whether a psychological
mechanism could potentially amplify these reversal effects
(Jafari et al., 2017).

Psychologically, pain can be perceived cognitively (as
measured by the intensity of aching, burning, or stinging)
(Turk and Rudy, 1992) and affectively (as measured by
the unpleasantness of those sensations) (Frangos et al.,
2017). Attentional modulation of pain preferentially affects
perceived pain intensity, whereas the affective modulation
of pain (dependent on one’s mood) preferentially modulates
the unpleasantness of pain (Villemure et al., 2003; Loggia
et al., 2008). This is highlighted by the fact that dissociable
neural networks of attention and mood exist in regard to
the modulation of pain intensity and unpleasantness (Legrain
et al., 2009; Villemure and Bushnell, 2009). Even though
pain intensity is frequently recommended as the primary
indicator for determining intervention efficacy (Younger et al.,
2009), it has been argued that pain intensity is not the
best measure of the success of CP treatment (Ballantyne and
Sullivan, 2015). Pain which is initially associated with the
classic sensory “pain connectome” is later associated with
brain regions involved in emotion and reward — over time,
pain intensity becomes linked less with nociception and more
with emotional and psychosocial factors (Hashmi et al., 2013;
Ballantyne and Sullivan, 2015). The trending positive effects
of VNS on various cognitive and affective processes are a
further indication that psychological factors should be considered
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in studies and treatments investigating vagal pain modulation
(Frangos et al., 2017).

COGNITIVE PSYCHOLOGICAL
MECHANISM: NON-DIRECTIVE
MEDITATION

Meditation encompasses a broad family of complex emotional
and attentional regulatory training regimes that can be roughly
categorized into three separate groups dependent upon the type
of attention being practiced. Focused Attention (FA) meditation
entails the voluntary focusing of attention on a chosen object
or stimulus (usually the breath). Whenever attention wanders
away from the breath, the meditator tries to quickly detect mind
wandering and gently, but firmly, brings their attention back to
the physical sensation of the breath (Brewer et al., 2011). Open
Monitoring (OM) meditation involves a non-reactive monitoring
of the content of inner and outer experiences from moment
to moment (Lutz et al., 2008b). During OM meditation, the
practitioner pays attention to whatever comes into and out of
awareness — whether it may be a thought, emotion, or body
sensation — without holding onto it or changing it in any way
(Brewer et al., 2011). Non-directive meditation is somewhat of
a combination of the two: where the presence of spontaneously
occurring thoughts, images, sensations, memories, and emotions
is accepted without actively directing attention toward them
(FA) or away from them (OM) (Ellingsen and Holen, 2008;
Nesvold et al., 2012). A practitioner of ND effortlessly places a
relaxed focus of attention on a mental or audible sound (such as
the non-semantic sound of an inhalation and exhalation) while
non-judgmentally allowing the focus of their attention to shift
toward spontaneously occurring thoughts, images, sensations,
memories, or emotions (Davanger et al., 2010).

Chronic widespread pain patients who report high pain
intensity display cognitive deficits and show significantly
impaired performance on cognitively demanding tasks when
compared to CWP patients with low pain intensity and healthy
controls (Eccleston, 1995; Hart et al., 2000). The difficulty for
CWP patients to sustain task-relevant attention causes pain-
related anxiety, pain hypervigilance, pain catastrophizing, and
long-term cognitive distress (Sullivan et al., 1995; Crombez
et al., 2005). Attention diversion and attention allocation (James,
2013) (two skills trained during FA meditation) have been
shown to reduce pain-related anxiety, pain hypervigilance, and
pain interference and increase executive functioning for patients
diagnosed with several CP conditions (Elomaa et al., 2009).
Experimental studies comparing the efficacy of OM meditation
practiced with DB (OM-DB) and FA meditation practiced
with DB (FA-DB) at the same respiration rates (7 cycles per
minute) and depths (2 cm amplitude/cycle) show that OM-DB
significantly increases cold and hot pain threshold and attenuates
pain perception significantly more than FA-DB in healthy adults
(Busch et al., 2012) and is accompanied by concomitant changes
in cardiac activity similar to what is observed during DB
(Chalaye et al., 2009). However, as pain transitions from acute to
chronic, there is an accompanying neurobiological shift toward

emotionally related circuitry within the brain (Hashmi et al.,
2013). The transition of pain from a sensory, cognitive, and
nociceptive state to becoming more of an emotional burden is
reflected neurologically within the default mode network (DMN)
of those suffering from CWP. This is imperative to consider when
choosing a suitable meditation that can not only treat cognitive
functioning and pain, like FA and OM, but also modulate affective
functioning in CWP.

fMRI analyses show that among the five major resting-state
networks, only the DMN consistently exhibits altered spatial
extent and functional connectivity properties in those suffering
from CP when compared to healthy controls (Baliki et al., 2014).
The DMN participates in episodic memory (Zysset et al., 2002),
the monitoring and detection of internal salient events (Raichle
et al., 2001), and affective processing (Xu et al., 2014). DMN
functional connectivity in patients with several CP conditions
shows that as pain becomes chronic, the DMN increases coupling
between pain-related regions and affective regions such as the
insular cortex — a brain region that signals both the sensory
and affective properties of CP (Apkarian et al., 2011; Baliki
et al., 2014). Conversely, a reduction of the intrinsic DMN
connectivity to the insula in FMS patients following 4 weeks of
acupuncture was shown to be strongly correlated to reductions in
pain (Napadow et al., 2012).

It has been suggested that abnormal DMN coupling and
communication with other affective brain systems in CWP
may be driven by attention to pain in daily life (Letzen and
Robinson, 2017). Those who suffer from CP report that their
attention to ongoing pain often varies (Viane et al., 2004)
and that the intensity of their pain can fluctuate on short
time scales (seconds/minutes) (Foss et al., 2006). These daily
fluctuations of attention and pain intensity involve constant
interactions between the DMN and the antinociceptive system —
an interaction which may determine the course of pain-related
structural brain reorganization and CP prognosis (Kucyi et al.,
2013). A meditation that has shown to modulate attention to pain
in respect to emotion is ND meditation.

ND meditation, which permits mind wandering, involves
a more extensive activation of brain areas associated with
episodic memories and emotional processing, than during FA
meditation, OM meditation, or regular rest (Xu et al., 2014).
Most mindfulness practices view mind wandering as a distraction
and a gateway to rumination, anxiety and depression (Sood
and Jones, 2013; Xu et al., 2014). These practices make it their
goal to reduce mind wandering and its potentially negative
consequences (Brewer et al., 2011; Sood and Jones, 2013).
However, mind wandering and activation of the DMN during
ND meditation may serve introspective and adaptive functions
beyond rumination and daydreaming (Ottaviani et al., 2013) —
especially for those with CWP.

Stronger structural connectivity between the periaqueductal
gray and the DMN is associated with the ability to mind wander
away from pain and thus treat it as a non-distractor (Kucyi et al.,
2013). By engaging in ND meditation, patients with CWP could
possibly stimulate and rewire the DMN by allowing thoughts,
images, sensations, memories, and emotions related to their pain
to emerge and pass freely without actively controlling, escaping,
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or pursuing them (Xu et al., 2014) — over time this may reduce
stress by increasing awareness and acceptance of pain as an
emotionally charged experience (Ellingsen and Holen, 2008; Lutz
et al., 2008a; Sood and Jones, 2013). ND meditation may teach
a CWP patient to increase their ability to accept and tolerate
the stressful and emotional burden of ongoing pain during the
meditation and also outside of it (Davanger et al., 2010).

Functional connectivity between the DMN and brain
regions associated with emotion regulation (i.e., the insula
and parahippocampus) in patients diagnosed with major
depressive disorder (commonly co-morbid in those with CWP)
has also been shown to decrease after 1 month of tVNS
compared to sham stimulation. The change in depression severity
significantly correlated with functional connectivity changes
between the DMN and regions that are implicated in both pain
modulation and emotion, such as the anterior insula and anterior
cingulate cortex (Fang et al., 2016; Su et al., 2016). However,
investigations of vagal pain modulation do not reliably report
the preferential modulation of affect on pain unpleasantness
even though behavioral and brain imaging studies show that
tVNS improves affect and produces functional changes in brain
regions where pain modulation and affect converge (Frangos
et al., 2017). Investigations which combine DB (as a means
of vagal innervation) and ND meditation may be able to
display some of the psychobehavioral changes that can occur in
patients with CWP.

A study (Mehling et al., 2005) compared the effects of
a 6–8 week breath therapy intervention (a type of ND
meditation combined with DB) and high-quality, extended
physical therapy on pain, disability, and emotional wellbeing
as expressed in diary entries for patients diagnosed with
chronic low back pain (cLBP). Researchers found that the
pre to post-intervention changes in standard low back pain
measures of pain and disability were comparable in both
groups. However, major differences between groups appeared
for emotional effects as displayed in patient diaries. cLBP
patients randomized to the ND breath therapy intervention
had diary entries with emotionally richer insights about their
pain and coping with stress with few or no entries in the
physical therapy group’s diaries. Interestingly, the more gentle
and breath-focused the physical therapy was, the more similar
the emotional diary statements were to breath therapy such
as: “calmness,” “less anxiety,” “sense of emotional strength,”
“encouraged,” “uplifting,” and “more emotional awareness”
(Mehling et al., 2005).

The affective interoception seen in these diary statements
as a result of an ND and DB- based therapy intervention
reflect the neurobiological activity seen in brain regions, such
as the insula, which result from VNS (Critchley et al., 2004;
Frangos et al., 2015). The anatomy of interoceptive processing
indicates a convergence of signals derived from the spine and
the vagus nerve which travel toward cortical representations
within the insular cortex (Craig and Craig, 2009). Interoception
seems to be dependent upon a combination of both anatomy
and motivational content (Craig and Craig, 2009); physiological
sensations, such as pain, and organ signals are carried centrally by
afferents that mostly ascend the spinal laminar 1 spinothalamic

tract. This suggests a dedicated interoceptive-motivational
pathway (Critchley and Garfinkel, 2017).

AFFECTIVE PSYCHOLOGICAL
MECHANISM: MOTIVATION

Preclinical and clinical evidence shows that tVNS simultaneously
modulates both pain and mood, yet little is still known about
possible indirect descending effects of altered mood states on pain
perception for those suffering from CWP. Previous studies have
shown that both positive and negative mood states can modulate
the affective dimension of pain unpleasantness (Frangos et al.,
2017). CWP patients are detrimentally affected by negative
emotional states and attitudes that fluctuate on a daily basis
which can exacerbate their pain symptoms (Haythornthwaite
and Benrud-Larson, 2000; Schanberg et al., 2000; Frangos et al.,
2017). Yet positive emotions, such as resiliency and optimism,
can sustain CWP wellbeing and recovery (Ong et al., 2010;
Sturgeon and Zautra, 2010) and may also be a promising means
of treating the inflammatory etiology of CWP (Kox et al., 2014;
van Middendorp et al., 2016). Due to the fact that systemic low-
grade inflammation is associated with CWP (Gerdle et al., 2017),
utilizing motivation and positive treatment expectancy may by
an important treatment factor to consider. Therefore, identifying
the interoceptive factors that influence pain coping and positive
treatment expectancies could potentially help clinicians facilitate
the use of adaptive coping strategies for treating CWP patients
(Jensen et al., 1991).

Patients with CWP show significant anatomical and functional
changes within reward/motivational circuitry within the brain
that strengthen emotional and affective pain mechanisms
(Apkarian et al., 2009; Apkarian et al., 2013). These maladaptive
changes in aversive/motivational circuits are a challenge for
CWP treatment (Navratilova and Porreca, 2014). However,
targeting reward/motivation circuits can be a source for
treatment that may provide a path for normalizing the
neurobehavioral consequences of CWP and help surpass
symptomatic management (Navratilova and Porreca, 2014).

Pain can be considered a homeostatic emotion (Craig and
Craig, 2009) (such as hunger, thirst, or the desire to sleep) —
a mechanism which involves receptors that detect internal
imbalances (i.e., sensations) and aversive emotions that demand
a behavioral response (i.e., motivation) to ensure the organism
takes proper action to restore homeostasis (Denton et al., 2009).
Therefore, pain can produce a strong motivational drive which
promotes escape or, in the case of CWP, seek relief (Craig and
Craig, 2009). Due to their fundamental role in survival, the basic
neurological networks of reward, expectation, and motivation
have evolved early and are conserved across species (Andreatta
et al., 2012). The evolutionary role of negative (pain) and positive
(relief) affective states is to elicit motivations that typically result
in escape/avoidance and approach behaviors (Craig and Craig,
2009) — this allows an individual in pain to learn how to
predict painful or relieving situations and/or triggers in the
future (Wiech and Tracey, 2013). Even though ‘pain relief as
reward’ has been a driver for human survival and wellbeing
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(Leknes et al., 2011), the constant daily demand for pain relief in
those suffering from CWP can actually lead to the suppression of
other emotions (i.e., natural rewards). This in turn can potentially
lead to anhedonia (reward deficit state) and diminished quality of
life (Simons et al., 2014).

Multilevel modeling analyses (Zautra et al., 2005) indicate that
weekly elevations of pain and stress predict increases in negative
affect in patients with CWP/FMS and that greater positive
affect predicts lower levels of pain. Research investigating the
relationships between CP patients’ dispositional optimism and
pessimism and the coping strategies they use has found that there
is a positive relationship between optimism and the use of active
coping strategies (i.e., handling the pain or carry on functioning
despite the pain) and pessimism and the use of passive coping
strategies (i.e., giving control over pain to another person or
allowing pain to adversely affect other areas of the patient’s
life) (Ramírez-Maestre et al., 2012). Active coping is associated
with low levels of pain, anxiety, depression and impairment and
high levels of functioning whereas passive coping is related to
high levels of pain, anxiety, depression and impairment and
low levels of functioning for those suffering from a variety of
CP conditions including CWP (Lin and Ward, 1996; Ramírez-
Maestre et al., 2012). If left untreated, the neurologically affective
quality of CWP has the potential to increase emotionally related
pain catastrophizing which can predict the future onset of CP
severity (Picavet et al., 2002; Sullivan et al., 2001a,b) and increase
pro-inflammatory cytokines (Koch et al., 2007).

Emerging evidence suggests that systemic low-grade
inflammation is associated with CWP and that the presence of
inflammation could promote the spreading of pain, a hallmark
sign of CWP (Gerdle et al., 2017). A multivariate, explorative,
cross-sectional study (Gerdle et al., 2017) found that eleven
pro-inflammatory proteins are significantly differentiated
between healthy controls and CWP patients. Positive significant
correlations exist between several proteins and pain intensity
in CWP patients (Gerdle et al., 2017). However, positive
optimism-inducing expectancies about health can induce
immune responses that may directly and positively influence
health and treatment outcomes for CWP. Motivation and
expectation play major roles in the treatment outcomes for a
wide variety of immune-mediated conditions and are shown to
strengthen or mimic the effects of regular long-term therapies
(van Middendorp et al., 2016).

The psychological and emotional state of an individual can
have a significant impact on pain perception (Craig and Craig,
2009; Wiech and Tracey, 2009; Bushnell et al., 2013). Predictions
about future (expected) pain or relief have shown to significantly
influence the actual pain or analgesia that is experienced. Positive
treatment expectancy produces heightened analgesia (placebo
analgesia) (Atlas and Wager, 2012) while negative expectancy
may exaggerate pain (nocebo) (Tracey, 2010; Doering and
Rief, 2012). BOLD-fMRI measurements taken of the human
spinal cord demonstrate that expectation of pain relief (placebo
analgesia) directly reduces nociceptive processing in the dorsal
horn of the spinal cord, presumably via intrinsic descending
inhibitory mechanisms (Craig and Craig, 2009; Eippert et al.,
2009). A proof-of-principal study (van Middendorp et al., 2016)

also found that generalized outcome expectancy optimism is a
potential determinant of the autonomic and immune response
to an intravenously administered bacterial endotoxin (2 ng/kg
Escherichia coli endotoxin) in healthy subjects after a short-term
training program consisting of meditation, breathing exercises,
and cold exposure.

A higher degree of optimism in subjects randomized to a
training program consisting of meditation, breathing exercises,
and cold exposure was associated with profoundly higher plasma
epinephrine levels during the intravenous administration of the
bacterial endotoxin followed by a more rapid and profound
increase in anti-inflammatory IL-10 levels when compared to
those in the non- trained group. A more positive expectation
of the effects of the meditation, breathing, and cold exposure
training on the psychophysiological reaction to the bacterial
endotoxin was associated with lower flu-like clinical symptoms
and lower subsequent pro- inflammatory TNF-α, IL-6, and IL-8
levels than the non- trained group (van Middendorp et al., 2016).
The researchers noted that the DB breathing techniques practiced
by the trained individuals mainly accounted for the increase
in epinephrine and subsequent attenuation of the inflammatory
response (Kox et al., 2014). Inflammatory conditions that
produce or are induced by pain may also improve with DB
vagal nerve innervation as descending vagal signals activate
anti-inflammatory pathways that suppress secretion of pro-
inflammatory cytokines during tVNS (e.g., TNFα and IL-1 IL β)
(Borovikova et al., 2000), which could subsequently ameliorate
associated pain (Yuan and Silberstein, 2016; Frangos et al., 2017).

The signaling of systemic inflammation is communicated to
the brain via neural (predominantly vagus nerve) pathways,
humorally via circulating cytokines, and directly via immune
cells (Zaki et al., 2012). Chronic states of inflammation, as
seen in CWP (Gerdle et al., 2017), influence emotion through
a coordinated set of motivational changes conceptualized as
‘sickness behaviors’. These behaviors include fatigue, anhedonia,
social withdrawal and irritability — all symptoms which are
commonly shared with depression (de Heer et al., 2014;
Harrison, 2016)and seen in CP patients (Harris, 2014). Subjective
interoceptive experience which is generated by ND meditation
and DB may help CWP patients generate new predictions and
expectations about information (i.e., pain) coming from inside
the body (Pacheco-López et al., 2006; Critchley and Garfinkel,
2017). Efferent (i.e., top-down) predictions concerning the state
and outcome of the body (i.e., “I will feel calmer and less pain
from this treatment”) is expressed in the autonomic nervous
system, in endocrine, and in immune responses (Critchley
and Garfinkel, 2017) which can beneficially effect a patient’s
peripheral physiology (Seth, 2013; Seth and Friston, 2016).
In turn, emotions and feelings arise through the interaction
of descending bodily predictions (i.e., “I will feel calmer and
less pain from this treatment”) through autonomic drive and
ascending prediction errors (i.e., chronic stress and pain).

Evaluating pain-motivated behaviors can provide a path for
the assessment of new treatment efficacy for CWP with a
high likelihood of translational relevance. Due to the current
notion that CWP may partly be an immune-mediated condition,
this evidence raises the question as to whether motivation
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and expectation should be targeted and implemented within
CWP treatment, especially in regards to a ND meditation and
DB intervention.

MOTIVATIONAL NON-DIRECTIVE
RESONANCE BREATHING: FROM
THEORY TO PRACTICE

In order to test whether MNRB is an effective
psychophysiological intervention for endogenously treating
pain intensity and disability in those who suffer from CWP, a
randomized controlled clinical trial (Clinical Trials Identifier:
NCT03180554) lead by the lead author (C.E.P.) and co-
author (H.B.J.) in the Spring of 2019 will compare and
investigate the treatment efficacy of MNRB and tVNS on patients
diagnosed with CWP.

Consenting CWP patients (N = 112) who are referred
to the Department of Pain Management and Research at
Oslo University Hospital, Ullevål, in Oslo, Norway, will be
randomized into one of four independent groups. Half of
these participants (N = 56) will be randomized to either an
experimental tVNS group or a sham tVNS group. The other
half (N = 56) will be randomized to either an experimental
MNRB group or a sham MNRB group. Both experimental and
sham treatment interventions will be delivered twice per day at
home, 15 min/morning and 15 min/evening, for a total duration
of 2 weeks. Participants are invited to the clinic twice for pre-
and post-intervention data collection. The primary outcomes
are changes in photoplethysmography measured HRV and self-
reported average pain intensity measured by the numeric rating
scale. Secondary outcomes include changes in pain detection
threshold, pain tolerance threshold, and pain pressure limit
determined by computerized pressure cuff algometry as well as
blood pressure and health related quality of life.

Participants randomized to the experimental or sham MNRB
treatment will utilize an innovative smartphone-based program
called MNRB and a CE-approved respiratory gating device called
BarTekTM designed by the lead author (C.E.P.) and engineered
by Dr. Marcin Czub at the University of Wrocław in Wrocław,
Poland. The MNRB program and BarTekTM device work in-
sync in order to deliver and guide CWP patients in both
the sham and experimental versions of MNRB. The BarTekTM

respiratory gating device is attached to an elastic strap which
is placed around the patient’s abdomen, below the rib cage and
an inch above the navel (behind which the thoracic diaphragm
is located) (Bains and Lappin, 2018). Throughout the MNRB
session, a strain gauge circuit accurately measures the tension
produced during RF breathing. Respiration frequency and depth
are calculated with a high resolution analog digital converter
within the BarTekTM device and transmitted to the MNRB
smartphone program via Bluetooth.

MNRB is to be practiced at home, twice a day for 2 weeks, in a
relaxed semi-Fowler position (30 degree tilt from the horizontal)
with feet flat on the floor, hands on thighs, and palms facing
upward. Ideally, MNRB should be practiced with a head tilt no
more than 30 degrees from the horizontal (Mukai and Hayano,

1995) due to the fact during high-level tilt (30–90 degrees), the
R-R interval and hfHRV progressively decrease with tilt angle
(P < 0.001 for both) (Berna et al., 2014; Quintana et al., 2016).
This relaxed sitting position is also conducive for patients who
will be taking a 1-min HRV recording (Laborde et al., 2017)
immediately before and after each MNRB session.

When in position, CWP patients strap the BarTekTM

respiratory gating device around their abdomen, open the MNRB
program on the smartphone, and are guided (Kniffin et al., 2014)
from an average respiration rate of 12 breadths/min to a RF of 6
breadths/min. The average respiratory rate for a healthy adult at
rest is typically defined as 12–20 breadths/min (Cleveland Clinic,
2018b) whereas patients diagnosed with FMS have shown to have
a respiration rate of around 13.68 breadths/min (Zautra et al.,
2010). Participants are instructed to use the diaphragm to breathe
in slowly through the nose to full inspiratory capacity and exhale
to full expiratory capacity through pursed lips by tightening
and pulling the stomach back toward the spine. Participants
are instructed to retain a 1:2 inhale: exhale ratio in order to
efficiently increase hfHRV across the entire respiratory cycle
(Strauss-Blasche et al., 2000) and retain their breadth after full
inhalation and full exhalation. Inclusion of a post-exhalation
rest period significantly decreases HR (p < 0.001) and increases
hfHRV (p < 0.05) (Russell et al., 2017). Participants are further
instructed not to move or to speak and to allow the chest to
remain immobile throughout the entirety of the session (Mosby,
2009; Cleveland Clinic, 2018a).

The MNRB session begins with a transition period during
which patients are taken from an average respiration frequency
of 12 breadths/min to a RF of 6 breadths/min. During this
transition period, patients are to attend to a respiration guide
while listening to a 110 Hz frequency which has been shown
to increase hfHRV (Hori et al., 2005). While breathing with the
respiration guide, participants are also provided with a series of
written sentences that appear and disappear on the smartphone
screen. These sentences are of an affective and motivational tone
which encourage patients to reason about emotional issues that
may surround and define their pain.

Emotional information derived from their MNRB practice
can help CWP patients to become motivated to solve problems
and achieve goals on a daily basis. In turn, this may be
helpful for increasing emotional intelligence (Mayer J.D. et al.,
2008). Emotional intelligence is highly predictive of important
aspects of social/interpersonal functioning and professional
success (Brackett et al., 2006; Moslehi et al., 2015). This can
potentially benefit CWP patients in particular who suffer from
high rates of long-term sick leave (Mose et al., 2016) and lack
interpersonal skills (Hayaki et al., 2016). The adaptive use of
emotional intelligence to become motivated and achieve goals
in regards to increasing ones sense of emotional resilience and
interoception requires the integration of many capacities that
include: self-awareness, subjective perceptions, reasoning, and
skilled behavioral responses (Killgore et al., 2017).

When CWP patients arrive at their target RF of 6 breadths/min
following the transition period, the MNRB screen begins
to darken and the respiratory guide disappears while the
inhale/exhale sound guide along with the 110 Hz background
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frequency remains. At this moment, patients are invited to
close their eyes and engage in a ND state of mind. Cardiac
parasympathetic nervous activity indicated by hfHRV has been
found to increase more while listening to a 110 Hz sine wave
when the eyes are closed as compared to when they are open
(Hori et al., 2005). As described previously, patients are to engage
in a flexible and nonjudgmental cognitive state between the
sensation of breathing and any spontaneous stimuli which may
arise moment by moment; attention is permitted to shift toward
and away from spontaneously occurring thoughts, feelings, and
sensations related or unrelated to their pain, and back to the
repetition of the inspiration/expiration sound. This is unlike
standardized mindfulness practices where sustained attention is
required to maintain focus on the breath while cognitive control
is required to detect mind wandering (Moore et al., 2012).

If the patient continues to correctly breathe at the RF of 6
breadths/min the respiration inhale/exhale sound guides silence
and the patient is only left with listening to the 110 Hz auditory
background tone. Continuing to breathe at RF will also cause
this background tone to dissipate after a few breaths leaving the
patient in complete silence. This teaches and entrusts the patient
to embody the treatment on their own terms which in turn may
lead to a sense of mastery over a 2 week period. Considering
the high costs for running contemplative research trials, the
type of meditation practice under investigation, and the multiple
outcomes being explored, it is important to reevaluate the typical
4–8 week intervention duration of typical mindfulness-based
meditation practices for treating specific psychophysiological
parameters in CWP patients.

Most researchers hold the assumption that meditation practice
has its effects in a cumulative way through long-term practice.
However, current research (Zeng et al., 2017) shows that short-
term influences of meditation practice have a more promising
effect upon clinical outcomes and that continual meditation
practice may not be necessary for maintaining effects (Cohn
and Fredrickson, 2010). Therefore, this study will employ a 2-
week meditation intervention where both short-term (i.e., daily)
and long-term changes (i.e., changes in pre- to post-intervention
measures) of self-reported pain and HRV effect patterns will be
analyzed in accordance with the three R procedure: resting (i.e.,
pre-intervention), reactivity (i.e., tVNS/MNRB treatment), and
recovery (i.e., post-intervention) (Stein and Pu, 2012). Following
this procedure will aide in determining the differential treatment
effects of experimental versus sham MNRB.

Trials have attempted but failed to design sham breathing
procedures for control groups simply due to the fact that the
influence of the diaphragm muscle cannot be ruled out (Kapitza
et al., 2010; Eherer et al., 2012). However, the BarTekTM device
will allow us to see whether or not a participant randomized to
the sham MNRB group has been utilizing their diaphragm during
each treatment session. Participants in the sham MNRB group
will practice MNRB with the same posture and time protocol
as the experimental group (Chan et al., 2007; Russell et al.,
2014). However, participants are instead instructed to breathe
at the normal respiration rate for an adult (12 breadths/min)
(Barrett and Ganong, 2013) by attentively following the visual
respiratory pacer (Elstad, 2012) on the MNRB program while

counting their breadth (Juel et al., 2017). There is no background
frequency of 110 Hz playing during the sham MNRB session
and only one sentence that remains on the screen for the
entirety of the session which instructs participant to relax
while breathing with the visual respiratory pacer indicated by
the moving orb. Sham MNRB does not promote endogenous
mastery of the treatment and remains on the screen for each
treatment session.

CONCLUSION

Contemplative research is challenged to evaluate, measure, and
explain the effects of meditation and other contemplative
practices on health and well-being when compared to
mainstream treatment regimens. Even though these practices are
of great interest to the scientific and medical communities
within the field of CWP research and management,
objective measures to best assess their beneficial outcomes
are lacking (Desbordes et al., 2014). Current findings on
the effects of meditation practice are few and inconsistent
for various chronic pain conditions — studies suffer from
inconsistencies within intervention deliverability and type
while other’s show relatively few associations between
outcome variables and the amount of meditation practice
(Zeng et al., 2017). Previous theories which include the
neurovisceral integration model, the polyvagal theory,
the biological behavioral model, the RF model, and the
psychophysiological coherence model provide important
insights in regards to how vagal tone is important to consider
when optimizing psychophysiological health. However,
these theories lack a formalized and integrated means of
methodologically applying the theory to practice within the field
of CWP treatment.

Clinical and self-report pain intensity is often used as the
sole primary outcome for determining intervention efficacy in
clinical trials employing mainstream and alternative treatment
interventions for those suffering from CWP (Williams et al.,
2012). Yet it has been argued that pain intensity may not the best
indicator of effective CWP treatment (Ballantyne and Sullivan,
2015). Based upon this conjecture and research showing a strong
association between high pain intensity and low HRV readings
in CWP patients (Barakat et al., 2012) we have chosen HRV
as our primary outcome of interest along with self- report pain
intensity. This will provide us with a more robust evaluation of
our medical hypothesis and reveal the autonomic, respiratory,
circulatory, endocrine and mechanical influences of MNRB on
pain over both a short and long-term time frame.

The current lack of mainstream and alternative treatment
efficacy, safety, and reliability calls for the development of
new treatment modalities, such as MNRB, that meet the
biopsychosocial needs of those suffering from CWP. Motivational
ND resonance breathing (MNRB) could be an innovative,
effective, and noninvasive means of CWP treatment. To our
knowledge, we are the first to propose such an intervention that
could potentially target CWP etiological factors we believe to be
imperative for successful treatment.
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