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ABSTRACT: We derive and introduce anisotropic effective
pair potentials to coarse-grain solutions of semiflexible ring
polymers of various lengths. The system has been recently
investigated by means of full monomer-resolved computer
simulations, revealing a host of unusual features and structure
formation, which, however, cannot be captured by a
rotationally averaged effective pair potential between the
rings’ centers of mass [Bernabei, M.; et al. Soft Matter 2013, 9,
1287]. Our new coarse-graining strategy is to picture each ring as a soft, penetrable disk. We demonstrate that for the short- and
intermediate-length rings the new model is quite capable of capturing the physics in a quantitative fashion, whereas for the largest
rings, which resemble flexible ones, it fails at high densities. Our work opens the way for the physical justification of general,
anisotropic penetrable interaction potentials.

1. INTRODUCTION

By the simple process of joining the ends of a linear polymer
chain, one obtains a ring polymer (RP).1 While the architecture
of ring polymers is very simple, they differ in many interesting
ways from their linear counterparts and are the subject of active
research in physics, biology, chemistry, and even pure
mathematics. One interesting consequence is that for a
dynamics that disallows strand crossing, there are different
classes of configurations of a RP, which can never transform
into each other. These are referred to as the topology classes or
knot types of a RP. Knot theory is a fascinating and active
branch of mathematics with many open problems concerning
the enumeration and classification of knots.2 A RP that has the
topology of a circle is called an unknotted RP.
Unlike RPs, linear polymer chains can strictly speaking never

be knotted, as every configuration of a linear polymer chain can
be continuously transformed to a straight line, without the need
for strand crossings. While this is a fundamental difference
between linear polymer chains and RPs, it is nevertheless
possible to extend the concept of knots to physical knots on
linear polymer chains.3 There are many works dealing with the
properties of these physical knots on linear polymer chains,4−11

in particular due to their relevance in biophysics, where they are
for instance found in DNA12,13 and can have significant effects
on key processes.14−16

The topological constraint of a ring polymer has important
consequences for its physical behavior. It took the work of
many authors17−24 to establish that the diameter of gyration Dg
of an isolated ideal RP with fixed topology scales as ⟨Dg

2⟩ ∼
N2ν, where ν ≈ 0.588 is the Flory exponent, which also
describes the scaling behavior of the radius of gyration of self-

avoiding linear chains.25 This is true for all knot types, even for
an ideal unknotted RP (i.e., without monomer excluded volume
interactions, just keeping the topological constraints). An ideal
linear polymer chain, on the other hand, remains more compact
and exhibits the scaling law of a nonself-avoiding random walk
⟨Dg

2⟩ ∼ N. Another important difference lies in the effective
potential between the centers of mass of RPs. While the
effective potential vanishes between infinitely thin linear
polymer chains and also between an infinitely thin linear
polymer chain and a RP, there remains a nonzero repulsive
contribution between cyclic polymers with fixed topology.26,27

Here one usually speaks of a topological potential.
Furthermore, it was shown that the effective potential between
two moderately sized RPs increases with the knot complexity of
the rings.27

Also for concentrated systems, the topology of polymer
chains plays an important role. The scaling of linear polymer
chains in the melt is the one of a nonself-avoiding random walk
⟨Dg

2⟩ ∼ N. Simulations of dense systems of RPs,28,29 on the
other hand, showed that while short chains also exhibit a
Gaussian scaling behavior ⟨Dg

2⟩ ∼ N, long chains are compact
and thus scale as ⟨Dg

2⟩ ∼ N2/3. In between there is a broad
crossover region, where a ⟨Dg

2⟩ ∼ N4/5 scaling provides a good
description of the data. For the dynamics, it is expected that
concatenations of ring polymers can have a significant effect, as
they are permanent, in contrast to the entanglement of linear
polymer chains. However, this implies that those concate-
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nations are there in the first place, i.e., from the very synthesis
of the sample on. Even in the absence of concatenations, there
are important differences in the dynamics of RPs in the melt
with respect to their linear counterparts. For instance, recent
experiments30 and simulations31 revealed a power-law stress
relaxation instead of the rubbery plateau found for linear chains.
For the large intermediate density domain between dilute

solutions and melts, there are relatively few theoretical results
despite the practical relevance of this regime for instance in the
field of biophysics, where the topological interactions between
chromatin loops plays a crucial role in the creation of
chromosome territories.26,32−34 A fruitful and modern approach
for the economic description and simulation of macromolecules
in this regime is the method of coarse-graining. The idea
behind this method is to bridge the time and length scales in
the system by describing the macromolecules via an effective
model with a reduced set of suitably chosen effective degrees of
freedom (dof). The microscopic information on the monomer-
resolved model is underlying the effective model, as it
determines the form of the effective potential, which describes
the interaction between the macromolecules. The advantage of
this method is not only that every time step in a simulation
requires less computational effort due to the simplified
representation but also that one can often choose a much
larger time step in a simulation of the coarse grained model, as
the dof that remain in the coarse-grained model change much
slower in time than their counterparts in the monomer-resolved
model.35,36

The method of coarse-graining is well-established and has for
instance found successful application for polymer chains,37−39

star polymers,40−43 star-shaped polyelectrolytes,44,45 den-
drimers,46−48 and block copolymers.49−51 The identification
of the relevant degrees of freedom is an essential part in the
design of an effective model. One often uses isotropic effective
models, where the macromolecules consisting of many
individual monomers are reduced to their center of mass. For
the semiflexible ring polymers such a model has already been
investigated in ref 52. Clustering was observed in monomer-
resolved simulations of semiflexible ring polymers as well as in
the corresponding isotropic effective model. However, it was
also shown that the monomer-resolved system shows
anisotropic features that cannot be accounted for in the
isotropic effective model. Also, the correlation functions
stemming from the isotropic effective model are markedly
different from the microscopically derived ones. Anisotropy is
particularly strong for rings with high bending stiffness or few
monomers, as they have a strong tendency to orient with
respect to other rings in their proximity. This motivates us to
introduce an anisotropic effective model for the description of
semiflexible ring polymers in this article. In this model, we will
define the effective particles as soft disk-like molecules which
are described not only by their center of mass but also by the
direction in which their faces are oriented. An anisotropic
effective model was already used successfully for the description
of hard disk-like macromolecules,53 but to the best of our
knowledge this approach was up to now never applied to
penetrable macromolecules, where the centers of mass of the
macroparticles can coincide. Penetrable particles are particularly
interesting as they allow for clustering, which often leads to a
rich phase behavior. For instance, point-particles interacting
with a certain class of ultrasoft potentials form so-called cluster
crystals.54−56 Unlike in an ordinary crystal multiple soft
particles can sit on top of each other at the same lattice site

in a cluster crystal. Another peculiar feature of this state of
matter is that by compressing it one only changes the
occupation number of particles per lattice site, while the lattice
constant remains invariant. Monomer-resolved simulations of
semiflexible ring polymers, on the other hand, show the
formation of the cluster glass phase,57,58 which is an arrested
state that also contains some of the features found in the cluster
crystal phase. In both cases the overall structure of the system is
frozen, while individual particles can hop between the lattice
sites of the cluster crystal or the stacks found in the cluster
glass. Elongated dendrimers, which unlike hard rod-like
particles exhibit local antinematic order,59 are another
interesting example for a system of penetrable particles,
which behaves distinctively different to its solid counterpart.
By creating an anisotropic effective model for the semiflexible
ring polymers, we aim at a model that is still computationally
cheap and that improves the description obtained by the
isotropic model, especially for the case of high densities. In
addition, the analysis of the interactions in the anisotropic
effective potential allows us to get a better understanding for
the interaction between the anisotropic, penetrable nano-
particles in systems of semiflexible RPs.
The remainder of this article is structured as follows. In

section 2 we first present the Hamiltonian of the monomer-
resolved model which we use for the description of semiflexible
RPs and then introduce an anisotropic effective model for such
a system. In section A of the Appendix we give more details
about the derivation of the effective interactions for such a
model. We carried out molecular dynamics simulations of the
monomer-resolved model and Monte Carlo simulations of the
effective models; details concerning these simulations are given
in section 3. In section 4 we present the anisotropic effective
potential and discuss its features. Results of Monte Carlo
simulations with this potential, which show that the inclusion of
anisotropy in the effective model can significantly improve the
agreement with the monomer-resolved model, are presented in
section 5, whereas in section 6 we briefly discuss the effects of
truncation of the expansion of the potential on the quality of
the results. Conclusions are given in section 7. In the Appendix,
we explain the expansion of the anisotropic pair-correlation
function of a system of two RPs, which contains all the
information for calculating the effective potential, as a sum of
suitably chosen basis functions.

2. ANISOTROPIC EFFECTIVE MODEL

2.1. Monomer-Resolved Model for Semiflexible Ring
Polymers. The derivation of the anisotropic effective model is
based on a microscopic model of semiflexible ring polymers,
each consisting of N monomers. They are described with the
bead−spring model by Kremer and Grest60 and an additional
rigidity term. Thus, any two monomers interact via the
truncated and shifted Lennard-Jones potential
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This potential is purely repulsive, accounting then for monomer
excluded volume interactions. Bonded monomers also interact
through a finitely extensible nonlinear elastic potential (FENE)
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Rigidity is introduced via the bending potential

θ κ θ= −V ( ) (1 cos )bend
2

(3)

where θ is the angle between two consecutive bond vectors.
[Note that this is not the Kratky−Porod model (linear in the
cosine). We expect the same qualitative results for Kratky−
Porod rings with the same N’s and persistence lengths as the
model simulated here.] The potential Vbend vanishes for θ = 0,
when the polymer chain does not bend at the respective angle.
We choose ϵ = kBT, k = 30kBT/σ

2, R0 = 1.5σ, and κ = 30kBT,
where kB is the Boltzmann constant and T the temperature.
These are precisely the parameters employed in the simulation
study of ref 52. The corresponding dynamics does not allow for
chain crossings and thus topology is preserved.
In ref 58 the characteristic ratio61 of this polymer model was

estimated by carrying out simulations of isolated linear chains.
Excluded volume interactions were switched off except for
mutually connected monomers in order to obtain long-range
Gaussian statistics. C∞ was obtained by analyzing the long-s
limit of the ratio ⟨R2(s)⟩/s⟨b2⟩, where R(s) is the distance
between two monomers i, j with s = |i − j|, and b is the bond
length (⟨b2⟩ = 0.94). The authors reported a value of C∞ ∼ 15,
which is typical for stiff polymers.61 We can give an estimate for
the persistence length of the model by mapping it to the freely
rotating chain model using the relation cos θ = (C∞ − 1)/(C∞
+ 1), where θ is the bending angle of the freely rotating chain
model.61 The persistence length is then obtained as spb = −b/
ln(cos θ) ∼ 7.3. We carried out simulations of ring polymers
with N = 20, 50, and 100 monomers, which have the contour to
persistence length ratio N/sp ∼ 2.7, 6.7, and 13.3, respectively.
2.2. Anisotropic Effective Model. In earlier work,52

Bernabei et al. carried out extensive monomer-resolved
simulations of stiff ring polymers to obtain the structure of
concentrated solutions of the same. In an attempt to coarse-
grain the system in the simplest possible way, they also derived
and employed an isotropic effective potential for their effective
description, reducing thereby stiff RP’s into point-like effective
particles, namely their centers of mass. At this level of
approximation, the effective particles possess no other internal
(spin-like) degrees of freedom, and thus the effective
interaction is isotropic. The effective potential between these
macroparticles was defined by calculating the pair correlation
function giso(r) in an infinitely dilute system and using

β ≡ −V r g r( ) ln[ ( )]eff
iso iso

(4)

to define the effective interaction potential between these point
particles, where β = 1/(kBT). In the infinitely dilute case, the
distribution of the centers of mass of the ring polymers in
equilibrium is identical to the distribution of the point particles
in the effective model. At higher densities, however, it turns out
that multiparticle terms in the effective potential are necessary
to obtain the correct equilibrium distribution of the centers of
mass in the effective model. One of the reasons due to which
multiparticle interactions become important is that two ring
polymers that are sufficiently close and stiff will prefer to align
parallel to each other. A third ring polymer interacting with
those two will not see them as two independent rings but as a
system of two rings that are correlated. When using the
potential Veff(r) calculated in eq 4, one assumes that the free

energy penalty of one ring with respect to a second is
independent of the presence of another polymer in the vicinity
of the second. If the ring polymers preferentially align parallel,
this assumption is clearly violated and one has to correct the
effective potential by introducing multiparticle terms. Bernabei
et al. showed that already at moderate densities one can
encounter strong correlations of the orientations of the
semiflexible ring polymers, in particular if the chains contain
only few monomers (e.g., N = 20).52 Therefore, a more
accurate coarse-graining which takes into account the ring
anisotropy is called for.
The easiest way to incorporate the correlations of the

orientations of rings is to introduce them via additional degrees
of freedom (dof) in the effective description. This is precisely
what we do in this article. For this purpose, we need to first
come up with a suitable definition for the orientation of a RP.
To this end, we make use of the gyration tensor

∑=αβ α β
=

S
N

r r
1

i

N
i i

1

( ) ( )

(5)

where rα
(i) (α = x, y, z, Cartesian components) denotes the

position of the ith monomer with respect to the center of mass
of the ring to which this monomer belongs. The eigenvectors of
Sαβ are the principal axes of an ellipsoid that approximates the
shape of the macromolecule: If a RP is flat, which means that all
its monomers lie in one plane, the ellipsoid has one zero
eigenvalue with a corresponding eigenvector that is perpendic-
ular to that plane. Also in the more general case, where the
monomers do not all lie in the same plane, we define the
normalized eigenvector corresponding to the smallest eigen-
value of Sαβ as the direction vector d of the RP. Note that d and
−d are equivalent for reasons of symmetry. The ring polymers
in the anisotropic effective model we propose are described via
the position vectors of their centers of mass, R(i), and their
direction vector, d(i). Henceforth, we describe the stiff rings as
soft circular disks and ignore differences in the other two
eigenvectors of the gyration tensor Sαβ. This choice is motivated
by the limit of infinite bending stiffness, where the rings assume
flat and precisely circular conformations. Our model therefore
amounts to the minimal anisotropic extension of the spherically
symmetric effective interaction between the centers of mass.
We emphasize, however, that there is no a priori guarantee that
this will be an improvement over the isotropic model at finite
densities and in particular at high concentrations: this depends
on the degree in which the RP’s at high concentration maintain
their anisotropic shape and properties encoded in the high-
dilution limit in which the anisotropic pair potential is derived.
Accordingly, the introduction of such a potential is not a
straightforward part of a systematic strategy of introducing
more and more detail into the effective description of the
system.
In order to determine the anisotropic effective potential Veff,

we carried out monomer-resolved simulations of two ring
polymers inside a large simulation box. The effective pair
potential is then defined such that it exactly reproduces the
correlation functions of the effective degrees of freedom in this
infinitely dilute, monomer-resolved simulation. In the effective
model, two ring polymers are described by a total of 10 degrees
of freedomthree for each center of mass and two for each
direction vector of each ring polymer. However, due to
translation, rotation, and mirror symmetry, the distinct
configurations (those that cannot be related by symmetry
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transformations) of a system with two effective particles are
reduced and can be specified by four parameters only.
A convenient choice for these variables is illustrated in Figure

1 and reads as follows:
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where r ≡ R(2) − R(1) is the connection vector between the
centers of mass of the two rings, r ̂ ≡ r/r the unit vector in the
direction of r, and d⊥

(i) the component of the director d(i)

perpendicular to r; 0 ≤ φ ≤ π denotes the angle between
vectors d⊥

(1) and d⊥
(2). By selecting the appropriate sign of d(i),

we can always choose cos θi to lie in the interval [0, 1].
Let us define the ideal case as the system where the effective

particles do not interact, and thus every orientation and
position of the effective particles occur with equal probability,
independently of the configuration of the other effective
particle. With the effective coordinates defined in eq 6 the
probability density in the ideal system, Pid(r, cos θ1, cos θ2, φ) is
proportional to r2 and constant in both cos θi and φ. This
simple behavior of Pid(r, cos θ1, cos θ2, φ), makes eq 6 a
particularly convenient choice of the effective coordinates. In
the simulations with two ring polymers, we obtain a probability
density P(r, cos θ1, cos θ2, φ) that is different from the ideal
distribution Pid. We define as a generalized version of the radial
distribution function the anisotropic pair correlation function as

θ θ φ
θ θ φ
θ θ φ

=g r
P r
P r

( , cos , cos , )
( , cos , cos , )
( , cos , cos , )1 2

1 2

id 1 2 (7)

Thus, the quantity g(r, cos θ1, cos θ2, φ) describes the factor by
which configurations in the effective anisotropic model have to
be enhanced or suppressed with respect to the ideal case, in
order to obtain a distribution for the effective dof that is
identical to the distribution obtained in a monomer-resolved
simulation in the infinitely dilute case. As in the isotropic case
(4) the relation to the associated effective potential reads

β θ θ φ θ θ φ= −V r g r( , cos , cos , ) ln[ ( , cos , cos , )]eff 1 2 1 2
(8)

From the anisotropic effective potential, we can deduce the
isotropic pair-correlation function via

∫ ∫ ∫π
θ θ φ θ θ φ=

π
g r g r( )

1
d cos d cos d ( , cos , cos , )iso

0

1

1
0

1

2
0

1 2

(9)

The associated isotropic effective potential is then given by (4).
The effective potential between two identical ring polymers

remains invariant if we swap the orientations of their respective
director with respect to the connection vector, i.e., if we swap
the values of the polar angles θ1 and θ2 of the two rings:

θ θ φ θ θ φ=V r V r( , cos , cos , ) ( , cos , cos , )eff 1 2 eff 2 1 (10)

This symmetry is violated for the effective potential between
bidisperse ring polymers, e.g., for ring polymers with a different
number of monomers. However, apart from this symmetry,
there would be no differences in the procedure of calculating
the effective potential between different types of ring polymers.

3. SIMULATION DETAILS
3.1. Derivation of the Effective Interaction. To

determine the effective potential, we carry out constant NVT
molecular dynamics simulations with two ring polymers. We
simulate rings of N = 20, 50, and 100 monomers. For these
simulations we use the LAMMPS simulation package.62 The
polymer rings are placed in a simulation box, which is large
enough to prevent multiple interactions via the periodic
boundary conditions. The temperature in the simulation is
maintained by the use of Langevin dynamics. The correspond-
ing equations of motion read as63

ηγ̈ = − ̇ +m t t m t tr F r( ) ( ) ( ) ( )i i i i (11)

Here, ri is the position of the ith monomer, m its mass, and
Fi(t) is the deterministic force acting on it, which includes the
microscopic forces originating from potentials (1)−(3) and the
force originating from a biasing potential. The bias potential
Vbias = (r − rj)

2kj/2 introduces a harmonic spring with spring
constant kj between the centers of mass of the ring polymers.
The spring is relaxed for r = rj. We carried out simulations for
different values of rj, starting at rj = 0 and increasing it up to
some maximum value rc in steps of σ/2. For N = 20, 50, and
100, rc was chosen as 10σ, 20σ, and 30σ, respectively. These
values for rc are much bigger than the infinite-dilution diameters
of gyration (Dg0 = 5.9σ, 13σ, and 21.5σ for N = 20, 50, and 100,
respectively). For kj we chose the values 2.5ϵ/σ

2 and ϵ/σ2 for all
ring sizes, and for N = 20 we also carried out simulations with kj
= 5ϵ/σ2. The quantity ηi(t) is a random force, with ⟨ηi(t)⟩ = 0,
which is related to the friction coefficient γ by the fluctuation
dissipation relation ⟨ηi

α(t)ηj
β(t′)⟩ = 2γmkBTδijδαβδ(t − t′), α and

β denoting Cartesian components. Our unit of time is set by t0
= (mσ2/ϵ)1/2, and the friction coefficient γ is chosen as 1/t0. We
integrate the equations of motion with a time step of Δt =
10−3t0 and use 2 × 108 timesteps for equilibrating the system
and collect data during another 2 × 109 timesteps.
We sample histograms P(j)(Q), where Q refers to a bin in the

4D space of the effective coordinates. P(j)(Q) gives the
probability for a state in the jth simulation to have effective
coordinates in bin Q. The histograms have 128 bins in r and 16
bins in cos θ1, cos θ2, and φ direction. As discussed in section A
of the Appendix, we use the self-consistent histogram method

Figure 1. Illustration of the effective variables r = |r|, θi, and φ with
which relative configurations of ring polymers are described.
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by Ferrenberg and Swendsen64,65 to combine the P(j)(Q)
histograms for simulations with identical ring sizes but different
biasing potentials to arrive at an estimate for P(Q) in the
unbiased system.
3.2. Many-Body Effective Fluid. Using the anisotropic

effective potential, we carry out standard metropolis Monte
Carlo (MC) simulations for the anisotropic effective model.
The values of the anisotropic effective potential have been
calculated on a discrete grid in the (r, cos θ1, cos θ2, φ) space,
and we use linear interpolation to estimate the values of
exp(−βVeff) in between the grid points. Having in mind a
comparison with both the monomer-resolved simulation results
and the isotropic effective potential of ref 52, we choose the
same number of particles and effective densities that were used
in those simulations. For rings with N = 20, 50, and 100
monomers we simulate systems of n = 2400, 1600, and 1200
rings, respectively, varying in each case accordingly the cubic
box size L as to achieve the desired density ρ = n/L3. As the
effective potential Veff is bounded, a random distribution of the
particles in the simulation box can be used as initial condition.
We have implemented two types of MC moves: the first one
translates a randomly chosen particle in a random direction,
and the second randomly rotates the particle’s director by some
angle. The distance by which the particles are displaced and the
angle by which they are rotated is randomly selected in an
interval starting at 0 and going up to some maximum value. For
both moves, this maximum value of the interval is chosen such
that the acceptance ratio is approximately 15%. We use 9 × 106

MC moves to equilibrate the system. During this equilibration
period the individual soft particles diffuse to several times their
own diameter. Afterward, during 15 × 106 MC moves
equilibrium configurations are generated. We store the
configurations every 20 × 103 moves and use them to compute
the physical observables that are presented in section 5.
The gain in computational efficiency for the simulations in

going from a monomer-resolved to a coarse-grained simulation
is considerable. The relevant quantity to consider here would
be the velocity through phase space. This can conveniently be
characterized by means of the mean-square displacement of the
rings per unit of CPU time. If one ignores the detailed
implementation aspects, the CPU time spent on a single sweep
over all monomers in the former and a run over all effective
ring particles in the latter, which strictly speaking depend on
both the number of monomers N per ring and the overall
density of rings, are of similar magnitude. However, the
diffusion per sweep in the coarse-grained simulation is
significantly larger than that for the monomer resolved
simulation; i.e., for the case of N = 50 and ρ* = 20 this results
in a factor of approximately 104. The reason for this dramatic
improvement is twofold. First of all, the translation/rotation of
an effective ring corresponds to a much more time-consuming
collective movement of the constituents. The second even
more important contribution arises from the steric interaction
that are present in the monomer resolved simulations and
prevent the unphysical crossing of chain segments. In the
coarse-grained simulations such a restriction is absent; i.e., the
effective rings are penetrable and can move apparently through
each other. On this level of description this effect is not an
unphysical process but should be interpreted as a shortcut
connecting initial and final configurations that are connected by
a much more time-consuming and physically realizable pathway
of folding and collective monomer movements.

4. ANISOTROPIC EFFECTIVE POTENTIAL
We commence by recalculating the isotropic, i.e., angularly
average, effective pair potential Veff

iso(r) between the stiff rings as
a way of comparison with the previously derived results in ref
52. Results are summarized in Figure 2, reproducing indeed the

previously derived ones.52 The potential for r = 0 is finite, as the
rings are allowed to overlap. It also features a local minimum
there, whereas its maximum is located at r ≈ 0.25Dg0 for all ring
types investigated. Here, Dg0 is the average diameter of gyration
of a free ring polymer. The height of the potential barrier at
small distances of r decreases by increasing the number of
monomers N on the ring polymers.
Going over to the anisotropic effective model, we proceed

with computing the aforementioned pair correlation function
g(r, cos θ1, cos θ2, φ) for a system of two ring polymers. As the
latter depends on four effective coordinates and is therefore
difficult to visualize, we first introduce a reduced pair
correlation function G(r, d(1)·d(2)), which expresses the relative
joint probability density of observing the two ring polymers at a
distance r and with the directors mutually oriented at the value
given by their scalar product, d(1)·d(2), over the same quantity
for noninteractive rings. Moreover, we introduce a reduced
version of this function, G(r, d(1)·d(2)), by dividing over its
isotropic counterpart, i.e.

=G r
g r

g r
d d

d d
( , )

( , )
( )

(1) (2)
(1) (2)

iso
(12)

Results are summarized in Figure 3. One can see that the
angular distribution of the directors changes significantly for r ≈
0.25Dg0, which is approximately the position of the maximum
of Veff

iso(r). For r < 0.25Dg0 the angle between the directors is
biased toward π/2, while for 0.25Dg0 < r < Dg0 they prefer to
align parallel with respect to each other. The position of the
maximum of Veff

iso(r) coincides approximately with the distance r
where interpenetrated configurations of the rings become
subdominant and where they are more likely to align parallel to
each other. The transition between these two domains is
particularly steep for N = 20 and becomes smoother for rings
with a larger number of monomers. When the rings

Figure 2. Effective center-of-mass pair potential in the isotropic
effective model for rings with different numbers of monomers N. The
center-of-mass separation r is scaled with Dg0, the average diameter of
gyration of a free ring polymer. The solid line shows the angularly
averaged effective pair potential, while the dashed lines are results of
ref 52.
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interpenetrate each other, the distribution of angles between
the directors is rather wide, while it gets narrow after the
transition where the bias toward parallel alignments of the rings
is very strong in particular for the smallest rings with N = 20. It
is readily visible from Figure 3 that anisotropy is particularly
important for smaller rings. For r > Dg0, the distribution of the
angle between the directors becomes flat, as the rings are then
well separated and hence do not interact. Note that by
definition, eq 12, the quantity G(r, d(1)·d(2)), is a normalized
probability distribution for f ixed r, and in Figure 3 it is therefore
meaningless to compare the plotted function at different r
values.
The relative orientation between the vectors r, d(1), and d(2)

is of course not completely determined by the scalar product
d(1)·d(2); the function G(r, d(1)·d(2)) contains less information
than the full correlation function g(r, cos θ1, cos θ2, φ). In
particular, when the directors are parallel, i.e., d(1)·d(2) = 1, the
angle between the connection vector r and the directors d(1)

and d(2) is still arbitrary. We denote a configuration with d(1)||
d(2)||r as →→ and a configuration with d(1)||d(2)⊥r as ↑↑. From
the reduced pair correlation function G(r, d(1)·d(2)) alone, we

cannot say which of these two configurations is more probable,
as the scalar product d(1)·d(2) is identical to 1 in both cases.
Using the full anisotropic pair correlation function g(r, cos θ1,
cos θ2, φ), we can compare the corresponding effective
potentials:

β θ θ φ

β θ θ φ

= − = =

= − = = =
→→

↑↑

V r g r

V r g r

( ) ln[ ( , cos 1, cos 1, )]

( ) ln[ ( , cos 0, cos 0, 0)]

1 2

1 2

(13)

For the →→ case the value of the φ coordinate is immaterial.
However, due to the finite bin size of the grid on which we have
calculated g(r, cos θ1, cos θ2, φ), the choice of φ makes a small
difference, even for V→→(r). We compute V→→(r) from the
average of g(r, cos θ1 = 1, cos θ2 = 1, φ) in φ.
In Figure 4 we see that V↑↑(r) increases significantly when r

approaches Dg0, while V→→ stays close to 0 until much smaller
distances r. We can understand this results if we imagine the
rings as disks with diameter Dg0. In the ↑↑ configuration, the
rings lie in the same plane and will therefore start to overlap as
soon as r ≤ Dg0. Since the rings are not perfect circles and their

Figure 3. Infinite-dilution limit of the quantity G(r, d(1)·d(2)), which quantifies the distribution of the scalar product between directors for different
values of r. We visualize this distribution for the ring sizes N = 20, N = 50, and N = 100.
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shape fluctuates, they can feel each other also for distances r
which are slightly larger than Dg0. In the→→ configuration two
disks overlap only if the distance between their centers of mass
is smaller than their thickness. These results tell us that the
peak in the reduced pair correlation function g(r, d(1)·d(2)) for r
≈ 0.25Dg0 and d(1)·d(2) ≈ 1 is mostly due to →→ like
configurations. However, as soon as the rings can overlap in →
→ type configurations the effective potential increases very fast
for smaller r, and we come to a regime where other
configurations of the directors are more favorable. As a
comparison, we also consider a configuration with d(1)⊥d(2)||
r, which we denote by ↑→. The corresponding effective
potential is given by

β θ θ φ= − = =↑→V r g r( ) ln[ ( , cos 0, cos 1, )]1 2 (14)

As in the →→ case, the value of the φ coordinate is irrelevant
for calculating V↑→(r), which we compute from the arithmetic
mean of g(r, cos θ1 = 0, cos θ2 = 1, φ) in φ.
For small distances r one ring interpenetrates the other in

microscopic configurations of type ↑→. While V↑→(r) starts to
increase at larger r values than V→→(r), the increase is slower
and converges to a constant for r → 0. This is intuitive to

understand since it requires only a finite amount of bending
energy to deform two rings such that one can fit into the other.
The required bending energy is smaller if the rings are larger.
The ↑→ becomes dominant over the →→ configuration at an r
value below the threshold r ≈ 0.25Dg0. This is also the r value at
which we find the transition in the reduced pair correlation
function g(r, d(1)·d(2)) between a regime where configurations
with parallel directors, as in →→ , are preferred, to a regime
where they are suppressed and other configurations like ↑→
become dominant.
In the Appendix we explain how one can expand the angular

part of g(r, cos θ1, cos θ2, φ) into a series of suitably chosen
basis functions f l1,l2,m(cos θ1, cos θ2, φ). The expression for this

expansion is given in eq 27, and the corresponding coefficients
cl1,l2,m(r) can be determined by calculating particular ensemble

averages as shown in eq 30. We plot these coefficients cl1,l2,m(r)

for l1, l2 ≤ 2 in Figure 5. From the fast change of cl1,l2,m(r) for r ≈
0.25Dg0 one can once more see the transition between two
regimes for r in which the distribution of the directors of the
ring polymers is very different. We can again see that this
transition is smoother for larger rings. The magnitude of

Figure 4. Effective potential for three different fixed configurations of the directors and the connecting vector. As a comparison, we also plot the pair
potential in the isotropic effective model. (a) N = 20; (b) N = 50; (c) N = 100. The effective potentials are shown only for r values for which we have
relatively good statistics. We also show a sketch of the ↑↑, →→, and ↑→ configurations.
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coefficients cl1,l2,m(r)/c0,0,0(r) with (l1, l2) ≠ (0, 0) tells us about
the significance of the corresponding anisotropy in g(r, cos θ1,
cos θ2, φ). Anisotropy is more important for smaller rings and
becomes more pronounced after the transition at r ≈ 0.25Dg0,
where the rings prefer parallel configurations.

5. MONTE CARLO SIMULATIONS OF THE
ANISOTROPIC EFFECTIVE MODEL

We carried out Monte Carlo simulations of systems of effective
particles described by the anisotropic effective model for
different ring sizes N and various densities. We define the
reduced density in our simulation as ρ* ≡ nDg0

3/L3, where n is

the number of rings in the sample. In order to assess the quality
of the anisotropic effective model, we compare our results to
results of full monomer-resolved simulations from ref 52 and
the results of simulations using the isotropic effective model. As
we can see in Figure 6 for all choices of the number of

monomers N the effective models are in good agreement with
the full monomer-resolved simulations at low densities ρ*. This
is an important consistency check for the effective models, in
which the interactions have been chosen such that the
distribution of the effective degrees of freedom agrees with
their distribution in the full monomer-resolved simulations, in
the limit of small densities.

Figure 5. First coefficients in the expansion of g(r, cos θ1, cos θ2, φ)
divided by the coefficient c0,0,0(r). (a) N = 20, (b) N = 50, and (c) N =
100.

Figure 6. Pair correlation function g(r) at low reduced densities ρ* for
a simulation of many ring polymers in the full monomer-resolved
simulation (symbols), the anisotropic effective model (solid line), and
the isotropic effective model (dashed line).
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In Figure 7, we present results for the smallest rings with N =
20 monomers at higher densities. There is a dramatic

improvement of the accuracy as one compares the isotropic
with the anisotropic model. While the former fails for ρ* > 2
the anisotropic effective model works up to ρ* ≅ 5 and even
gives a semiquantitatively correct description of the system at
ρ* = 5.97. At the highest densities, we see the development of a
peak in g(r) at r ≅ 0.3Dg0. This peak in the pair correlation
function is associated with the emergence of stacks of parallel
rings, and its position describes the typical distance of rings in
these stacks.52 Interestingly, the isotropic effective potential has
a maximum for r ≈ 0.25Dg0, which is close to the typical
distance of the rings in the stacks, and one could wonder why
the rings prefer to align at a distance which seems to have a
very high free energy penalty according to the isotropic
effective potential. The answer to this apparent paradox lies in
the strongly peaked nature of the anisotropic effective
interaction, which we could observe in Figures 3, 4, and 5.
While the average configuration of the angular degrees of
freedom at distances r ≈ 0.3Dg0 has a high free energy penalty,
a certain class of configurations, where the directors of the rings
are almost parallel, is much more favorable. Obviously, stacking
can not be observed in the isotropic effective model, where
particles possess no directional degrees of freedom.
As a further characteristic of the short-range coordination of

the rings, we consider the average number ⟨nr⟩ of neighbors
within a distance r from the center of mass of a randomly
chosen ring. This is expressed as

∫πρ⟨ ⟩ =n x x g x4 d ( )r

r

0

2
(15)

For the rings with N = 20 monomers we present results for ⟨nr⟩
in Figure 8. Once more, the good agreement between the full
monomer-resolved and the anisotropic effective model, even at
the highest densities investigated, is confirmed: small differ-
ences appear only for 0.25Dg0 ≤ r ≤ 0.4Dg0. Evidently, ⟨nr⟩
does not contain more information than the g(r) plot in Figure
7, but it nevertheless clarifies the meaning of the disagreement
between the g(r) curves in the monomer-resolved and the
anisotropic effective model. At the highest densities in the full
simulation, the centers of mass move a bit closer to each other

than they do in the anisotropic effective simulation. This
manifests itself as a shift of the peaks in the g(r) curves. The
difference in the height of the peaks is partly a consequence of
the shift, since a peak in g(r) has to be higher at smaller
distances if it amounts to the same amount of average
neighbors as a peak at a larger distance r. The fact that the ⟨nr⟩
curves for the anisotropic effective and the full simulation in
Figure 8 agree for r ≥ 0.4Dg0 shows us that the peaks in the g(r)
curves indeed correspond to the same amount of average
nearby particles that are simply accumulated at slightly different
distances.
We proceed now with the longer rings, N = 50. As can be

seen by the pair correlation curves in Figure 9a, also in this case
the inclusion of anisotropy improves the agreement with the
monomer-resolved simulations significantly for densities ρ*
from 2.3 to 10.2. In Figure 9b we present g(r) for higher ρ*. In
the full monomer-resolved simulations we can see a peak
emerging in the pair correlation function g(r) at r = 0 on
increasing the density. As described in refs 52 and 58, the
monomer-resolved system forms stacks of quasi-parallel oblate
rings that are fully penetrated by bundles of elongated rings. In
this phase, the deformation of the penetrating rings is
particularly strong. The effective description, on the other
hand, breaks down if the internal configurations of the rings in
the monomer-resolved system differ significantly to the internal
configurations in the system with only two ring polymers.
Therefore, the anisotropic effective model should not be
expected to be a quantitative description at the high densities in
which this phase is formed. Agreement with the monomer-
resolved model here is less satisfactory but the improvement
over the isotropic model is still spectacular.
For the rings with N = 100 we find that anisotropy does not

play a key role any more, at least not for the full model at the
investigated densities. This had to be expected, as we could
already see in Figure 3 and 5 that anisotropy is less pronounced
for larger ring sizes. As we saw in Figure 6c, both the isotropic
and the anisotropic model give good results for g(r) up to ρ* ≈
2.5. In Figure 10, we see that for higher densities the inclusion
of anisotropy does not yield results that are in better agreement
with the full monomer-resolved simulations. The results in the
isotropic effective model even seem to be in better agreement
with the full model, which is attributed to multiparticle
interactions that can change the configurations of the large

Figure 7. Pair correlation function g(r), at high densities, for a
simulation of many ring polymers with N = 20 monomers in the full
monomer-resolved simulation (symbols), the anisotropic effective
model (solid line), and the isotropic effective model (dashed line).

Figure 8. ⟨nr⟩ in a simulation of many ring polymers with N = 20
monomers in the full monomer-resolved simulation (symbols), the
anisotropic effective model (solid line), and the isotropic effective
model (dashed line).
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and therefore more deformable rings significantly. The already
small correlation between the directors, which is present in the
dilute case, might therefore be even smaller at high densities. In
the anisotropic effective model, we then overestimate the
angular correlations between the directors and arrive at results
that can be slightly worse than those of the isotropic model.
Interestingly, at ρ* = 20.0, which is the highest density
investigated, the anisotropic model appears to crystallize. At
this density we see the emergence of columns that are closed
over the periodic boundary conditions and organize in a
hexagonal 2D lattice structure.
Finally, let us focus exclusively on orientational correlations.

We define P(d(1)·d(2)) as the probability density distribution for
the scalar products between the directors d(1) and d(2) of two
ring polymers which are a distance r < 0.6Dg0 away from each
other. In Figure 11, we present results for P(d(1)·d(2)) for
simulations in the monomer resolved and in the anisotropic
effective model. If the directors were uncorrelated, P(d(1)·d(2))
would be equal to 1. For low densities ρ* we obtain good
agreement for all ring sizes investigated. Since we only look at
the directional correlation of close by ring polymers, P(d(1)·
d(2)) can show strong anisotropic features even for ρ* → 0. As
expected, the anisotropy in P(d(1)·d(2)) is stronger for smaller
rings. When the density is increased, the distribution always
shifts toward parallel configurations in the effective model. This
happens because less volume per ring is available for higher ρ*

and by aligning parallel the rings occupy less space. Typically
one observes the same trend in the monomer-resolved
simulation; only for the N = 100 rings we find more parallel
rings for ρ* = 2.5 than for ρ* = 17.0. In contrast to the effective
model the rings in the monomer-resolved simulation can
deform, and their interaction with other rings can therefore be
more isotropic at higher densities ρ*. This explains why for the
large rings with N = 100 monomers, which deform more easily
than the smaller rings, the correlation between the directors is
much weaker than in the effective model and can even decrease
with density. For N = 50 one can see that the number of
orthogonal rings in the monomer-resolved model at high
densities is significantly larger than in the effective simulation.
As described in refs 52 and 58 for N = 50 and ρ* ≥ 12.8 one
observes that oblate rings are interpenetrated by elongated
prolate rings. Since the directors of the oblate and the
interpenetrating prolate rings can be orthogonal to each other,
one observes perpendicular directors for N = 50 even at the
highest densities investigated. In the anisotropic effective
model, on the other hand, this interpenetration is disfavored,
and we observe almost no orthogonal close-by rings at ρ* = 20
for N = 50.

6. TRUNCATION OF THE EXPANSION OF THE
ANISOTROPIC POTENTIAL

Instead of working with a fully tabulated effective potential on a
four-dimensional grid, it can be advantageous to use the

Figure 9. Pair correlation function g(r) for a simulation of many ring
polymers with N = 50 monomers in the full monomer-resolved
simulation (symbols), the anisotropic effective model (solid line), and
the isotropic effective model (dashed line). The two plots show
different reduced density ρ* ranges.

Figure 10. Pair correlation function g(r) for a simulation of many ring
polymers with N = 100 monomers in the full monomer-resolved
simulation (symbols), the anisotropic effective model (solid line), and
the isotropic effective model (dashed line). The two plots show
different reduced density ρ* ranges.
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analytical expansion on basis functions presented in the
Appendix. Such expansions are truncated after some term,
and here we shortly discuss the quality of such truncations for
the problem at hand. To test the quality of the expansion of g(r,
cos θ1, cos θ2, φ) we also carried out Monte Carlo simulations,
where we used the effective potential associated with the
expanded correlation function as the pair interaction between
our effective particles. We took the 14 coefficients cl1,l2,m(r) for
which l1, l2 ≤ 4 into account and truncated the rest of the
expansion. While g(r, cos θ1, cos θ2, φ) can never be negative,
the truncated expanded version of g can accidentally become

smaller than zero. Wherever this happens g = 0 and Veff =∞ are
used in the simulation. In Figure 12 the pair correlation

function g(r) obtained in this simulation is shown in
comparison with the g(r) function, which we computed
previously employing the full anisotropic effective potential.
For both N = 20 and N = 50 we obtain reasonable results with
the truncated effective interaction, given by only 14 expansion
coefficients. For the full effective interaction, which we store on
a 4D grid, we save 163 = 4096 entries for each value of r (see

Figure 11. P(d(1)·d(2)) is the probability density to find the scalar
product d(1)·d(2) between the directors of two close by rings (r <
0.6Dg0). Here we show P(d(1)·d(2)) for a simulation of many ring
polymers in the full monomer-resolved simulation (symbols) and the
anisotropic effective model (solid line). (a) N = 20, (b) N = 50, and
(c) N = 100.

Figure 12. Pair correlation function g(r) for a simulation of many ring
polymers in the anisotropic effective model. For the dashed line we
expanded the pair-correlation function g before computing the
associated effective pair potential. For the expansion we took the 14
coefficients for which l1, l2 ≤ 4 into account. The solid line shows
results of a simulation with the unexpanded effective pair interaction.
(a) N = 20 and (b) N = 50.
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section 3.1). At intermediate densities the results obtained with
the expanded effective interaction are a significant improvement
with respect to the isotropic effective model. However, one has
to be aware that for N = 20 the coefficients of higher order
modes can still be quite high, especially for r between 0.2Dg0

and 0.7Dg0. In Figure 5 we see that the coefficient for the mode
with (l1, l2, m) = (0, 2, 0) can be larger than the coefficient of
the isotropic expansion mode. The reason for the high
contribution of higher order modes for N = 20 is of course
the strongly peaked nature of g(r, cos θ1, cos θ2, φ) for these
small rings, which we can also observe in Figure 3. The
convergence of g(r, cos θ1, cos θ2, φ) is poor for the N = 20
rings due to the strong anisotropy of their effective interaction.
However, our results show that the expansion modes up to l1, l2
≤ 4 already capture the main features of the effective
interaction. For N = 50 the degree of anisotropy is weaker,
and therefore the convergence of the expansion of g(r, cos θ1,
cos θ2, φ) is better.

7. CONCLUSIONS

We have introduced a minimal anisotropic model to coarse-
grain ring polymers with a finite bending rigidity as soft,
penetrable disks. For the shortest (N = 20) and the
intermediate (N = 50) sized rings, this model represents a
dramatic improvement over the isotropic coarse-graining, in
which the relative orientations between the rings are all
integrated upon and a radially symmetric interaction results
instead. The approach is capable of distinguishing between the
relative orientations at infinite dilution, and it carries this
distinction also to highly concentrated systems, where it
reproduces well the salient features of the structure as seen in
the full monomer-resolved simulations. Whereas this is valid
more for N = 20 and N = 50, which have a contour length to
persistence length ratio of N/sp ∼ 2.7 and 6.7, respectively,
some important features, such as the penetration of elongated
rings in columns formed by oblate rings (found for N = 50), are
suppressed or even lost in the effective description, as genuine
many-body effects come into play. For the largest rings, N =
100, for which we obtain N/sp ∼ 13.3, the contour length is
much larger than the persistence length, and they thus resemble
more flexible objects. In this case the anisotropic potential at
high concentrations fails to describe the structural correlations.
This indeed reflects the fact that such rings undergo, at high
concentrations, conformational changes (shrinking, interpene-
tration) that are quite distinct from the assumptions that go
into the anisotropic, soft disk model, rendering it thereby very
inaccurate. We therefore expect that our anisotropic model
yields quantitative results over a broad density range, for
systems of polymer rings with a contour to persistence length
ratio of N/sp ≲ 10.
Our work provides, thus, an accurate and efficient general

scheme for the coarse-graining of semiflexible ring polymers, as
it allows for a very dramatic reduction of their degrees of
freedom, while at the same time introducing a realistic class of
systems for which anisotropic generalizations of the ultrasoft,
penetrable effective interactions are physically meaningful.
Future work will focus on the investigations of the structural
and phase behavior of mixtures of stiff rings and of the
dynamics of the structure formation in the same.

■ APPENDIX

A. Calculation of the Anisotropic Effective Potential
As discussed in section 2, we wish to sample P(r, cos θ1, cos θ2,
φ) for a system of two ring polymers, in order to obtain a
numerical expression for the anisotropic effective potential
between them. We know that for large values of r, when the
polymers cannot interact with each other, P will correspond to
the ideal case, Pid. Therefore, the interesting configurations for
us are those values of r that result in overlaps between the
ellipsoids of gyration. We use a biasing potential between the
centers of mass of the two rings to restrict r to certain umbrella
windows:

= −V r
k

r r( )
2

( )j j
jbias

( ) 2
(16)

With rj and kj we can tune respectively the location and width
of the window for r in which configurations are sampled. We
carry out simulations for a range of different rj and kj values and
calculate histograms Pbias

(j) (Q) in the effective coordinates. Here,
Q stands for (r, cos θ1, cos θ2, φ) as a collective variable and
thus denotes a bin in the effective coordinates, whereas j is the
index of the respective biased simulation and thus determines kj
and rj. The binning in the 4D space is identical for all biased
simulations. We use the self-consistent histogram method by
Ferrenberg and Swendsen64,65 to combine the different
Pbias
(j) (Q), which results in an estimate Pest,j(Q) for the histogram

P(Q) of the unbiased system. The starting point of this method
is that every simulation does in principle give an estimate for
the histogram P(Q) of the unbiased simulation:

β=P Q N Q P Q( ) exp( V ( )) ( )j
j j j

est,
( )

bias
( )

bias
( )

(17)

Here, Vbias
(j) denotes the bias potential in the jth simulation,

given by (16), and N(j) is a normalization factor, which can be
expressed as

∑ β= −N P Q V Q( ) exp( ( ))j

Q

j( )
bias
( )

(18)

assuming that both P(Q) and Pbias
(j) (Q) are normalized.

However, this estimate for P(Q) will only be useful for Q
bins that have good statistics in the jth simulation, which in our
case means that the bins are at an r coordinate that is close to
the rj value of the respective bias. Another problem with this
expression is that in order to calculate N(j) we already need to
know the sought-for quantity P(Q). To deal with the first
problem, we combine the individual estimates obtained from
each jth simulation, to form an improved estimate:

∑=P Q c Q P Q( ) ( ) ( )
j

j
jest

( )
est,

(19)

With c(j)(Q) we can tune the weight of Pest,j(Q) in the P(Q)
estimate. We require ∑jc

(j)(Q) = 1. In bins where the jth
simulation has bad statistics we will choose c(j)(Q) close to 0,
such that the Pest,j(Q) estimate contributes only in bins where it
is useful. The error of Pest(Q) can be estimated via the Poisson
distribution, and it can be minimized via the following choice
for the c(j)(Q):

β
β
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HereM(j) is the number of uncorrelated configurations sampled
in the jth simulation. With eqs 17−20 we now arrive at an
expression for an estimate of P(Q). However, as N(j) depends
on P(Q), expression 18 can only be evaluated if P(Q) is known
in the first place. We can deal with this problem by using
Pest(Q) for P(Q) in the formula for N(j) (18) to obtain a self-
consistency problem for Pest(Q), which can be solved
iteratively. As a starting point for this iterative procedure an
initial guess for Pest(Q) has to be provided. However, after
many iterations the procedure is expected to converge to the
same distribution, independent of the given initial condition.
We started the iterative algorithm with an uniform distribution
for Pest(Q).
B. Expansion of g(r, cos θ1, cos θ2, φ)
As the anisotropic effective potential Veff(r, cos θ1, cos θ2, φ)
and the corresponding pair-correlation function g(r, cos θ1, cos
θ2, φ) depend on four variables, it is hard to visualize them.
Nevertheless, we can obtain a quantitative measure of the
anisotropy in g and Veff by carrying out an expansion of g:

∑θ θ φ θ θ φ=g r c r f( , cos , cos , ) ( ) (cos , cos , )
n

n n1 2 1 2

(21)

Here, f n are modes that depend on the angular degrees of
freedom only, and they form a complete basis for the angular
dependence of g.
To obtain a suitable set of basis functions f n for the

dependence of g on the directors d(1,2) for a given vector r
between the rings, we started with an expansion to a sum of
products of spherical harmonics:
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Here γ denotes g at a given r. By cos θi and φi the director d
(i) is

represented in spherical coordinates. We use a reference frame
where the connection vector r between the two rings points to
the north pole, and therefore φi denotes the azimuthal angle
around r. With Yl

m we denote the spherical harmonics.66 They
fulfill the orthonormality relation ∫ dΩ Y̅l

m(cos θ,φ) Yl′
m′(cos

θ,φ) = δl,l′δm,m′ with dΩ = dcosθ dφ, where z ̅ denotes the
complex conjugation of a complex number z. This allows us to
compute the expansion coefficients via integration:

∫ θ φ θ φ

γ θ φ θ φ

= Ω Ω ̅ ̅c Y Yd d (cos , ) (cos , )

(cos , , cos , )

l m l m l
m

l
m

, , , 1 2 1 1 2 2

1 1 2 2

1 1 2 2 1
1

2
2

(23)

Due to the symmetries of γ, we will now be able to compute
or relate many of the coefficients and thus arrive at a reduced
set of basis functions {f l1,l2,m} with which we can still represent γ
exactly. We first use the continuous symmetry under rotations
around the connection vector r:

γ θ φ θ φ γ θ φ φ θ= −(cos , , cos , ) (cos , , cos , 0)1 1 2 2 1 1 2 2

(24)

Using eq 23 and Yl
m(cos θ, φ) ∝ exp(imφ), one can show that

cl1,m1,l2,m2
vanishes for m1 ≠ −m2 due to this symmetry. In the

following, we enumerate the expansion modes with m ≡ m1 =
−m2. Next we use that d

(i) is equivalent to −d(i), and therefore γ
fulfills the symmetry γ(d(1),d(2)) = γ(−d(1),d(2)) = γ(d(1),−d(2)).

Since Yl
m(d) = (−1)l Ylm(−d), cl1,m1,l2,m2

are zero if either l1 or l2 is
odd.
The monomer-resolved model is symmetric under a mirror

transformation, which is therefore also a symmetry of the
effective model. If we consider a state with φ2 = 0 and mirror it
by a plane spanned by r and d(2), we obtain a state with
identical r, d(2), and cos θ1, while φ1 changes sign. Hence, we
obtain

γ θ φ θ φ γ θ φ φ θ

γ θ φ φ θ

γ θ φ θ φ

= −

= −

=

(cos , , cos , ) (cos , , cos , 0)

(cos , , cos , 0)

(cos , , cos , )

1 1 2 2 1 1 2 2

1 2 1 2

1 2 2 1 (25)

For the first and the last step we used (24). Therefore, γ is
invariant under exchanging φ1 and φ2. We therefore have
cl1,m,l2,−m = cl1,−m,l2,m.
Everything discussed so far also holds if we calculate the

effective interaction between different rings, e.g., for rings with a
different number of monomers. The final symmetry, which we
will exploit now, only holds if we have identical rings. In this
case we obtain an equivalent state if we swap the orientations of
the two ring polymers:

γ θ φ θ φ γ θ φ θ φ

γ θ φ θ φ

=

=

(cos , , cos , ) (cos , , cos , )

(cos , , cos , )

1 1 2 2 2 2 1 1

2 1 1 2 (26)

For the last transformation we used (25). Hence, for identical
rings γ is also invariant under an exchange of θ1 and θ2, and we
therefore know that cl1,m,l2,−m = cl2,m,l1,−m.
We now group basis functions if we a priori know that γ has

identical coefficients cl1,m,l2,−m with respect to them. We sum the

modes in each group and divide by # , where # is the number
of modes in the group. For identical rings # is at most 4 but can
also be smaller if l1 = l2 or m = 0. For different rings # = 2 if m
≠ 0 and 1 otherwise. In this way we obtain a new set of basis
functions f l1,l2,m. The indices of f l1,l2,m refer to the indices of one

of the modes in the group from which f l1,l2,m was constructed,
with the additional constraint that m ≥ 0 and l2 ≥ l1 in the case
of identical rings. As an example, we can consider f 2,4,1, which is
set to (Y2

1 Y4
−1 + Y2

−1 Y4
1 + Y4

1 Y2
−1 + Y4

−1 Y2
1) /√4 in the case of

identical and (Y2
1 Y4

−1 + Y2
−1 Y4

1)/√2 in the case of different
rings. The new basis functions f l1,l2,m only depend on φ ≡ |φ1 −
φ2| and not on φ1 and φ2 separately. Thus, |φ1 − φ2| is precisely
the φ coordinate defined in (6), on which g depends.
Expanding the angular dependence of g with our new basis
functions, we obtain

∑ ∑

∑

θ θ φ

θ θ φ

=
= = + +

=

g r

c r f

( , cos , cos , )

( ) (cos , cos , )

l l l l l

m

l l

l l m l l m

1 2
{0,2,4,...} { , 2, 4,...}

0

min( , )

, , , , 1 2

1 2 1 1 1

1 2

1 2 1 2 (27)

In the case of different rings, the sum over l2 does not start at l1
but at 0. Like {Yl1

mYl2
−m }, also {f l1,l2,m} fulfill the orthonormality

relation

∫ θ θ φ

θ θ φ δ δ

Ω Ω

=′ ′ ′ ′ ′

f

f

d d (cos , cos , )

(cos , cos , )

l l m

l l m l l m m

1 2 , , 1 2

, , 1 2 , ,

1 2

1 2 (28)
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Note that complex conjugation is not necessary as f l1,l2,m are real

functions in contrast to Yl1
mYl2

−m. Hence, we can obtain the

coefficients cl1,l2,m(r) via an integration analogous to (23):

∫ θ θ φ

θ θ φ

= Ω Ωc r f

g r

( ) d d (cos , cos , )

( , cos , cos , )

l l m l l m, , 1 2 , , 1 2

1 2

1 2 1 2

(29)

To calculate cl1,l2,m(r), we could do a numerical integration of
g(r, cos θ1, cos θ2, φ). A different approach for the calculation
of cl1,l2,m(r) is to express the integral in (29) as an average over
configurations of a system of two ring polymers for fixed r. We
sample these configurations from the simulations with the bias
potential Vbias(r) given in (16), which we carried out for
calculating g on a 4D grid using umbrella sampling. As Vbias(r)
does not change the relative weight of configurations with
identical r values, we can use the configurations that fall in a
small window of r values to estimate averages over the angular
degrees of freedom at some fixed r value. The average of the
expansion modes f l1,l2,m over the configurations of the rings is

related to cl1,l2,m(r) as follows:

∫
∫

θ θ φ θ θ φ

θ θ φ

π

⟨ ⟩ =
Ω Ω

Ω Ω

=

f
g r f

g r

c r

g r

d d ( , cos , cos , ) (cos , cos , )

d d ( , cos , cos , )

( )

(4 ) ( )

l l m r
l l m

l l m

, ,

1 2 1 2 , , 1 2

1 2 1 2

, ,
2 iso

1 2

1 2

1 2

(30)

Here we used (9) and (29) for the final step. giso is easy to
calculate numerically once we know g. The advantage of this
approach with respect to a numerical evaluation of (29) is that
we do not need to introduce a grid in the angular degrees of
freedom. In particular, if we want to calculate cl1,l2,m(r)
coefficients for high l1 and l2 values, the correctness of the
result in the first approach depends sensitively on the number
of grid points and also on the numerical method for carrying
out the integration. Calculating averages, on the other hand, is
straightforward, and we can easily estimate the statistical error
using the standard deviation of block averages. For these
reasons we calculate the expansion coefficients cl1,l2,m(r) and
estimate their errors following the latter approach.
The larger li, the faster the f l1,l2,m functions can change when

the director d(i) is varied. f 0,0,0 = (4π)−1 is constant and
therefore gives the isotropic contribution. By comparing c0,0,0(r)
with the size of the coefficients for (l1, l2, m) ≠ (0, 0, 0) we can
quantify the importance of anisotropy in the effective
interaction.
We find that with the 14 coefficients cl1,l2,m(r) for which l1, l2

≤ 4 we already get a reasonable approximation of g. This is true,
even for the smallest rings investigated (N = 20), where the
anisotropy is most important. This fact allows us to store the
essential information in the anisotropic potential with only a
few functions of one variable, cl1,l2,m(r), instead of a 4D grid with
a very large number of grid points. Using only the coefficient
c0,0,0(r), we recover g

iso(r) of the isotropic effective model.
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