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Fermentation metabolites of Diamond V Original XPC™ (XPC), a biological product 
derived from yeast fermentation, were evaluated for their ability to reduce the Salmonella 
Typhimurium population using an in  vitro mixed anaerobic culture system containing 
cecal microbiota to simulate chicken hindgut conditions. Four different samples were 
prepared: anaerobic mixed culture containing (1) feed only, (2) cecal only (ceca were 
harvested from 42  days old broiler chickens), (3) feed and cecal contents, and (4) 
feed, cecal contents, and 1% XPC. Two experimental conditions were investigated:  
Group 1, in which the cecal content was added at the same time as a S. Typhimurium 
marker strain and Group 2, in which the cecal content was preincubated for 24 h prior 
to the inoculation with the S. Typhimurium marker strain. The mixed cultures were incu-
bated anaerobically at 37°C, and the S. Typhimurium marker strain was enumerated at 
0, 24, and 48 h. Analysis of short chain fatty acids was also conducted for 24 h. In the 
Group 1 experiment, adding XPC did not exhibit significant reduction of S. Typhimurium. 
However, the presence of XPC resulted in rapid reduction of S. Typhimurium in Group 
2. S. Typhimurium was reduced from 6.81 log10 CFU/ml (0 h) to 3.73 log10 CFU/ml and 
1.19 log10 CFU/ml after 24 and 48 h, respectively. These levels were also 2.47 log10 and 
2.72 log10 lower than the S. Typhimurium level recovered from the control culture with 
feed and cecal contents, but without XPC. Based on these results, it appears that the 
ability of XPC to reduce S. Typhimurium requires the presence of the cecal microbiota. 
Short chain fatty acid analysis indicated that acetate and butyrate concentrations of 
cultures containing XPC were twofold greater than the control cultures by 24 h of anaer-
obic growth. Results from the present study suggest that dietary inclusion of XPC may 
influence cecal microbiota fermentation and has the potential to reduce Salmonella in the 
cecum. Implications of these findings suggest that XPC may decrease preharvest levels 
of Salmonella in broilers and layers.

Keywords: Salmonella Typhimurium, Diamond V Original XPc, mixed anaerobic culture, in vitro, reduction, short 
chain fatty acids
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inTrODUcTiOn

Food-borne disease continues to be one of the primary public 
health concerns throughout the world. Infections by Salmonella 
are one of the leading causes of food-borne gastroenteritis to 
systemic infections in humans. Annually, it is estimated that over 
one million Americans contract Salmonella (1), and yearly costs 
for Salmonella control efforts are estimated to be up to $14.6 bil-
lion (2, 3). Salmonellosis usually occurs by consumption of foods 
or water contaminated with Salmonella, and common sources are 
poultry and poultry products (4), thus it is essential to control 
pathogenic Salmonella in poultry products.

Because the use of antibiotic growth promoters provoke a 
negative reaction from many consumers due to public health 
concerns such as the appearance of antibiotic resistance, the food 
industry has been searching for effective alternatives to replace 
antibiotics (5–7). Prebiotics can be defined as non-digestible 
food ingredients that selectively simulate the growth of beneficial 
bacteria and/or minimize pathogen growth in the colon, and they 
are occasionally used in the poultry industries to improve poultry 
health as a replacement of antibiotic growth promoters (8–11).

However, there are several ingredients that do not stringently 
fit the definition of prebiotics, but nevertheless provide similar 
and beneficial effects on host health with different modes of 
action compared to prebiotics. These ingredients are referred as 
“prebiotic-like compounds” (12). Fermentation metabolites of 
Diamond V Original XPC™ (XPC; Diamond V, Cedar Rapids, 
IA, USA) is a common prebiotic-like compound, which includes 
post-fermentation growth medium residues, residual yeast cells, 
and yeast cell wall fragments (mannan-oligosaccharides and 
β-glucans) (13). To date, several studies of XPC have focused on 
its effects on the host including feed uptake, growth performance, 
reproductive performance, and immunomodulatory functions 
with different animal model systems (13–17); however, few 
studies have examined inhibitory/bactericidal effects against 
pathogenic Salmonella (18, 19).

Because the environment of the chicken gut is anaerobic, 
the in vitro methodology using an anaerobic mixed culture can 
provide more empirical data since it can mimic the chicken cecal 
environment effectively while minimizing confounding host vari-
ables and is considered cost-effective (20). The gut microbiota fer-
ment non-digestible ingredients to produce various compounds 
including short chain fatty acids (SCFA), methane, hydrogen, and 
ammonia (21). Among these, SCFA are potential metabolites that 
can be inhibitory to pathogens such as Salmonella (22, 23). In the 
present study, the ability of XPC in feed to reduce S. Typhimurium 
was investigated using a mixed anaerobic culture system to mimic 
conditions within the chicken hindgut. Additionally, the require-
ment for cecal microbiota on the reduction of S. Typhimurium 
by XPC was established. Finally, SCFA analysis was performed on 
the anaerobic cultures with or without XPC to further character-
ize the effect of XPC on cecal fermentation.

MaTerials anD MeThODs

Preparation of anaerobic Dilution solution
Our in vitro anaerobic mixed culture experiment was based on 
the method of Donalson et al. The mixed cultures were grown in 

anaerobic dilution solution (ADS), consisting of 0.45 g/l K2HPO4, 
0.45  g/l KH2PO4, 0.45  g/l (NH4)2SO4, 0.9  g/l NaCl, 0.1875  g/l 
MgSO4-7H2O, 0.12 g/l CaCl2-2H2O, 1 ml/l 0.1% resazurin, 0.05% 
cysteine-HCl, and 0.4% CO2-saturated sodium carbonate, with 
the sodium carbonate added last as described previously (24–29). 
ADS was sparged with an anaerobic gas mixture (90% nitro-
gen/5% carbon dioxide/5% hydrogen) for 30 min in an anaerobic 
chamber using an aquarium air pump and airstone prior to auto-
claving. Autoclaved ADS was cooled to room temperature and 
allowed to equilibrate overnight in an anaerobic chamber (Coy 
Laboratories, Grass Lake, MI, USA) with the same atmosphere 
described above to remove all traces of oxygen.

Bacterial culture
Salmonella Typhimurium marker strain ST97, a nalidixic acid-
resistant (NAR) isolate (gift of Dr. Billy Hargis, Poultry Health 
Laboratory, University of Arkansas) was used in the present study. 
This isolate was grown in sterile glass culture tubes with agita-
tion for 16 h in Luria–Bertani (LB) medium containing 20 μg/
ml nalidixic acid, 37°C at 250 rpm. The bacterial suspension was 
washed three times in phosphate-buffered saline (PBS).

cecal sample Preparation
Ceca from three different CO2-euthanized 42-day-old Cobb 
male broiler chickens (Cobb-Vantress, Siloam Springs, AR, USA) 
were collected separately using alcohol-dipped, flame-sterilized 
tools. A University of Arkansas Institutional Animal Care and 
Use Committee (IACUC)-approved protocol was used to ensure 
humane treatment of the chickens (IACUC # 15052). Ceca were 
placed in sterile sample bags (VWR, Radnor, PA, USA). The 
bags were then placed in a portable anaerobic box (Mitsubishi 
Gas Chemical Co., Japan) containing oxygen-scrubbing sachets. 
Immediately after harvest, ceca were transferred to an anaerobic 
chamber (Coy Laboratory Products, Grass Lake, MI, USA). Two 
palladium catalyst scrubbers running continuously maintained 
an anaerobic environment inside the chamber.

anaerobic In Vitro Mixed cultures
A portion of the cecal contents from three individual chickens 
were each removed aseptically within the chamber, weighed, and 
diluted 1:3000 by addition of 0.1 g of cecal content to 300 ml ADS 
for each chicken. A total of 20 ml of this diluted cecal content was 
transferred to each serum bottle with or without ground chicken 
feed (40 mesh) and XPC as indicated below. An additional culture 
received sterile ADS, but no cecal content. An initial inoculum of 
approximately 1 × 107 CFU/ml of S. Typhimurium was added to 
each 20 ml culture. Cultures were stoppered with airtight rubber 
stoppers and aluminum crimps, removed from the anaerobic 
chamber, and incubated at 37°C with 150 rpm shaking for 48 h.

Two different experimental designs were employed, referred 
to as Group 1 (unadapted) and Group 2 (adapted), respectively. 
The experimental designs are illustrated in Figure 1. In Group 1, 
the Salmonella NAR marker strain was added at the beginning of 
the culture incubation along with cecal bacteria, and/or chicken 
feed, and/or XPC. In Group 2, S. Typhimurium was added after 
a 24 h preincubation of the cecal bacteria with the chicken feed 
and/or XPC. Three control cultures were run in parallel as indi-
cated in Figure 1.
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FigUre 1 | anaerobic experimental strategy. (a) Cecal content is added to anaerobic solution with chicken feed and fermentation metabolites of Original XPC. 
Controls contain (1) chicken feed, but no cecal content; (2) cecal content, but no chicken feed and; (3) feed + cecal content, respectively. Experimental treatments 
contain feed, cecal contents, and XPC. (B) Group 1 cultures receive Salmonella at the same time as cecal content (at 0 time). Group 2 cultures receive Salmonella 
after a 24 h incubation of cecal content under anaerobic conditions. Each culture is then incubated with Salmonella for 48 h.

FigUre 2 | Salmonella Typhimurium survival in unadapted anaerobic cultures (group 1) with and without fermentation metabolites of Original XPc. 
Bars and brackets represent the mean and SE of three biological replicates.
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Salmonella enumeration
At 0, 24, and 48  h, an aliquot of each culture was removed, 
diluted, and spread on Brilliant Green Agar medium (BG, BD 
Biosciences, Franklin Lakes, NJ, USA) supplemented with 20 ug/
ml nalidixic acid for quantitation of colony forming units (CFU) 

of marker strain S. Typhimurium per milliter of culture. The 
diluted cecal contents were also tested for NAR bacteria prior to 
addition of marker strain S. Typhimurium by inoculation into 
tetrathionate (TT) enrichment broth (BD Biosciences, Franklin 
Lakes, NJ, USA), and none were detected. If no Salmonella were 
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FigUre 3 | Salmonella Typhimurium survival in adapted anaerobic cultures (group 2) with and without fermentation metabolites of Original XPc. 
Bars and brackets represent the mean and SE of three biological replicates. Asterisks indicate significant difference (P < 0.05) from the “feed + cecal” control.
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detected at a particular time point in undiluted culture, that 
culture was inoculated into TT enrichment broth to confirm that 
no S. Typhimurium survived.

short chain Fatty acid analysis
Anaerobic culture supernatants were stored at −20°C until they 
could be analyzed by gas chromatography. A 1 ml portion of cul-
ture supernatant was centrifuged at 14,000 × g to remove solids. 
An aliquot of the supernatant (450 μl) was then mixed with 50 μl of 
GC reagent (50 mM 4-methyl-valeric acid, 5% meta-phosphoric 
acid, 1.6  mg/ml copper sulfate). This mixture was allowed to 
incubate at 25°C for 10  min and subsequently centrifuged at 
14,000 × g. The supernatant was transferred to a fresh tube and 
1 μl was loaded into a Shimadzu 2010 gas chromatograph (Kyoto, 
Japan) fitted with a 30 m × 0.25 mm BP21 glass capillary column 
with 0.25 mm film thickness (SGE, Austin, TX, USA) operated 
at 100 kPa He carrier gas pressure, with 170 kPa H2, Ar, and air 
pressure, at 100°C for 3 min, followed by a temperature gradient 
of 4°C/min to 120°C, holding at 120°C for 1 min, followed by a 
further gradient of 3°C/min to 150°C. The SPL was maintained at 
220°C with split ratio = 30. FID was maintained at 230°C. Carrier 
gas flow rate was set to 30  ml/min. A 1:100 mixture of acetic, 
propionic, and butyric acids was serially diluted, mixed with GC 
reagent, and used as standards. Peak areas were normalized for 
loading differences using the valeric acid internal control from 
the GC reagent.

statistical analysis
Means were determined to be significantly different if P < 0.05 by 
two-tailed paired Student t-test using Microsoft Excel.

resUlTs anD DiscUssiOn

The main objective of this study was to investigate the inhibitory 
effect of XPC on S. Typhimurium when combined in vitro with 
cecal microbiota. The ceca are the main site where pathogens 
including Salmonella colonize (30). Since poultry have a relatively 
slow digestion transit time, poultry ceca have a large number of 
bacteria, and the majority of these are strictly anaerobic (27, 31, 
32). Cecal bacteria in poultry become more diverse as the host 
matures, and they can maximize metabolic fermentation in an 
anaerobic environment (12). Cecal contents used in this study 
were obtained from mature chickens (42-day-old chickens), thus 
it should serve as a source of a fairly diverse microbiota contain-
ing a wide range of anaerobic bacteria. Also, using an anaerobic 
mixed culture in this study could help to understand the actual 
fate of Salmonella in ceca by various feeding conditions.

Two conditions were investigated in the present study: Group 1 
(unadapted), in which the cecal microbiota was added at the same 
time as the S. Typhimurium and Group 2 (adapted), in which 
the cecal microbiota was allowed to metabolize anaerobically for 
24 h prior to the inoculation of S. Typhimurium (see Figure 1 
for design). Results on S. Typhimurium reduction by XPC were 
different between groups. In the unadapted condition (Group 
1), the population of S. Typhimurium was slightly increased or 
maintained during 48 h incubation in all controls (feed only, cecal 
only, and feed + cecal) and treatment (feed + ceca + XPC); the 
population after incubation was not significantly different from 
the initial population (Figure 2). In the feed + cecal sample, S. 
Typhimurium populations were increased from 6.89 log10 CFU/
ml to 8.52 and 8.53 log10 CFU/ml after 24 and 48 h, respectively 
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FigUre 4 |  Salmonella Typhimurium survival in 
feed + cecal + fermentation metabolites of Original XPc and in 
control anaerobic cultures lacking cecal contents. Asterisks indicate 
significant difference (P < 0.005) from the corresponding control.

FigUre 5 | short chain fatty acid analysis of 24 h anaerobic cultures containing 6-week-old broiler cecal contents or feces with and without 1% 
fermentation metabolites of Original XPc. Bars and brackets represent the mean and SE of three biological replicates (chickens). Asterisk indicates significant 
difference (P < 0.05) from corresponding negative control (NC).
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(P < 0.05). When XPC was added to the feed + cecal sample, S. 
Typhimurium populations were increased from 6.89 log10 CFU/
ml to 8.60 and 7.92 log10 CFU/ml after 24 and 48 h (P < 0.05), 
respectively, indicating that XPC had little or no effect on 
Salmonella survival when S. Typhimurium was added at the same 
time as cecal contents.

In contrast, XPC-containing cultures exhibited a significant 
reduction in Salmonella survival under adapted conditions 
(Group 2) (Figure 3). There was no reduction in S. Typhimurium 
in the feed-only control sample, and only a 0.87 log10 reduction of 
populations of S. Typhimurium was achieved after 48 h incubation 
in the cecal-only control sample. In addition, the S. Typhimurium 
population was decreased in both the feed + cecal control and the 
feed + cecal + XPC treatments. However, the presence of XPC 

resulted in a greater reduction of S. Typhimurium compared with 
the feed + cecal control. When S. Typhimurium was inoculated 
to the feed + cecal control, a 2.87 log10 reduction in the bacterial 
population was observed after 48 h. With XPC, the log10 reduc-
tions achieved after 24 and 48 h incubation were 3.08 and 5.62 
log10 reduction, respectively. These levels are 2.47 log10 (24 h) and 
2.72 log10 (48 h) lower than the Salmonella level recovered from 
the feed + cecal control.

These results suggested that adaptation of the cecal micro-
biome in the in  vitro mixture to XPC prior to inoculation of 
S. Typhimurium appears to generate a more inhibitory environ-
ment for Salmonella than XPC unadapted cecal cultures. To evalu-
ate the role of the microbiota on reduction of S. Typhimurium, 
survival of S. Typhimurium in “Feed  +  cecal  +  XPC” and 
“Feed + XPC without cecal contents” were compared (Figure 4). 
When S. Typhimurium was exposed to XPC in the absence of 
broiler cecal content, no reduction in S. Typhimurium was 
observed, suggesting that XPC acts in concert with cecal micro-
biota to inhibit S. Typhimurium (Figure  4). This is a further 
indication that cecal microbiota are essential to the reduction of 
Salmonella by XPC. These results are in accordance with a previ-
ous study reporting higher inhibitory activities of fructooligo-
saccharide in samples preincubated with cecal microbiota prior 
to inoculation of bacteria (25). Furthermore, the results from 
both in vitro studies suggest that dietary inclusion of XPC may 
influence cecal microbiota fermentation and has the potential to 
reduce Salmonella colonization in the cecum.

The SCFA analysis of supernatants from the mixed cultures 
indicated that acetate and butyrate concentrations of cultures con-
taining XPC + cecum and XPC + feces were twofold greater than 
the control cultures after 24 h of anaerobic growth (Figure 5). This 
suggests one or more microorganisms have potentially increased 
acetate and/or butyrate production as a result of being exposed 
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to components of XPC. This additional acetate and butyrate may 
be contributing to the inhibition of Salmonella due to the direct 
toxic effect of intracellular anion accumulation when these acids 
dissociate in the cytosol of sensitive bacteria such as Salmonella 
(22, 23, 33). Interestingly, butyrate has been found to inhibit 
Salmonella invasion of host cells by downregulating Salmonella 
pathogenicity island 1 (SPI-1) gene expression (22, 34). Along 
these lines, Feye et al. has shown that XPC fed to broilers reduces 
the virulence regulatory gene hilA in the intestine (19).

In conclusion, XPC can effectively reduce S. Typhimurium 
survival (5.62 log10 reduction) in an in  vitro anaerobic mixed 
cecal culture, and XPC and cecal microbiota are both required 
for the reduction of S. Typhimurium survival. Incubation of 
cecal microbiota with XPC increased SCFA levels (particularly 
acetate) in anaerobic cultures. The use of XPC as a prebiotic-like 
compound has a number of advantages for use in poultry: (1) 
there are no concerns over usage of antibiotics or growth promot-
ers or the appearance of antibiotic-resistant bacteria, (2) the use 
of XPC is acceptable to the both industries and consumer since 
it is a naturally derived yeast product (also an environmentally 
friendly product), (3) its use by the poultry industry is also fea-
sible because XPC was classified as generally recognized as safe 
(GRAS) by US FDA (13). To the best of our knowledge, this is the 
first study to examine the inhibitory effects of XPC in feed with an 
anaerobic mixed cecal inocula culture to mimic the chicken cecal 
environment. The implication of these findings is that XPC may 
decrease preharvest levels of Salmonella in the ceca of broilers 

and layers, thus it could be a suitable alternative to antibiotics 
currently used in poultry industries.
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