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MethCORR modelling of methylomes from
formalin-fixed paraffin-embedded tissue enables
characterization and prognostication of colorectal
cancer
Trine B. Mattesen 1, Mads H. Rasmussen 1, Juan Sandoval2,3, Halit Ongen 4, Sigrid S. Árnadóttir1,

Josephine Gladov 1, Anna Martinez-Cardus 5,6, Manuel Castro de Moura7, Anders H. Madsen8,

Søren Laurberg9, Emmanouil T. Dermitzakis 4, Manel Esteller 10,11,12,13, Claus L. Andersen 1,14✉ &

Jesper B. Bramsen 1,14✉

Transcriptional characterization and classification has potential to resolve the inter-tumor

heterogeneity of colorectal cancer and improve patient management. Yet, robust transcrip-

tional profiling is difficult using formalin-fixed, paraffin-embedded (FFPE) samples, which

complicates testing in clinical and archival material. We present MethCORR, an approach

that allows uniform molecular characterization and classification of fresh-frozen and FFPE

samples. MethCORR identifies genome-wide correlations between RNA expression and DNA

methylation in fresh-frozen samples. This information is used to infer gene expression

information in FFPE samples from their methylation profiles. MethCORR is here applied to

methylation profiles from 877 fresh-frozen/FFPE samples and comparative analysis identifies

the same two subtypes in four independent cohorts. Furthermore, subtype-specific prog-

nostic biomarkers that better predicts relapse-free survival (HR= 2.66, 95%CI [1.67–4.22],

P value < 0.001 (log-rank test)) than UICC tumor, node, metastasis (TNM) staging and

microsatellite instability status are identified and validated using DNA methylation-specific

PCR. The MethCORR approach is general, and may be similarly successful for other cancer

types.
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Colorectal cancer (CRC) is a disease with extensive inter-
patient heterogeneity, both molecularly and histopatho-
logically, which cannot be resolved by current clinical

methods. Despite a continuous refinement of the UICC tumor,
node, metastasis (TNM) staging system to measure disease extent
and define prognosis, the disease outcome still varies considerably
even for patients with the same tumor stage. Therefore, new
factors that can more precisely stratify patients into different risk
categories are clearly warranted1.

Recent attempts to resolve CRC heterogeneity and improve
prognostication include molecular subclassification and char-
acterization based on transcriptional profiling2–4. Consensus
molecular subtype (CMS) classification stratifies CRC into four
subtypes CMS 1–4 with distinct biology and histopathological
features2. Still, the CMS taxonomy itself has limited prognostic
power for therapeutic decision-making5. To address this, we
previously combined transcriptional subtyping with subtype-
specific prognostic biomarkers to improve prognostication
beyond TNM staging in retrospective cohorts3. This indicated a
clinical potential of using molecular classification and subtype-
specific biomarkers as a complement to TNM staging for prog-
nostication. Furthermore, it highlighted the importance of
archived tumor material for biomarker discovery and pre-clinical
validation.

The strategies for transcriptional classification and subtype-
specific prognostication were developed by, and still primarily
rely on, profiling high-quality RNA purified from fresh-frozen
(FF) tissue. However, high-quality RNA is often not recovered
from the formalin-fixed, paraffin-embedded (FFPE) tissue that is
routinely archived in the clinic. This can preclude confident
transcriptional profiling and hereby complicate clinical testing of
molecular classification and exploratory analysis in well-anno-
tated, archival FFPE material5–9. The clinical popularity of FFPE
tissue is unlikely to change as it forms the basis for histopatho-
logical diagnoses and is a convenient, cost-effective preservation
method. For wide utility, strategies for molecular classification,
characterization, and prognostication should therefore be com-
patible with FFPE tissue.

Strategies based on DNA rather than RNA profiling may be a
way forward. DNA is considered less sensitive to degradation
than RNA in FFPE samples10,11 and enzymatic strategies for
DNA repair have greatly improved the analysis of FFPE
DNA12–15. A strategy for robust analysis of clinical and archival
FFPE samples could involve DNA methylation as highly con-
cordant DNA methylation profiles are produced from matched FF
and FFPE tissues when using the Illumina Infinium Human-
Methylation Beadchip technology14,16,17. In addition, many bio-
logical traits, such as RNA expression and cell-type identity, are
associated with specific and robust DNA methylation patterns in
the genome18,19. This suggests that both gene expression and cell-
type information may be extracted from DNA methylation pro-
files of FFPE samples and used for molecular classification and
prognostication, as an alternative to RNA profiling. Furthermore,
conversion of methylation profiles into a gene-centric expression
format would allow molecular analysis of FF and FFPE samples
using the plethora of bioinformatics tools, databases, and sig-
natures established for RNA expression analysis.

Motivated by this, we here develop MethCORR, an approach,
which identifies genome-wide correlations between gene
expression and DNA methylation and use this to obtain gene
expression and cell-type information in independent samples
from their DNA methylation profiles. In homogenous cell
preparations, associations between gene expression and DNA
methylation have been observed only for a small fraction of
genes when analyzing local promoters, gene bodies, or nearby
enhancers20–22. We hypothesize that genome-wide correlation

analysis will identify far more associations and that these will
include both functional gene-regulatory interactions and
indirect associations e.g. between cell-type-specific RNA
expression and cell-type-specific DNA methylation. We here
show that MethCORR, independent of whether the methylomes
were produced from FFPE or FF tissues, allows expression
information to be inferred for a large number of genes
(>11,000). Consequently, MethCORR enables a plethora of
molecular analyses to be performed on otherwise difficult-to-
analyze FFPE tissues e.g. tumor characterization, tumor clas-
sification, and interpretation of expression signatures to derive
DNA methylation-based biomarkers. Hereby MethCORR also
provides a path for improved, subtype-specific prognostication
of CRC using clinical FFPE samples.

Results
MethCORR infers RNA expression from DNA methylation.
Here we developed the MethCORR approach that, by mapping
genome-wide correlations between RNA expression and DNA
methylation in FF samples, can infer gene expression information
in unrelated samples from their DNA methylation profiles.
Correlations were identified genome-wide using matching RNA
expression and 450K methylation data (methylation β-values)
from 394 FF CRC samples of The Cancer Genome Atlas (TCGA)
Project, denoted the COREAD cohort (Fig. 1a and Supplementary
Fig. 1a; Supplementary Table 1 and Supplementary Data 1). The
cohort was divided into two discovery sets (each n= 158) in
which genome-wide correlation analysis was performed inde-
pendently and one validation set (n= 78; Fig. 1a). Our analysis
identified positively and negatively expression-correlated CpGs
(Spearman’s correlation P value < 0.01) overlapping in the two
discovery sets for 17,776 of 20,530 genes (Fig. 1a). The majority of
the genes without expression-correlated CpGs were non-
expressed (Supplementary Fig. 1b). To derive gene expression
information for these 17,776 genes, we selected up to 200 CpGs
whose methylation level were most negatively (≤100 sites) and
positively (≤100 sites) correlated with its expression (Fig. 1a). The
methylation levels of these expression-correlated CpGs were used
to calculate a MethCORR score (MCS) for each gene (formula in
Fig. 1b) and simple linear and polynomial regression modeling
was used to identify genes with good correlations between MCSs
and measured RNA expression (Fig. 1a). Models were established
in the discovery sets by ten times tenfold cross validation and
selected using root mean square error (RMSE) as a measure of
model fit. We found good inter-sample correlations for 16,248
genes in the discovery sets (R2 > 0.16) and confirmed these for
11,222 genes in the validation set (gene model performances in
Supplementary Data 2; Supplementary Fig. 1c–e). The 11,222
genes were denoted MethCORR genes and the expression-
correlated CpGs of these define the COREAD MethCORR matrix
(≤200 CpGs × 11,222 genes; Supplementary Data 3) that was used
for calculation of MCSs from DNA methylation profiles of all
samples analyzed in this study (Fig. 1c). We also investigated if
RNA expression was better modeled using the ≤200 expression-
associated CpGs for each gene directly, instead of using MCSs,
but found no improvement in overall performance (R2 and
RMSE; Supplementary Fig. 1f). Similarly, adding age and gender
information to MCS-based models did not improve overall per-
formances (Supplementary Fig. 1g). This likely reflect that CRC-
induced methylation changes are much greater than the subtler
effects of age and gender in normal tissues23. Still, MethCORR
captures gender-specific expression by including CpGs located on
chromosome X and Y in the MethCORR matrix. Accordingly,
known gender-specific RNAs exhibited gender-specific inferred
RNA expression (Supplementary Fig. 1h).
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Next, we investigated characteristics of the MethCORR genes
included in the MethCORR matrix. MethCORR genes exhibited
greater variation in RNA expression (Supplementary Fig. 2a), were
more frequently dysregulated in cancer vs. normal mucosa
(Supplementary Fig. 2b) and encompassed relatively fewer house-
hold genes (Supplementary Fig. 2c) than the set of genes not
included in the MethCORR matrix. Importantly, the MethCORR
genes exhibited the same stroma score distribution as the full set of
genes (Supplementary Fig. 2d). This indicates that MethCORR
maintains the ability to characterize both traits of the cancer cells
and the surrounding stroma. The established MCS regression
models were next used to calculate inferred RNA (iRNA) expression
for MethCORR genes in the validation samples of the COREAD
cohort (set 3) and in an independent Danish CRC cohort, denoted
SYSCOL3. We found a high intra-sample correlation between
measured RNA and iRNA expression in the COREAD validation
samples (median R2= 0.93 (range= 0.82–0.96); Supplementary

Data 4) and SYSCOL samples (median R2= 0.76 (range=
0.62–0.82); Fig. 1d–e; Supplementary Data 5). To evaluate the
robustness of MethCORR to differences between cohorts, we
repeated the entire MethCORR discovery and validation process
using the SYSCOL cohort to construct a SYSCOL MethCORR
matrix, derive MCSs, and to infer iRNA expression (Fig. 1a;
Supplementary Data 6–7). Again, we found high intra-sample
correlations between observed RNA and iRNA expression (SYSCOL
set 3, median R2= 0.92 (range= 0.87–0.95); COREAD median R2

= 0.74 (range= 0.55–0.82); Fig. 1e; Supplementary Data 4 and 5).
We speculated that the moderate decrease in R2 between cohorts
was caused by differences in RNA quantification methods rather
than the MethCORR approach. In support, comparative analysis
of COREAD validation samples using normalized RNA expres-
sion data from the UCSC XENA database24 and the National
Cancer Institute (NCI) genomic database commons (GDC)25

confirmed that MethCORR iRNA-RNA correlations were not
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Fig. 1 Development of the MethCORR approach, MethCORR scores, and inferring of RNA expression. a Overview of MethCORR development in the
COREAD cohort using matched RNA-sequencing and 450K methylation data. The cohort was divided into two discovery sets (each n= 158) and one
validation set (n= 78). Genome-wide RNA expression-DNA methylation correlations were identified in each discovery set and shared top expression-
correlated CpGs for each RNA were selected (≤100 positively and ≤100 negatively correlated CpGs; Spearman’s correlation P value < 0.01). A MCS was
calculated for each gene using DNA methylation β-values of expression-correlated CpGs and the formula given in (b). RNA expression of each gene was
modeled from its MCS using simple linear- and polynomial regression models and 10 × 10-fold cross validation in set 1+ 2. Simple linear models were
selected for all RNAs except when polynomial models exhibited a ≥5% decrease in RMSE values (Supplementary Fig. 1d). Only models with R2 > 0.16
between inferred RNA (iRNA) and observed RNA expression in both the discovery set and the independent validation set 3 was kept for further analysis
(n= 11,222, termed MethCORR genes). b Formula for calculating MCSs from DNA methylation β-values. c Overview of MethCORR applications. Fresh-
frozen (FF)/FFPE CRC samples with 450K/EPIC methylation profiles can be applied to the MethCORR matrix for calculation of MCSs and iRNA expression.
d Scatterplot showing intra-sample correlation between iRNA and RNA expression in a representative COREAD validation sample. e Plot showing R2 of
intra-sample iRNA and RNA expression correlations for all samples of the COREAD validation set 3 and SYSCOL cohort when using the COREAD-derived
MethCORR matrix (left) and for all samples of the SYSCOL validation set 3 and COREAD cohort when using the SYSCOL-derived MethCORR matrix
(right). f Histogram showing overlap in CMS subtype predictions in COREAD CRC samples using RNA expression or iRNA expression for classification.
g Scatterplot showing intra-sample correlation between iRNA (left) or RNA expression (right) from a FFPE sample and RNA expression in a matched fresh-
frozen COREAD sample.
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lower than if applying two different RNA normalization strategies
to the same samples (Supplementary Fig. 2e).

In accordance with the high intra-sample correlations between
measured RNA and iRNA expression, we found a good overlap in
CMS (84% agreement) and CRC intrinsic subtype (CRIS; 75%
agreement) predictions when using the measured RNA or iRNA
expression as input (Fig. 1f and Supplementary Fig. 2f).

In situations where high-quality RNA is not obtainable, iRNA
expression may provide better estimates of gene expression than
RNA sequencing, as even moderate declines in RNA quality can
lead to unreliable expression profiles26,27. Indeed, samples with
the lowest correlation between measured RNA and iRNA
expression had significantly lower RNA quality than high
correlation samples (P value < 0.0001, Wilcoxon rank sum
(WRS) test; Supplementary Fig. 2g). In contrast, no equivalent
drop in 450K methylation data quality was observed (Supple-
mentary Fig. 2g). Compromised RNA quality is inherent to FFPE
tissue10,11. In agreement, analysis of nine COREAD samples with
available RNA sequencing and 450K methylation profiles from
matched FF and FFPE tissues identified higher intra-sample R2’s
between FF RNA sequencing and FFPE iRNA profiles (median
R2= 0.91 (range: 0.80–0.94)) than between FF and FFPE RNA-
sequencing profiles (median R2= 0.7 (range: 0.63–0.87); P
value < 0.001, WRS test; Fig. 1g and Table 1; Supplementary
Data 8–11 and Supplementary Table 2). MCSs from matched
FFPE and FF samples were even higher correlated (median R2=
0.98 (range: 0.98–1.00); Table 1), which likely reflect that 450K
methylation profiles were themselves highly correlated (median
R2= 0.96 (range: 0.94–0.98); Supplementary Fig. 2h), as reported
previously14,16,17. Additional evidence came from principal
component analysis (PCA). Here samples clustered according
to preservation method when analyzing FF and FFPE RNA-
sequencing profiles together, whereas samples clustered more
according to patient ID when analyzing RNA profiles of FF
samples together with iRNA or MCS profiles of FFPE samples
(Supplementary Fig. 2i).

Collectively, this showed that MethCORR expression measures
(MCSs and iRNAs) can be inferred from DNA methylation for a
large number of genes, even when methylation data are based on
FFPE tissue.

MethCORR identifies two subtypes in FF and FFPE cohorts.
We next investigated if inferred expression profiles allow uniform
subtype discovery and characterization of both FF and FFPE
cohorts using bioinformatics strategies normally reserved for FF
samples with high-quality RNA expression profiles. As input, we
employed MCS profiles as they strengthen the focus on cancer
cell-related traits during subtype discovery as compared with
RNA and iRNA profiles (Supplementary Fig. 3a, b). Subtype
discovery by non-negative matrix factorization (NMF)-based

consensus clustering was performed in TNM stage II–III
COREAD and SYSCOL samples with available 450K methylation
data and in two independent FFPE TNM stage II–III cohorts,
denoted FFPE1 and FFPE2 (Supplementary Table 1 and Sup-
plementary Data 12). Our focus was on stage II–III patients,
which are most relevant for prognostic biomarker identification
due to their heterogeneous prognosis1. Two MethCORR subtypes,
CRC1 and CRC2, were identified in all four cohorts (Supple-
mentary Fig. 3c) and Submap analysis28 confirmed the corre-
spondence between the CRC1 and CRC2 subtypes in the different
cohorts (Supplementary Fig. 3d; FDR < 0.05). In agreement,
samples clustered according to subtype in a PCA of all four CRC
cohorts together, irrespectively of their preservation-type status
(Supplementary Fig. 3e). We next performed comparative sub-
type characterization in all cohorts, which indicated that CRC1
and CRC2 differed in terms of DNA methylation, chromosomal
instability, and stromal/immune cell activity (Fig. 2a and Sup-
plementary Fig. 3f). These are well-known characteristics for the
serrated/microsatellite instability status (MSI) and conventional
CRC pathways, respectively, pointing to a biological relevance of
the MethCORR subtypes.

Further subtype characterization was performed using pre-
ranked gene set enrichment analysis (GSEA)29. Initially, we
investigated if similar gene set enrichments were identified when
using MCSs vs. RNA expression as input (Fig. 2b) or when MCSs
were derived from FF vs. FFPE samples (Fig. 2c). Indeed, a high
concordance was observed between normalized enrichment
scores for most gene sets in both situations, supporting that
expression-correlated MCSs can substitute RNA expression and
enable analysis of FFPE tissue. MCS-based GSEA of each cohort
uniformly showed that the CRC1 subtype was enriched in gene
sets associated with immune- and stromal processes/cell types
such as inflammation, epithelial-mesenchymal transition (EMT),
cancer-associated fibroblasts (CAFs), and T/B cells (Fig. 2d and
Supplementary Table 3). Furthermore, CRC1 was enriched in
gene sets associated with positive MSI-, CIMP-, and serrated
CRC-status, whereas CRC2 tumors were enriched in gene sets
associated with conventional CRC and a more undifferentiated
cell status (Fig. 2d and Supplementary Table 3). Similar results
were obtained for the two FF cohorts when using RNA expression
as input, rather than MCSs (Fig. 2d). Despite biological
differences, no difference in relapse-free survival (RFS) was
observed between CRC1 and CRC2 (Fig. 2e).

Collectively, these results demonstrate that MethCORR allows
uniform discovery and characterization of biologically relevant
CRC subtypes in FF and FFPE samples using well-established
bioinformatics tools.

A MethCORR map characterizes CRC subtypes. By analysis of
expression-correlated CpGs in the MethCORR matrix, we found

Table 1 R2 and RMSE for intra-sample correlations between MethCORR inferred RNA expression (iRNA), RNA expression, or
MCS in FFPE samples and RNA expression or MCS in matched fresh-frozen tissue.

TCGA COREAD
patient Id

R2 iRNA (FFPE)
vs. RNA (FF)

R2 RNA (FFPE) vs.
RNA (FF)

R2 MCS (FFPE) vs.
MCS (FF)

RMSE iRNA (FFPE)
vs. RNA (FF)

RMSE RNA (FFPE)
vs. RNA (FF)

RMSE MCS (FFPE)
vs. MCS (FF)

Pt. 6650 0.94 0.87 1.00 0.47 0.69 0.04
Pt. 5659 0.92 0.74 1.00 0.54 1.08 0.03
Pt. 5661 0.92 0.67 0.99 0.54 1.25 0.03
Pt. 5665 0.91 0.72 0.98 0.57 1.02 0.04
Pt. 6781 0.91 0.69 0.98 0.54 1.00 0.03
Pt. 6780 0.90 0.81 0.99 0.60 0.82 0.03
Pt. 2684 0.88 0.67 0.98 0.65 1.03 0.04
Pt. 3810 0.87 0.70 1.00 0.66 0.98 0.02
Pt. 5656 0.80 0.63 0.98 0.83 1.11 0.07
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Fig. 2 MethCORR based NMF clustering identifies the same two CRC subtypes in fresh-frozen and FFPE cohorts. aMain molecular features of the CRC1
and CRC2 MethCORR subtypes in the COREAD FF1 and the FFPE1 cohort (Supplementary Table 1). MSI and MSS status is indicated in black and white. CIN
scores were derived for COREAD and FFPE1 samples using GISTIC and EPIC DNA methylation data, respectively, and sample DNA methylation scores
were calculated as the 40th percentile of DNA methylation β-values for all CpGs. Stroma- and Immune Scores were generated from MCSs using the
ESTIMATE software69. b–c Scatterplots showing the correlation between normalized enrichment scores (NESs) for ~17 K gene sets of The Molecular
Signatures Database (MSigDB) v6.1 from a pre-ranked GSEA of CRC1 vs. CRC2 subtypes in the COREAD FF1 cohort using either MCSs (X-axis) or RNA
expression (Y-axis) as input (b) and a pre-ranked GSEA of CRC1 vs. CRC2 subtypes in either the COREAD FF1 cohort (X-axis) or FFPE1 cohort (Y-axis)
using MCSs as input (c). Pearson’s r and P value (Wilcoxon rank sum test) is indicated. d Table showing selected gene sets differentially enriched between
CRC1 and CRC2 subtypes as evaluated by pre-ranked GSEA performed using MCSs or RNA expression in the fresh-frozen COREAD FF1 and SYSCOL FF2
cohorts and MCSs for the FFPE cohorts (Supplementary Table 1). Gene sets with positive NES are enriched in CRC1 (red colors), whereas negative NES
indicate enrichment in CRC2 (blue colors). Gene sets enriched/depleted at a high significance level are highlighted in bold (FDR < 0.05). See methods
section and Supplementary Table 3 for origin of gene sets. e Kaplan–Meier plots showing the relapse-free survival of CRC patients stratified according to
subtype. Left panel: patients with fresh-frozen tumors and good clinical follow-up (the COREAD FF1 and SYSCOL FF2 cohorts; Supplementary Table 1) were
combined to increase the number of relapse events. Right panel: patients with FFPE tumors and good clinical follow-up (The FFPE1 cohort; Supplementary
Table 1). Significance was evaluated by the log-rank test.
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that most CpGs were not located on the same chromosome as the
gene they correlate with (Supplementary Fig. 4a). Instead, the
most frequently occurring CpGs were located in genomic regions
that exhibited great cell-type-specific variation in DNA methy-
lation, as evaluated in 17 tissue types (GSE5019218; Supplemen-
tary Fig. 4b). Hence, the MethCORR matrix may help associate
gene expression with particular cell types by comparing the
methylation pattern of expression-correlated CpGs to known
DNA methylation (or DNAse I hypersensitivity) profiles of cell
monocultures/homogenous cell preparations. Indeed, expression-
correlated CpGs for the T-cell-specific CD3 Epsilon (CD3E) gene
overlapped with T-cell specific DNase I hypersensitive sites and
DNA methylation patterns characteristic of T-cells (Supplemen-
tary Fig. 4c, d). Similarly, expression-correlated CpGs for fibro-
blast activation protein alpha (FAP) and epithelial cellular
adhesion molecule (EPCAM) overlapped with patterns char-
acteristic of stromal cells/fibroblasts and intestinal epithelial cells,
respectively (Supplementary Fig. 4c, d). We also found that the
genes with greatest expression-correlated CpG site overlap with
CD3E, FAP, and EPCAM were themselves significantly associated
with T-, stromal/fibroblast-, and epithelial-cell activities as eval-
uated by gene list enrichment analysis30 (Supplementary Fig. 4e;
P value < 0.05 by the Enrichr software30). This showed that
analysis of expression-correlated CpGs help identify clusters of
co-expressed genes and link them to particular cell types via
comparison to cell-type-specific DNA methylation profiles.

To analyze expression correlations in a genome-wide format,
we created a MethCORR map by clustering all MethCORR genes
according to their overlap in expression-correlated CpGs (Fig. 3a).
Foremost, the map was used to visualize differences between
CRC1 and CRC2 by coloring gene nodes according to their
difference in median MCS z-score between the subtypes
(Δmedian z-score; Fig. 3a). The differences were near-identical
for FF and FFPE cohorts (Fig. 3a, b and Supplementary Fig. 5a;
Δmedian z-score Pearson’s r range: 0.88–0.97, P value < 10−100,
WRS test) and near-identical to a MethCORR map comparing
serrated/MSI and conventional adenocarcinomas from the 450K
methylation dataset GSE6806031 (Fig. 3c; Δmedian z-score
Pearson’s r range: 0.87–94, P value < 10−100, WRS test). Similar
results were obtained when the map was overlain with
MethCORR interpretation of a transcriptional gene set defining
serrated vs. conventional CRC (Supplementary Fig. 5b; Pearson’s
r range= 0.94–98, P value < 10−100, WRS test; for comparison to
MSI status, CIMP status, CMS- and CRIS-classification status see
Supplementary Fig. 5c, d). This suggested that CRC1 and
CRC2 subtypes resembles serrated/MSI and conventional carci-
nomas, respectively. In support, Submap analysis confirmed that
CRC1 and CRC2 subtypes from all four cohorts corresponded to
the serrated/MSI and conventional subtypes from the GSE68060
dataset31 (Supplementary Fig. 3d). Furthermore, CRC2 encom-
passed several map regions associated with high CIN scores,
whereas CRC1 encompassed a large tumor microenvironment
(TME) cluster characterized by genes with high stroma scores, as
expected for conventional and serrated/MSI tumor subtypes2,32,
respectively (Fig. 3d).

The MethCORR map characterizes intra-tumor heterogeneity.
To investigate the large TME cluster in greater detail and provide
insight into sources of CRC heterogeneity, the map was overlain
with MCS z-scores calculated from DNA methylation profiles of
epithelial, immune, stem, and mesenchymal cells (primarily cell
monocultures; Supplementary Table 4 and Supplementary
Data 13). This identified map regions representing CAFs, CD14+
monocytes, CD3+ T cells, and CD19+ B cells among others
(Fig. 3e). Again, similar results were obtained when the map was

overlain with MethCORR interpretations of RNA-based bio-
markers and signatures defining CAFs, endothelium, myeloid
cells, T cells, and B cells (Supplementary Fig. 5e). Hence, the
MethCORR map can suggest cell types associated with RNA
biomarkers and signatures via comparison to known cell-type-
specific methylation profiles.

Based on this, we envisioned that the MethCORR map would
visualize and suggest sources of inter-tumor heterogeneity
between and within subtypes. CRC heterogeneity can arise from
both differences in TME cell composition and in the differentia-
tion status of tumor epithelial cells. For example compared with
normal mucosa, CRCs can lose mature enterocyte traits and
rather resemble enterocyte precursors, transit amplifying (TA)
and stem cells, or undergo EMT2,33,34. Mapping of MCS z-scores
from individual tumors revealed inter-tumor heterogeneity in
both subtypes. For CRC1, heterogeneity was pronounced in the
TME cluster and few samples had a dominant epithelial pattern
(Fig. 3f). Three TME patterns were frequently observed, one
overlapping with CAF/fibroblast (CAF/fibroblast pattern),
another with CD14+ monocytic cells/platelets (inflammation
pattern), and the last with lymphocytic T cells and B cells
(lymphocyte pattern; Fig. 3e–g). This suggested that TME cell
composition is a major contributor to intra-subtype heterogeneity
in the immune-infiltrated CRC1 subtype. The TME patterns were
less dominant among CRC2 samples (Fig. 3h) consistent with
CRC2 conventional-like tumors being less immune-infiltrated2

(Fig. 2a, d). Instead, CRC2 heterogeneity was pronounced within
epithelial map regions and four patterns were observed (Fig. 3h):
Two regions were dominated by signatures of enterocyte
precursors and TA cells as estimated by overlapping the map
with RNA signatures defining specific differentiation states of
intestinal epithelial cells33 (Fig. 3i). A third region overlapped
with a mature enterocyte signature characteristic of normal
mucosa samples (Fig. 3i and Supplementary Fig. 5f). Finally, an
EMT pattern was identified in CRC2 by overlaying the map with
MCSs of Hela cells undergoing EMT35 (Fig. 3i) and GSEA
showed enrichment of EMT signatures in the CRC2 samples with
this EMT pattern (as compared with an early enterocyte pattern;
Supplementary Fig. 5g). Collectively, this suggested that epithelial
differentiation status is an important contributor to heterogeneity
in the CRC2 subtype. Finally, the above heterogeneity was also
identifiable among CRC cell lines and CMS subtypes (Supple-
mentary Fig. 5h, i).

MethCORR interprets prognostic RNA signatures. We next
investigated if MethCORR would also help identify DNA
methylation-based biomarkers suited for prognostication using
FF and FFPE samples. Our strategy was to use the MethCORR
map to interpret established, prognostic RNA signatures and
suggest cell types associated with tumor aggressiveness, which can
be evaluated in DNA samples based on the cell-type specificity of
methylation. Analysis of five prognostic signatures, CRC-11336,
ColoGuideEx37, Oncotype DX38, ColoPrint39, and Tian et al.40

showed that MCSs for almost all stromal transcripts were posi-
tively correlated with the median MCS for all signatures (Fig. 4a).
This suggested that all signatures associated high TME activity
with poor prognosis. MethCORR map analysis of the signatures
revealed two distinct patterns within the TME cluster: The CRC-
113, ColoGuideEX, and Oncotype DX signatures associated with
a CAF-like pattern (Figs. 3e, f, and 4b), cancer invasiveness and
hepatocyte growth factor (HGF) expression41 (Fig. 4c, d). The
ColoPrint and Tian et al. signatures (Fig. 4e) associated with
an inflammation/wound healing pattern (Figs. 3e, f, and 4c)
encompassing blood platelets, CD14+ monocytes (Fig. 3e), and
transforming growth factor beta 1 (TGFB1) expression (Fig. 4d).
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Hence, the prognostic signatures overlapped in predictions, and
pointed to CAF or inflammation/wound healing as associated
with poor prognosis CRC. We recently reported that subtype-
specific RNA signatures can improve prognostication beyond
TNM staging in multiple CRC cohorts3. Therefore, MethCORR
was also used to interpret these subtype-specific prognostic

signatures denoted SSC prognosis and CIN prognosis. These are
intended for immune-infiltrated/serrated and conventional car-
cinoma subtypes3, which correspond to CRC1 and CRC2 in this
study, respectively. MethCORR map analysis suggested that
depletion of immune cells, including T cells, was associated with
the SSC prognosis signature (Figs. 3e and 4c, f), whereas a CAF
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and EMT pattern was associated with the CIN prognosis sig-
nature (Figs. 3e and 4c, g). Furthermore, we compared MCSs for
TNM stage I (favorable prognosis) to stage IV tumors (poor
prognosis) in the COREAD and SYSCOL cohorts. Here, the
relative change in MCSs between TNM stages also pointed to a
relative loss of immune cells and increase in CAF content in late-
stage, poor prognosis CRC (Fig. 4h). Collectively, the MethCORR
analysis of seven published prognostic signatures hereby sug-
gested that poor prognosis is associated with low T-cell content,
particularly in the immune-infiltrated CRC1 subtype (Fig. 4f), or
high CAF content and inflammation-EMT, particularly in the
immune-depleted CRC2 subtype (Fig. 4g). To investigate the
predictions of prognostic cell types in our FF and FFPE cohorts,
we selected the three biomarkers CD3E, ACTA2, and PDPN.
These are well-known markers for T cells42, CAF/myofibro-
blasts43, and inflammation-EMT44, respectively, and their most
closely CpG site-associated genes overlapped with regions high-
lighted by the prognostic classifiers (compare Fig. 4b, e, f, g, i;
Supplementary Fig. 6). Indeed, top CD3E-associated genes
negatively correlated with patient recurrence status in the
CRC1 subtype and ACTA2/PDPN-associated genes positively
correlated to patient recurrence in CRC2 (Fig. 4j).

DNA methylation-based biomarkers for CRC prognostication.
To derive DNA methylation biomarkers for the above prognostic
cell types we exploited the cell type-specificity of DNA methy-
lation. Comprehensive comparison of multiple cell types identi-
fied low methylation of CpGs within the CD3E, ACTA2, and
PDPN promoter as biomarkers for T cells, CAFs/myofibroblasts,
and inflammation-EMT, respectively (Fig. 5a; Supplementary
Data 13). Indeed, analysis of promoter CpGs in CRC samples
showed that high methylation of the CD3E promoter, reflecting
low levels of T-cell infiltration, associated with significantly
poorer RFS in CRC1 in both FF and FFPE cohorts (Fig. 5b). In
addition, low ACTA2/PDPN promoter methylation, reflecting
high CAF/EMT levels, associated with poor RFS in CRC2
(Fig. 5b). The biomarkers were superior predictors of RFS as
compared with TNM staging and MSI status (Fig. 5c, Supple-
mentary Fig. 7a, b), and the biomarkers were only prognostic
within the intended subtype (Supplementary Fig. 7c). Finally, to
provide a cost-effective alternative to genome-wide methylome
analysis, we evaluated CD3E, ACTA2, and PDPN promoter
methylation using quantitative methylation-specific PCR (QMSP)
assays. In addition, a QMSP assay targeting the HNF4A promoter
was included for CRC subtyping; HNF4A is upregulated in CRC2
(Fig. 4i) and correspondingly, its promoter is less methylated
in CRC2 (Fig. 5a). We applied our four biomarker assays to
FFPE1 cohort samples, stratified patients into CRC1 and CRC2
using the HNF4A QMSP assay (Fig. 5d), and used CD3E and
ACTA2/PDPN assays as prognostic biomarkers in CRC1
and CRC2. RFS analysis confirmed that the QMSP assays allowed
subtype-specific prognostication using FFPE samples (Fig. 5e and
Supplementary Fig. 7d).

Discussion
We here introduce MethCORR as an approach for uniform
molecular analysis of FF and FFPE samples based on DNA
methylation profiling. MethCORR allows inference of expression
information from DNA methylation for a large number of genes
(>11,000; Fig. 1). The inferred expression profiles support iden-
tical subtype discovery, characterization, and prognostication in
FF and FFPE cohorts (Figs. 2–5). Notably, MethCORR allows
three layers of information to be extracted from a DNA methy-
lation array experiment, namely an inferred gene expression
profile, a DNA methylation profile and a chromosome copy-

number profile, calculated from the methylation array signal
intensity45. This improves cost-effectiveness and makes Meth-
CORR attractive for analysis of archival FFPE material, where
RNA profiling can be difficult6–9. The MethCORR concept bears
resemblance to transcriptome-wide association studies, where
gene expression is correlated to genetic variation. However,
MethCORR allows the expression of many more genes to be
modeled, which indicates that gene expression is stronger asso-
ciated with DNA methylation than genetic variation46,47.

The high number of MethCORR genes with inferred expres-
sion may be surprising, as several previous studies reported more
infrequent correlations, when investigating associations between
gene expression and methylation at local enhancers, promoters,
and gene bodies20–22. MethCORR instead performs correlation
analysis genome-wide and hereby identify far more associations
from which expression information can be inferred. Indeed,
expression-correlated CpGs were often located far from the gene
locus, in regions with cell-type-specific methylation (Supple-
mentary Fig. 4). Hence, MethCORR benefits from associating
cell-type-specific gene expression with cell-type-specific DNA
methylation patterns to infer expression information for many
genes, even if associations are not functionally linked. Such
indirect associations are expected in heterogenous cancer sam-
ples, which vary in their content of cancerous and non-cancerous
cell types2–4,48. Support for a genome-wide correlation strategy is
also found in two previous studies, which on a smaller scale,
performed RNA expression-correlation analysis with more dis-
tantly located CpGs49,50. However, these studies only included
~500 CpG sites distributed across the genome compared with
480,000 sites utilized in MethCORR, and consequently found
much fewer strong correlations.

MethCORR introduces an expression-correlated measure, the
MCS, which enabled identification of the same two CRC subtypes
in all four cohorts analyzed, and this independent of the analyzed
tissue being FF or FFPE. The subtypes resemble the two major
carcinogenesis pathways described in CRC32 that are character-
ized by epithelial-cell hyper-methylation or chromosomal
instability (Figs. 2 and 3). We speculate that MethCORR identi-
fied these well-established carcinogenesis pathways due to the
relative emphasis of MCSs on cancer epithelial traits over stroma-
related traits (Supplementary Fig. 3a, b). Also, we observed higher
correlations between MCSs profiles for matched FF and FFPE
biopsies taken from the same tumor than between RNA and
iRNA profiles (Table 1). We therefore speculate that MCS-based
characterization and subtyping is more independent of sample
preservation type, which now require further testing.

MethCORR also introduces a map that visualizes genome-
wide associations between gene expression and DNA methy-
lation in CRC (Fig. 3). We envision that MethCORR map
analysis may provide a framework for more detailed char-
acterization of FF and archival FFPE samples than categorical
subtyping alone, e.g., to reveal cellular sources of inter-tumor
heterogeneity (Fig. 3). In particular, we illustrated that the
MethCORR map can help identify cell types associated with
RNA signatures (Figs. 3 and 4) and hereby help to derive DNA
methylation-based biomarkers suitable for FFPE samples
(Fig. 5). Our MethCORR map analysis of several prognostic
RNA signatures (Fig. 4) showed that they all predicted cancer
aggressiveness to be associated with cell types within the TME:
In particular, a high CAF content, inflammation-associated
EMT, and low T-cell content were associated with poor prog-
nosis (Fig. 4). This agrees with clinically promising biomarkers
such as the Immunoscore42 and Tumor-Stroma Ratio51. Our
analysis of CRC subtype-specific prognostic RNA signatures
offered additional resolution: the T-cell content was primarily
prognostic within the immune-infiltrated CRC1 subtype,
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whereas CAF-content/inflammation-EMT was only prognostic
in the less immune-infiltrated CRC2 subtype (Fig. 5). This
supported our previous observations of subtype-specific prog-
nostic biomarkers3. To aid further testing of subtype-specific
prognostication, we established four simple QMSP assays for
cost-efficient CRC subtyping and prognostication. The

application of the four QMSP assays in CRC samples confirmed
and reproduced the RFS analysis derived from the more costly
DNA methylome profiles (Fig. 5). Collectively, this illustrates
the ability of MethCORR to help derive DNA methylation
biomarkers from transcriptional signatures by extracting cell-
type information from their expression-correlated CpGs.
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Fig. 5 Validation of subtype-specific prognostic biomarkers in fresh-frozen and FFPE cohorts. a Dot plot showing the methylation levels (β-values) of a
CpG site in the promoter region of CD3E, ACTA2, PDPN, and HNF4A in selected cell types, adenomas and CRC samples as evaluated by the Infinium
HumanMethylation450 BeadChip array. High and low methylation levels are indicated in red and blue colors, respectively. See Supplementary Data 13
for details of included cell types such as mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and cancer-associated fibroblasts (CAFs).
b Kaplan–Meier plot showing the relapse-free survival of patients stratified by the CpG methylation level of the CD3E promoter in CRC1 and by the average
CpG methylation level of the ACTA2/PDPN promoter in CRC2 of the combined FF1-FF2- and the FFPE1 cohorts. P values (log-rank test) and HR95% CI are
indicated. The same β-value cutoff was used in both cohorts (different cutoff for the subtype-specific biomarkers). c Table showing an uni- and multivariate
cox regression analysis with MethCORR high and low relapse risk groups (a high relapse risk group was samples with high CD3Emethylation levels in CRC1
or low average ACTA2/PDPN methylation levels in CRC2), TNM stage, and MSI status in the combined FF1–FF2 cohort, the FFPE1 cohort, and all cohorts
combined. d Histogram showing the overlap in CRC1 and CRC2 status prediction by NMF clustering using MCSs or by QMSP in FFPE samples from the
FFPE1 cohort. e Kaplan–Meier plot showing the relapse-free survival of CRC1 patients stratified by CD3E QMSP assay ΔCt values and in CRC2 by
ACTA2/PDPN QMSP ΔCt-values in a total of 85 FFPE samples from the FFPE1 cohort. P values (log-rank test) and HR95% CI are indicated.
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Finally, MethCORR can provide high-quality gene expression
measures in samples with poor RNA quality, such as archival
FFPE samples for which confident RNA profiling is
challenging6–9. Our analysis of matched FFPE and FF tissue
showed that iRNA expression profiles from FFPE tissue resem-
bled the RNA-sequencing profiles of the FF tissue better than
RNA-sequencing profiles of the FFPE tissue. In PCA, matched
FFPE iRNA and FF RNA-sequencing profiles clustered sample
wise, while matched RNA-sequencing profiles of FFPE and FF
tissue clustered according to preservation type. Preservation type-
dependent clustering of FFPE and FF RNA-sequencing profiles
have been reported previously, even in studies that report very
high correlation between RNA-sequencing profiles of matched
FFPE and FF samples52,53. We acknowledge that recent studies
focusing on newly produced FFPE samples with optimal fixation
and short storage time have reported improved correlations
between matched FFPE and FF RNA-sequencing profiles53–55.
However, such samples are not standard in the clinical FFPE
archives. A large study, focusing on clinical FFPE samples, stored
for many years, found that gene expression quantification was
achieved in only 60% of samples and that correlation between
biological replicates was very variable8.

The robustness of MethCORR likely reflects that the Illumina
Infinium HumanMethylation microarray produces highly con-
cordant results in FFPE and FF samples when using DNA
restoration for FFPE samples (Supplementary Fig. 2h)14–17.
Furthermore, the DNA methylation β-values are calculated as the
ratio between methylated and unmethylated CpG sites at a given
genomic position. Hence, although a genomic region is affected
by degradation, the ratio between the methylated and unmethy-
lated fragments (i.e., the DNA methylation β-value) would
expectably be robust. By contrast, RNA profiling is highly affected
by RNA degradation26 and the RNA quality obtainable from
FFPE is often compromised6–9. In agreement, tumor samples
with the lowest correlation between iRNA and measured RNA
expression had lower RNA quality scores than samples with high
correlations, whereas 450K methylation data quality did not differ
(Supplementary Fig. 2g). This suggest that expression profiling of
FF samples is influenced by even slight RNA degradation, as
reported previously26.

In conclusion, DNA methylation profiling and MethCORR
analysis enables reliable and robust gene expression estimates to
be obtained from clinical samples with compromised RNA
quality. Furthermore, MethCORR data can be used to obtain
clinically relevant information on tumor subtypes, cellular het-
erogeneity, and to develop prognostic biomarkers. Consequently,
MethCORR represents an effective mean to unlock the unique
and extensive resource of FFPE tissues in the pathology archives.
We envision that MethCORR in the future will be established for
many other cancer types.

Methods
CRC patient cohorts. The COREAD cohort encompasses mucosa and UICC TNM
stage I–IV CRC samples collected as part of TCGA project. All information
regarding COREAD samples including processed DNA methylation data, RNA
expression data, gene-level copy-number data, and clinical patient information
(phenotype) were acquired via the UCSC XENA Public Data Hubs24 [https://xena.
ucsc.edu/public-hubs/] and the GDC Data Portal25 [https://portal.gdc.cancer.gov/].

The SYSCOL and FFPE1 cohorts were acquired from the CRC biobank at the
Department of Molecular Medicine, Aarhus University Hospital, Denmark.
SYSCOL samples were collected at hospitals in the central region of Jutland,
Denmark from 1999–20133. The FFPE1 cohort encompasses CRC samples from
the prospective study COLOFOL56 collected at hospitals in the central region of
Jutland, Denmark. None of the patients received neoadjuvant therapy. The tumors
were histologically classified and staged according to the UICC TNM staging
system. Cancer cell percentage was evaluated individually by two trained
researchers, and when necessary, tumor biopsies were macroscopically trimmed to
enrich the fraction of neoplastic cells. The SYSCOL and COLOFOL study was
conducted in accordance with Danish law and is approved by local institutional

review boards and ethical committees and written informed consent was obtained
from all patients. The FFPE2 cohort (IDIBELL) encompasses 56 samples collected
at Medical Oncology Service of ICO Badalona-Germans Trias i Pujol Research
Institute (IGTP), Spain. None of the patients received neoadjuvant therapy. The
tumors were histologically classified and staged according to the UICC TNM
staging system. Cancer cell percentage was evaluated individually by two trained
researchers, and when necessary, tumor biopsies were macroscopically trimmed to
enrich the fraction of neoplastic cells. Patients were followed according to the
national clinical guidelines and written informed consent was obtained from all
patients. Clinical information regarding the COREAD, SYSCOL, COLOFOL, and
IDIBELL cohort samples is presented in Supplementary Table 1.

DNA methylome data. FF tumors from the SYSCOL cohort were macrodissected
to enrich the fraction of neoplastic cells and DNA was extracted from serial
cryosections using the Puregene DNA purification kit (Gentra Systems). Integrity
of the genomic DNA from FF samples was assessed by 1.3% agarose gel analysis
and only samples containing a high molecular weight smear (~50 KDa) were
analyzed further. Bisulfite (BS) conversion of 600 ng DNA of each sample was
performed according to the manufacturer’s recommendations for the Illumina
Infinium Assay (EZ DNA methylation kit. Zymo Research. Cat. No. D5004). Next,
DNA methylation profiling was performed using Infinium HumanMethylation450
BeadChip technology (HM-450K; Illumina), as described by the manufacturer.

FFPE tumors from the COLOFOL FFPE1 cohort were macrodissected to enrich
the fraction of neoplastic cells, DNA was extracted using the QIAamp DNA FFPE
Tissue kit (Qiagen) and all samples passed the Infinium FFPE quality control
(Infinium FFPE QC kit, Illumina). For methylation profiling 500 ng DNA
underwent FFPE DNA restoration (Infinium HD FFPE DNA restore kit, Illumina)
after BS conversion and profiling was performed using Infinium
HumanMethylationEPIC BeadChip technology (HM-EPIC; Illumina), as described
by the manufacturer.

FFPE tumors from the IDIBELL FFPE2 cohort were macrodissected to enrich
the fraction of neoplastic cells. DNA was extracted using the QIAamp DNA FFPE
Tissue kit (Qiagen) and all samples passed the Infinium FFPE quality control
(Infinium FFPE QC kit, Illumina). For methylation profiling 250–500 ng DNA
underwent FFPE DNA restoration (Infinium HD FFPE DNA restore kit, Illumina)
after BS-conversion and profiling was performed using the Infinium
HumanMethylation450 BeadChip technology (HM-450K; Illumina) as described
by the manufacturer. For both the SYSCOL, FFPE1, and FFPE2 cohort the
methylation β-values for each CpG site on the BeadChip were derived using the
ChAMP R-package57 using the champ.import and champ.norm functions.

HM-450K DNA methylation profiles of the COREAD samples were acquired
from the UCSC XENA Public Data Hubs24 [https://xena.ucsc.edu/public-hubs/]
and the GDC Data Portal25 [https://portal.gdc.cancer.gov/] as normalized DNA
methylation β-values. Missing β-values were imputed using the R-package
Impute58. All DNA methylation measurements were performed once for each
distinct sample.

RNA-sequencing data. FF tumors from the SYSCOL cohort were macrodissected
to enrich the fraction of neoplastic cells and total RNA from serial cryosections
were extracted using the RNeasy Mini Kit (Qiagen). RNA integrity was assessed
using the Agilent RNA 6000 Nano Kit on an Agilent 2100 Bioanalyzer and >98% of
analyzed samples had a RNA integrity number (RIN) > 6. Paired end mRNA
sequencing was performed using 500 ng total RNA for library preparation with the
TruSeq RNA Sample Prep Kit v2 and the TruSeq SBS Kit v3 was used for
sequencing aiming for a minimum of 40 Million reads per sample. Sequencing
reads were mapped to the human genome issue HG19 (hg19) using the Tophat2
mapper (Tophat: v2.0.1059) and estimating fragments per kilobase of exon per
million fragments mapped (FPKM) values for Ensembl genes using Cufflink
(Cufflinks: v2.2.1; Gencode v15 annotation w/o Pseudogenes60).

RNA-sequencing profiles for the COREAD samples were acquired from the
UCSC XENA Public Data Hubs24 [https://xena.ucsc.edu/public-hubs/] as
log2(FPKM+ 1) normalized RNA expression values for 20,530 genes and via the
GDC Data Portal25 [https://portal.gdc.cancer.gov/] as FPKM normalized RNA
expression values for 60,483 transcripts. During comparison of RNA-sequencing
data from nine matched FF and FFPE samples, only data originating from the same
TCGA source center (indicated in Supplementary Data 11) were analyzed.
Correlations between RNA sequencing in FF and iRNA expression in FFPE
samples were analyzed using RNA-sequencing data from TCGA source center 22
(7 of 9 samples; 2 samples from TCGA source 23), as the GDC MethCORR matrix
used for iRNA calculation was generated using RNA-sequencing data from samples
primarily originating from TCGA source center 22 (76% of samples). All RNA-
sequencing measurements were performed once for each distinct sample.

Datasets used for MethCORR development. The MethCORR development
strategy was independently applied in three CRC datasets of paired RNA expres-
sion and DNA methylation data (Supplementary Data 1, 6, and 8) hereby gen-
erating three different MethCORR matrixes and sets of linear regression models.
Primarily, MethCORR development was performed using Infinium Human-
Methylation450K BeadChip (HM-450K) DNA methylation and RNA-sequencing
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data from 394 samples of the COAD and READ cohorts (COREAD) of the TCGA
project, acquired in normalized format via the UCSC XENA Public Data Hubs
(Supplementary Data 1). The analysis was performed using log2(FPKM+ 1) nor-
malized RNA expression values for all available 20,530 RNAs and DNA methy-
lation β-values for the 396,065 CpGs, where β-values were provided by the XENA
Public Data Hubs24. This analysis generated the COREAD MethCORR matrix
(Supplementary Data 3) that is used for calculation of MCSs throughout the
manuscript, unless otherwise indicated and modeling metrics is reported in Sup-
plementary Data 2 and 4. Second, the MethCORR approach was applied to RNA-
sequencing (20,336 RNAs) and HM-450K DNA methylation profiles (485,512
CpGs) from 314 samples of the SYSCOL cohort3 (Supplementary Data 5–7) with
the aim to validate the performance of the MethCORR approach in an independent
cohort. Third, the MethCORR approach was applied to 405 TCGA COREAD
samples using RNA expression (17,611 RNAs, these were selected from the original
dataset of 60,483 transcripts as they overlap with the RNAs included in the UCSC
XENA RNA dataset) and DNA methylation data (395,011 CpGs) acquired via the
NCI GDC25 (Supplementary Data 8). This analysis was performed to investigate
the impact of RNA normalization methods on MethCORR performance (modeling
metrics in Supplementary Data 9 and 10) and to generate a GDC data based
MethCORR matrix that was used for analysis of the TCGA FFPE samples included
in this study, as data from these FFPE samples were also acquired via the GDC
database (Supplementary Data 11).

Identification of RNA expression-correlated CpG sites. The CRC cohort was
divided in two discovery sets (sets 1–2, each encompassing 40% of samples),
whereas a third set was reserved for independent validation (set 3, 20% of the
samples; Fig. 1a and Supplementary Data 1, 6, and 8). Genome-wide correlations
(Spearman) between the expression of each of the RNAs (log2(FPKM+ 1)) and the
DNA methylation β-value of each CpG site were calculated independently in
discovery sets 1 and 2 using the publicly available R function “cor”. All non-
significant correlation pairs were discarded (Spearman’s correlation P value < 0.01).
The remaining expression-correlated CpGs were ranked by their Spearman’s rho in
each discovery set and next by their rank sum within discovery sets 1 and 2 to
identify top common expression-correlated CpGs. From these lists of ranked CpGs
specific for each RNA, we selected up to 100 CpGs whose methylation β-value most
negatively or positively correlated with its expression resulting in lists of ≤200 RNA
expression-correlated CpGs for each RNA (depending on the number of
expression-correlated CpGs in the ranked lists). To ensure analysis robustness,
especially in FFPE samples, we excluded all CpG sites that had a detection P value
> 0.05 (ChAMP package57) in ≥5% of samples in either the SYSCOL, FFPE1, or
FFPE2 cohort. Top ranking CpGs for all analyzed genes for the TCGA COREAD
cohort (datasets acquired via the UCSC XENA Public Data Hubs) can be found in
Supplementary Data 3.

Calculation of MethCORR scores. For each sample we used the methylation β-
values of the top ≤200 RNA expression-correlated CpGs (for each gene) to cal-
culate a MCS for all genes with both positively and negatively expression-correlated
CpGs using the formula:

MCS ¼ 1
≤200

X≤100

1

β value pos: correl:CpGprobeþ
X≤100

1

1� β value neg: correl:CpGprobe

 !
:

The MCS formula calculates the average methylation value of the expression-
correlated CpG sites specific for each gene. Unless otherwise indicated, the
COREAD MethCORR matrix encompassing expression-correlated CpGs for
11,222 genes (Supplementary Data 3; MethCORR genes) was used for calculation
of MCSs throughout the manuscript. The use of the MSC formula above and the
MethCORR matrix provided in Supplementary Data 3 allow calculation of MCSs
from DNA methylation β-values of any relevant 450K CRC data set of choice.

Modeling and inferring of RNA expression from MCSs. We modelled the
relationship between MCSs and RNA expression for each gene in the discovery
samples (set 1+ 2; Fig. 1A) using both simple linear (RNA= B0+ B1 ×MCS) and
polynomial regression models (RNA= B0+ B1 ×MCS+ B2 ×MCS2…+ Bn ×
MCSn; n= 2–4). The Caret R-package61 was used to perform modeling by 10 × 10-
fold cross validation and we used the average RMSE to select the best model for
each gene. As performances were highly similar for simple linear and polynomial
models for most genes, we only selected polynomial models if a ≥5% relative
decrease in RMSE values were observed over simple linear models. Model per-
formances were independently validated in validation set 3 (Supplementary Data 2,
7, and 9). Genes with well-performing models (R2 > 0.16 in both the discovery (set
1+ 2) and validation (set 3)) were regarded as MethCORR genes and included in
the MethCORR matrix (Supplementary Data 3), whereas genes with poorer per-
forming models were excluded. For MethCORR genes we inferred RNA (iRNA)
expression for each gene in each sample using the MCS as input in the gene-
specific linear regression models. Information of the gene-specific models are
provided in Supplementary Data 2, which allow calculation of iRNA profiles from
MCSs for any relevant 450K CRC data set of choice.

Establishment and analysis of a MethCORR map. The MethCORR map for the
COREAD cohort was created by clustering MethCORR genes according to their
overlap in expression-correlated CpGs using Cytoscape V3.2.062 and the applica-
tion EnrichmentMap63 (Jaccard+Overlap filtering cutoff 0.126). Only CpGs with
negatively expression-correlated CpGs from the MethCORR matrix were used for
identifying the overlap given that inclusion of all expression-correlated CpGs in a
single map would complicate interpretation as genes with opposite expression-
correlation to DNA methylation would cluster together. Genes with no significant
CpG overlap to other genes are not included in the graphical representation of the
MethCORR map for visual simplicity. For interpretation, the MethCORR map was
overlain with several data types including external DNA methylation data, tran-
scriptionally defined marker genes, gene sets, and signatures. To visualize these
diverse data types using the MethCORR map, four types of scores were established
as follows:

For DNA methylation datasets (450K/EPIC arrays), MCSs were first calculated
for all samples and two types of scores were used for map visualization. The
difference in median MCS z-scores (Δmedian MCS z-score) was used to visualize
differences between subtypes encompassing multiple samples (such as between
MethCORR subtypes, CMS subtypes, CRIS subtypes, MSI vs. MSS tumors etc.)
whereas MCS z-scores were used for visualization of differences between individual
samples within a cohort. MCS z-scores were calculated for each gene within each
investigated cohort by subtracting the cohort mean from an individual sample
MCS and dividing the difference by the cohort standard deviation. E.g. for analysis
of inter-tumor heterogeneity, MCS z-scores were calculated for each gene within
the whole COREAD FF1 cohort. For analysis of the cellular composition of the
TME cluster, MCS z-scores were calculated from a collection of cell types with
available 450K analysis downloaded from either Marmal-aid64, Gene Expression
Omnibus (GEO)65, or Array express (see Supplementary Table 4 and
Supplementary Data 13 for details of included samples; before calculation of MCS
z-scores across all sample types the median MCSs were calculated for similar
sample types, such as technical replicates).

For transcriptionally defined marker genes, gene sets, and signatures, two types
of scores were used for map visualization depending on the data format. For simple
gene sets and RNA signatures, defined by only one gene list (e.g., either up or
downregulated RNAs), a correlation to median MCS (cMCS) was calculated for
each MethCORR gene. The cMCSs were calculated as the average Pearson
correlation between the median MCS of the gene set and the MCS of each
MethCORR gene within the FF1, FF2, FFPE1, and FFPE2 cohorts. For complex
gene sets/signatures, defined by two gene lists (e.g., of both up and downregulated
genes), a correlation to median MCS difference score (ΔcMCS) was instead
calculated for each MethCORR gene. The ΔcMCSs were calculated by subtracting
the cMCSs for the downregulated gene set from the cMCSs for the upregulated
gene set (ΔcMCS= cMCSupreg.− cMCSdownreg.) for each gene. For visualization,
MethCORR map gene nodes were colored according to these MCS z-scores, ΔMCS
z-scores, cMCS, and ΔcMCS as indicated in the text. For map visualization of
published prognostic signatures, cMCS were calculated for the five general (non
subtype-specific) signatures (CRC-11336, ColoGuideEx37, Oncotype DX38,
ColoPrint39, and Tian et al.40), as they are single lists of RNAs associated with poor
prognosis CRC (only recurrence score genes from the Oncotype DX panel were
analyzed, whereas treatment genes were excluded). For the CRC subtype-specific
SSC prognosis and CIN prognosis signatures ΔcMCS were calculated, as they are
complex signatures encompassing lists of RNAs with high and low expression in
aggressive CRC3.

NMF-based consensus clustering and SubMap analysis. NMF consensus
clustering was performed using the R-package NMF66 with MCSs as input. The
number of classes was determined by the first distinctive reduction in the cophe-
netic score and silhouette consensus score67 and samples were classified according
to consensus class. The similarity of independent subtype predictions was analyzed
using the Genepattern SubMap module (v328,68) using pairwise comparisons of
MCSs and the following settings: num. marker genes = 50, number permutations
for Fisher’s statistics = 1000, weighted score type = no, null distribution = each. A
false discovery rate (FDR) P value < 0.05 was used as significance cutoff (provided
by the Submap software68).

CMS and CRIS subtype classification. CMS classification was performed with the
R-package CMSclassifier using the single sample method and nearest CMS as
predicted subtype2. RNA expression or iRNA expression were used as input, as
indicated in the text. CRIS classification was performed using the R-package
CRISclassifier provided by Isella et al.4 using RNA expression or iRNA expres-
sion as input, as indicated in the text.

Stroma, CIN, DNA methylation, and ESTIMATE scores. Stroma scores for each
gene (fraction of reads of murine origin) was acquired from Isella et al.48. Genes
with stroma scores >0.5 were considered stromal genes, whereas genes with stroma
scores <0.1 were considered epithelial cancer genes. For the COREAD cohort,
gene- and sample-specific CIN scores were established from the gene-level copy-
number data (GISTIC2 analysis) available at the UCSC XENA Public Data Hubs24.
The gene CIN scores were defined for each gene as the standard deviation of the
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GISTIC2 copy-numbers of all samples within the COREAD cohort. The sample
CIN scores were defined as the standard deviation of GISTIC copy-number scores
across all genes within a sample calculated for each sample within the COREAD
cohort. For non-COREAD cohort samples (without GISTIC2 data) CIN scores
were derived from copy-number data extracted from the HM-450K/EPIC
methylome BeadChips using the champ.CNA module of the ChAMP R-package57.
Here, the sample CIN score was defined as the mean interquartile range of the
copy-numbers for all chromosomal segments (seg.mean) covered by at least 25
Illumina probes (num. probes). The sample DNA methylation score for each
sample was defined as the 40th percentile of DNA methylation β-values of all CpG
sites common to all four CRC cohorts. ESTIMATE Stroma scores and Immune
scores were calculated using the R-package ESTIMATE69 using default parameters
and MCSs as input. Household gene status was defined as genes included in the list
of housekeeping genes70 available at [https://www.tau.ac.il/~elieis/HKG/].

Gene set enrichment analysis. Pre-ranked GSEA was performed using the GSEA
3.0 tool29 using default settings. Genes were pre-ranked according to their
Spearman correlation of their MCS to CRC1 subtype status and gene sets were
considered significantly up- or downregulated for FDR q values < 0.05 (provided by
the GSEA software29). The Molecular Signatures Database (MsigDB) gene set
collection v6.1 was used with the addition of custom gene sets (Supplementary
Table 3).

Immunohistochemistry. Immunohistochemical stainings of CRC tissue sections
were acquired from the Human Protein Atlas71 [https://www.proteinatlas.org/].
The following antibody and tissue sections were chosen (available from v8.pro-
teinatlas.org): ACTA2 (antibody: CAB013531; Pt. 2001, Pt. 1898, Pt. 2468, Pt.
3074), PDPN (antibody: HPA007534; Pt. 2001, Pt. 1958, Pt. 1898, Pt. 3264), CD3E
(antibody: HPA043955; Pt. 4724, Pt. 5005, Pt. 4448, Pt. 5004), HNF4A (antibody:
CAB019417; Pt. 2001, Pt. 2151, Pt. 1958, Pt. 3074).

Identification of cell-type-specific DNA methylation. Genomic regions with
cell-type-specific DNA methylation was identified by comparing multiple cell types
with available 450K analysis downloaded from either Marmal-aid64, GEO65, or
Array express72. Median MCSs were calculated for similar sample types, such as
technical replicates prior to analysis (see Supplementary Data 13 for details). For
selection of cell-type-specific methylation markers, only CpG probes with a ≥0.3
lower methylation β-value in the intended cell type, as compared with other
relevant cell types, were selected. The following genes/CpG probes were included
here: CD3E/cg24612198, ACTA2/cg09990481, PDPN/cg15563963, HNF4A/
cg06640637.

Quantitative methylation-specific PCR. QMSP was performed using DNA pri-
mers specific for unmethylated CD3E, ACTA2, PDPN, and HNF4A gene promoter
regions (See Supplementary Table 5 for primer sequences). BS conversion was
performed with the EZ DNA Methylation-Direct™ Kit (ZYMO research) according
to the manufacturer’s protocol. QMSP was performed using the ViiA™ 7 Real-Time
PCR system (Applied Biosystems). Biomarker assay reactions were carried out in
triplicate in a final volume of 6 µl and contained 2.5 µl TaqMan® Universal PCR
Master Mix, No AmpErase® UNG (Applied Biosystems), 0.15 µl of 20 pmol/µl
forward and reverse primer, 0.2 µl of 5 pmol/µl hydrolysis probe, 0.125 µl TEMPase
hot start DNA polymerase, 0.4 µl of 12.5 pmol/µl dNTP mix, 0.475 µl H2O, and
2 µl of 2.5 ng/µl BS treated DNA template. AluC4A reference gene reactions were
carried out in triplicate in a final volume of 6 µl and contained 2.5 µl TaqMan®
Universal PCR Master Mix, No AmpErase® UNG (Applied Biosystems), 0.2 µl of
25 pmol/µl forward and reverse primer, 0.1 µl of 17 pmol/µl hydrolysis probe,
0.125 µl TEMPase hot start DNA polymerase, 0.4 µl of 12.5 pmol/µl dNTP mix,
0.475 µl H2O, and 2 µl of 2.5 ng/µl BS treated DNA template. QMSP reactions were
mixed in MicroAmp Optical 384 Well reaction Plates (Applied Biosystem) and run
on the ViiA™ 7 Real-Time PCR system (Applied Biosystems) with the following
PCR program: denaturation at 95 °C for 10 min, followed by 40 cycles at 95 °C for
15 s, and 60 °C for 1 min. The ViiA7TM software (Applied Biosystems) was used for
evaluation of the fluorescence signals and the ΔCT was calculated by the use of the
reference gene AluC4A. Subtyping was performed using ΔCTHNF4A as a marker for
CRC2 and the average of ΔCTCD3E and ΔCTACTA2 as a marker for CRC1 (high
stromal/immune cell infiltration). Samples with a ΔCTHNF4A/(ΔCTCD3E+
ΔCTACTA2)average ratio <0.85 were defined as CRC2 samples. CT values were
measured three times for each sample (technical triplicates).

Statistical analysis and RFS analysis. Unless otherwise noted, statistical sig-
nificance of differences between groups was determined using a non-parametric
WRS test. During Submap analysis28 and pre-ranked GSEA29 a FDR-corrected P
value < 0.05 was considered significant and P values were provided by the corre-
sponding software. During gene list enrichment analysis an adjusted P value < 0.05
was considered significant (provided by the Enrichr software30). During eFORGE
analysis a Q-value < 0.05 was considered significant (provided by the eFORGE
software). RFS analysis was performed in UICC TNM stage II–III samples with

good clinical annotation and follow-up (Supplementary Table 1). The inclusion
criteria were as follow: A minimum of 2 years follow-up and survival after tumor
resection, no local recurrence of the disease, no other cancer within 3 years, and no
synchronous cancers. RFS was measured from date of surgery to verified first
radiologic recurrence (distant) and was censored at the last follow-up or death. The
following average normalized β-value cutoffs were used for the CD3E, ACTA2, and
PDPN CpG probes to stratify patients into high- and low relapse risk groups: β-
valueCD3E < 1, average β-valueACTA2, PDPN ≤ 1. The following ΔCT cutoffs were used
for the CD3E, ACTA2, and PDPN QMSP biomarker assays to stratify patients into
high- and low relapse risk groups: ΔCTCD3E < 19.5, ΔCTACTA2 < 15.55, ΔCTPDPN <
13.5. Survival analysis was performed using the Kaplan–Meier method with the
Stata/IC 14.2 (StataCorp) software. Significance was evaluated by log-rank test of
equality. Cox proportional hazards regression analysis was used to assess the
impact of MethCORR risk groups, TNM stage, and MSI status on RFS. The pro-
portional hazard assumption was tested by a global test of the Schoenfeld residuals.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Normalized 450K DNA methylation datasets for the TCGA COREAD cohort used in this
study are publicly available via the UCSC XENA Public Data Hubs24 [https://
xenabrowser.net/datapages/?dataset=TCGA.COADREAD.sampleMap%
2FHumanMethylation450&host=https%3A%2F%2Ftcga.xenahubs.
net&removeHub=http%3A%2F%2F127.0.0.1%3A7222] using the “dataset ID: TCGA.
COADREAD.sampleMap/HumanMethylation450” and via the GDC Data Portal25

[https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%
22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content
%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%
3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%
22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value
%22%3A%5B%22TCGA-COAD%22%2C%22TCGA-READ%22%5D%7D%7D%2C%7B
%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.
samples.portions.is_ffpe%22%2C%22value%22%3A%5B%22false%22%5D%7D%7D%2C
%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.
data_type%22%2C%22value%22%3A%5B%22Methylation%20Beta%20Value%22%5D%
7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%
3A%22files.platform%22%2C%22value%22%3A%5B%22illumina%20human%
20methylation%20450%22%5D%7D%7D%5D%7D] as “datatype=methylation beta
value”, “platform=illumina human methylation 450”, and “case/biospecimen filter:
samples portions is FFPE=false” for the TCGA-COAD and TCGA-READ project.
Normalized RNA-sequencing data sets for the TCGA COREAD cohort used in this study
are publicly available via the UCSC XENA Public Data Hubs24 [https://xenabrowser.net/
datapages/?dataset=TCGA.COADREAD.sampleMap%2FHiSeqV2&host=https%3A%2F
%2Ftcga.xenahubs.net&removeHub=http%3A%2F%2F127.0.0.1%3A7222] using the
“dataset ID: TCGA.COADREAD.sampleMap/HiSeqV2” and via the GDC Data Portal25

[https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%
22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content
%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%
3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%
22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value
%22%3A%5B%22TCGA-COAD%22%2C%22TCGA-READ%22%5D%7D%7D%2C%7B
%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.
samples.portions.is_ffpe%22%2C%22value%22%3A%5B%22false%22%5D%7D%7D%2C
%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.
analysis.workflow_type%22%2C%22value%22%3A%5B%22HTSeq%20-%20FPKM%22%
5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field
%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22RNA-Seq%
22%5D%7D%7D%5D%7D] as “Experimental strategy=RNA-Seq”, “Workflow Type=
HTSeq = FPKM”, and “case/biospecimen filter=samples portions is FFPE=false” for the
TCGA-COAD and TCGA-READ project. 450K DNA methylation and RNA-sequencing
data from TCGA CRC patient with matched FF and FFPE samples are publicly avialable
via the GDC Data Portal25 [https://portal.gdc.cancer.gov/] using the Database UUID
provided in Supplementary Data 11. The RNA-sequencing data from the SYSCOL
adenoma/carcinoma samples and the SYSCOL 450K methylome data is deposited at
European Genome-phenome Archive (EGA, [https://www.ebi.ac.uk/ega/]), which is
hosted by the European Bioinformatics Institute (EBI) and the Centre for Genomic
Regulation (CRG). Study accession numbers are: EGAS00001002376 (RNA sequencing)
and EGAS00001004293 (methylomes). The dataset and sample ID’s of the other publicly
available DNA methylation datasets used in this study are given in Supplementary
Data 13. All other data supporting the findings of this study are available within the
article, its supplementary information files and from the corresponding author upon
reasonable request. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
R codes for calculation of MCSs and iRNA profiles are available upon request.
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