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ABSTRACT

BRCA1 germline mutation carriers are predisposed
to breast cancers. Epigenomic regulations have been
known to strongly interact with genetic variations
and potentially mediate biochemical cascades in-
volved in tumorigenesis. Due to the cell-type speci-
ficity of epigenomic features, profiling of individual
cell types is critical for understanding the molecu-
lar events in various cellular compartments within
complex breast tissue. Here, we produced cell-type-
specific profiles of genome-wide histone modifica-
tions including H3K27ac and H3K4me3 in basal, lu-
minal progenitor, mature luminal and stromal cells
extracted from a small pilot cohort of pre-cancer
BRCA1 mutation carriers (BRCA1mut/+) and non-
carriers (BRCA1+/+), using a low-input ChIP-seq
technology that we developed. We discovered that
basal and stromal cells present the most extensive
epigenomic differences between mutation carriers
(BRCA1mut/+) and non-carriers (BRCA1+/+), while lu-
minal progenitor and mature luminal cells are rel-
atively unchanged with the mutation. Furthermore,
the epigenomic changes in basal cells due to BRCA1
mutation appear to facilitate their transformation into
luminal progenitor cells. Taken together, epigenomic
regulation plays an important role in the case of
BRCA1 mutation for shaping the molecular land-
scape that facilitates tumorigenesis.

INTRODUCTION

Mutations on tumor suppressor gene BRCA1 have been
strongly linked to increased risks to breast, ovarian and
other cancers (1). However, how these genetic alterations
trigger the molecular cascades that ultimately lead to the

pathology of tumorigenesis remains unclear. Breast tissue
contains both epithelial and stromal compartments and the
former can be further divided into basal (BCs), luminal pro-
genitors (LPs), and mature luminal (MLs) cells based on
their surface markers that are indicative of their develop-
mental lineage and/or location in the two epithelial layers
of the mammary duct (2). These various cell types present
characteristic gene expression patterns and epigenomic
landscapes (3–6). Breast tumors involving BRCA1 germline
mutation are predominantly basal-like/triple-negative (7–
9). Recent results have suggested that BRCA1-associated
basal-like breast cancers originate from luminal progenitor
cells instead of basal stem cells (10,11). Thus, it is critical to
understand how various cell types within breast tissue are
affected by BRCA1 mutation and how such dynamics in the
cellular identity potentially contribute to tumorigenesis.

Epigenomic landscape plays a significant role in defin-
ing the cell state and mediating genetic factors into molec-
ular cascades that are eventually involved in disease devel-
opment. DNA sequence variation is known to impact epi-
genetic landscape, chromatin structures and molecular phe-
notypes via influencing the cis-regulatory elements such as
promoters and enhancers (12–14). The changes in the epi-
genetic landscape may in turn alter gene expression and
cellular phenotypes to promote cancer development. While
traditional triple-negative breast cancer has been associ-
ated with increases in super-enhancers (15,16), BRCA1
mutation has been recently shown to significantly attenu-
ate epigenomic functional elements such as enhancers in
our study using pre-cancerous breast tissue homogenates
(17). However, due to predominant basal-like characteris-
tics of BRCA1-associated tumors, cell-type-specific profil-
ing of tissue samples is needed to decipher how each cell
type within breast tissue is affected by the mutation and
contributes to tumorigenesis.

In this study, we profile two important histone marks
H3K4me3 and H3K27ac in a cell-type-specific manner in
all four major cell types from pre-cancerous human breast
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tissue samples using a low-input ChIP-seq technology that
we developed (MOWChIP-seq (18,19)). It is important to
note that we define pre-cancerous breast tissue as healthy
tissue from a breast with no history of cancerous growths.
It does not intend to imply that this is tissue from a breast
that will assuredly develop cancer. We compare the data on
BRCA1 mutation carriers (BRCA1mut/+) and non-carriers
(BRCA1+/+) and extract epigenomic features that separate
the two groups. Such comparison reveals that the extent of
epigenomic changes varies among the four cell types. De-
spite a limited sample size, we find striking changes that
warrant additional study and correlate our results with
current literature. These epigenomic alterations potentially
change the cell state and lay the groundwork for future tu-
morigenesis.

MATERIALS AND METHODS

Breast tissues

The study was approved by the Institutional Review Board
at the University of Texas Health Science Center at San An-
tonio. Informed consent was obtained from all participants.
Breast tissues were obtained from adult female cancer-free
BRCA1 mutation carriers (MUT) or non-carriers (NC)
who underwent cosmetic reduction of mammoplasty, diag-
nostic biopsies or mastectomy. Genetic testing of BRCA1
mutation was conducted by the hospital (20). The de-
identified tissue samples were provided to the authors
by Dr. Rong Li and Dr. Xiaowen Zhang of UTHSCSA.
Analysis of the de-identified patient materials was ap-
proved by the Institutional Review Board of Virginia Tech.
Using previously published protocols (21), fresh unfixed
breast tissue was processed to generate single-cell suspen-
sion and the single cells were sorted into four fractions us-
ing FACS: EpCAM CD49f stromal cells (SCs), EpCAM-
lowCD49fhigh basal cells (BCs), EpCAMhigh CD49f + lu-
minal progenitor cells (LPs) and EpCAMhigh CD49f ma-
ture luminal cells (MLs).

Chromatin shearing

The sonication process to generate chromatin fragments
is similar to what we described in previous publications
(18,19). A sorted cell sample of a specific type (containing
100K to 3 million cells, depending on the cell type and sam-
ple) was centrifuged at 1600 g for 5 min at room tempera-
ture and washed twice with 1 ml PBS (4˚C). Cells were re-
suspended in 1 ml of 1% freshly prepared formaldehyde in
PBS and incubated at room temperature on a shaker for 5
min. Crosslinking was quenched by adding 0.05 ml of 2.5
M glycine and shaking for 5 min at room temperature. The
crosslinked cells were centrifuged at 1600 g for 5 min and
washed twice with 1 ml PBS (4˚C). The pelleted cells were
resuspended in 130 �l of the sonication buffer (Covaris,
10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.1% SDS and
1× protease inhibitor cocktail [PIC]) and sonicated with
105 W peak incident power, 5% duty factor, and 200 cy-
cles per burst for 16 min using a Covaris S220 sonicator
(Covaris). The sonicated chromatin samples were shipped
to Virginia Tech for MOWChIP-seq assay. The sonicated
sample was centrifuged at 16 100 g for 10 min at 4˚C. The

sheared chromatin in the supernatant was transferred to a
pre-autoclaved 1.5 ml microcentrifuge tube (VWR). A frac-
tion of the sonicated chromatin sample was mixed with IP
buffer (20 Mm Tris-HCl, pH 8.0, 140 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 0.1% (w/v) sodium deoxycholate,
0.1% SDS, 1% (v/v) Triton X-100, with 1% freshly added
PMSF and PIC) to generate a MOWChIP sample contain-
ing chromatin from 50 000 cells with a total volume of 50
�l.

MOWChIP-seq

We conducted MOWChIP-seq of the sonicated chromatin
samples with 50 000 cells per assay for H3K27ac profiling
and 10 000 cells per assay for H3K4me3 profiling, using
protocols and microfluidic devices described in our previ-
ous publications (18,19). We used anti-H3K27ac antibody
(abcam, cat: ab4729, lot: GR323132-1) and anti-H3K4me3
antibody (Millipore, cat: 07–473, lot: 2930138) in these ex-
periments.

Data quality control

ChIP-seq data sets that had fewer than 10 000 called peaks
in a given technical replicate were discarded. After quality
control, the technical replicates of the same cell sample were
combined for the data analysis. As a result, we obtained
three biological replicates for MUT H3K27ac samples, four
biological replicates for NC H3K27ac samples, two biolog-
ical replicates for MUT H3K4me3 samples and one biolog-
ical replicate for the NC H3K4me3 sample. The fraction of
reads in peaks (FrIP) was calculated using the number of
mapped reads within peak regions divided by total mapped
reads. Normalized-strand correlation (NSC) and relative-
strand correlation (RSC) were calculated using phantom-
peakqualtools v1.2.2 (22,23).

Data processing

Unless otherwise mentioned, all data analysis was per-
formed with Bash scripts or with R v3.6.1 (The R Foun-
dation) scripts in RStudio. Sequencing reads were trimmed
using default settings by Trim Galore! v0.4.1 (Babraham In-
stitute). Trimmed reads were aligned to the hg19 genome
with Bowtie v1.1.2 (24). Peaks were called using MACS2
v2.1.1.20160309 (q < 0.05) (25). Blacklisted regions in hg19
as defined by ENCODE were removed to improve data
quality (26). Mapped reads from ChIP and input samples
were extended by 100 bp on either side (250 bp total) and a
normalized signal was calculated.

Normalized Signal

=
(

ChIP Signal
No. of ChIP Reads

− Input Signal
No. of Input Reads

)
× 106

For Pearson’s correlation, the signal was calculated
around the promoter region (TSS ± 2 kb) and plotted with
the corr and levelplot functions. For visualization in IGV
v2.4.10 (Broad Institute), the signal was calculated in 100
bp windows over the entire genome and output as a bigWig
file.
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Differential analysis

To determine peak regions with differential signal, the Bio-
conductor package DiffBind v2.12.0 was used (27,28). A
‘majority-rules’ consensus peak set was generated for each
experimental group and combined to make a master set
for analysis. Peaks were considered to be valid if they were
present in the majority of biological replicates. Counts were
generated using default conditions and compared using the
DESeq2 option. Normalized signal counts were extracted
and plotted in heatmaps and boxplots using ggplot2 v3.3.1
(29). Gene ontology analysis was performed using the web-
based tool GREAT v4.0.4 (30) with default settings for
hg19. For the SC analysis, the top 6000 regions (by smallest
FDR value) were used.

Enhancers analysis

To call enhancers, we considered H3K27achigh regions that
did not intersect with promoter regions to be enhancer re-
gions. First, consensus H3K27ac peak sets were generated
for NC and MUT samples for each cell type after determin-
ing the set of peak regions present in NC and/or MUT sam-
ples. Peak widths were expanded to be 1000 bp long (sum-
mit ± 500 bp). Promoters were defined as TSS ± 500 bp.
Any H3K27ac 1 kb regions that intersected with a promoter
region was removed and the remaining regions were desig-
nated as enhancers. Motif analysis was performed to deter-
mine enriched transcription factor binding motifs among
the enhancer regions with HOMER v4.10.3 (31) (with op-
tions –size 1000 –mask –p 16 –nomotif). Functional classi-
fication of transcription factors was performed using Pan-
ther v15.0.0 (32). Enhancers were mapped to genomic re-
gions with ChIPSeeker v1.20.0 (33). Enhancers were con-
sidered associated with ER-negative SNPs (obtained from
NHGRI-EBI GWAS Catalog (34)) if the SNP was within
150 kb up- or downstream.

RESULTS

Breast tissues from BRCA1 mutation carriers (MUTs, n = 3
for H3K27ac, 2 for H3K4me3) and non-carriers (NCs,
n = 3–4 for H3K27ac, 1 for H3K4me3) were collected dur-
ing breast reduction or mastectomy surgery (Supplemen-
tary Table S1), dissociated, and sorted into the basal, lumi-
nal progenitor, mature luminal and stromal cell (SC) types
(Figure 1A and Supplementary Table S2) (35). Due to the
nature of the tissue collection requirement, tissue availabil-
ity was a concern and was responsible for our small sam-
ple sizes. Regardless, the results we present here can still be
important as a means of instigating further research into
an unsettled topic. We profiled H3K4me3 and H3K27ac
using MOWChIP-seq with at least two technical replicates
for each cell sample (Supplementary Tables S3 and S4).
We selected H3K4me3 as it is an activating mark that is
associated with transcriptional start sites (TSSs) of genes
(36,37), and H3K27ac as it labels active enhancers (38).
Both marks are positively correlated with increases in gene
expression. All samples had a fraction of reads in peaks
(FrIP), normalized-strand correlation (NSC) and relative-
strand correlation (RSC) that fell within ENCODE guide-
lines (23). Average NRF values for H3K27ac samples and

H3K4me3 samples were 0.87 and 0.83, respectively, and
are ENCODE compliant. Each replicate was normalized
to account for differences in sequencing depth. Similarly,
input data were also normalized to sequencing depth be-
fore subtraction from sample data for input normalization.
Our ChIP-seq datasets are highly correlated between tech-
nical replicates with an average Pearson correlation coef-
ficient r of 0.962 for H3K4me3 and 0.950 for H3K27ac.
We generally define the correlation to be considered high
when r > 0.95, good when r > 0.9, fair when r > 0.75, low
when r < 0.75 and poor when r < 0.6. We also observed
very high genome-wide correlations among biological repli-
cates in a group (MUTs or NCs), with an average r of 0.960
for H3K4me3 and 0.918 for H3K27ac (Figure 1B). Gen-
erally, H3K4me3 is not a strong differentiating mark for
separating MUTs and NCs. The correlation r between NCs
and MUTs H3K4me3 data is high for all cell types (0.962
for BCs, 0.960 for LPs, 0.962 for MLs and 0.960 for SCs)
(Supplementary Figure S1). In contrast, when genome-wide
H3K27ac is examined, many more differential peaks are
observed between MUTs and NCs and among various cell
types (Figure 1C). BCs and SCs show the largest differences
between MUTs and NCs (with an average r of 0.739 and
0.877, respectively). In comparison, LPs and MLs have sim-
ilar H3K27ac profiles between MUT and NC (with an av-
erage r of 0.914 and 0.888, respectively).

In terms of differences among various cell types, BCs,
LPs, and MLs have very similar H3K4me3 profiles (aver-
age r of 0.926 among MUTs and 0.946 among NCs) while
SCs show slightly more differences from LPs and MLs (av-
erage r of 0.881 and 0.915 between SCs and LPs, 0.875
and 0.919 between SCs and MLs in MUT and NC, respec-
tively). With H3K27ac data, LPs and MLs correlate with
each other fairly well (average r = 0.832 and 0.872 in MUTs
and NCs, respectively) while the other pairs generally have
low correlation (with average r in the range of 0.668–0.794).

We carefully examined differentially modified H3K27ac
peak regions (fold-change ≥ 2, FDR < 0.05) between
MUTs and NCs (Figure 2A). We found very few differ-
ential regions in LPs and MLs (518 and 2, respectively).
However, there were a substantial number of differential
peaks present in BCs (3545) and a large number of differ-
ent peaks in SCs (19 946). BCs had a mix of regions that
showed either higher or lower H3K27ac signal in MUTs
than in NCs (1497 and 2048, respectively), while the vast
majority of differential regions in SCs (19 367 out of 19 946)
had lower H3K27ac signal in MUT samples. We then com-
pared the normalized H3K27ac signal at all peak regions
(Figure 2B). The median values were similar between NC
and MUT patients in all epithelial cell types (with MUT
values within ± 5% of NC ones), while there was a marked
decrease in H3K27ac median signal in MUT SCs (by 13.5%
compared to NC SCs). In these comparisons, all differences
were found to be statistically significant (P < 0.05, paired
Student’s t-test).

The differentially modified H3K27ac regions were then
mapped to their nearest genes (Supplementary Tables S5–
S7). Due to the complex nature of activation by epigenetic
modification, the differentially modified regions were not
separated into up- and down-regulated regions for the gene
ontology analysis. Thus, the analysis focuses on processes
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and pathways that have perturbed epigenetic modification
due to BRCA1 mutation. These differential regions were
associated with 783, 3972 and 12 160 genes in LPs, BCs
and SCs, respectively. We also conducted gene ontology en-
richment analysis using these regions for each of the cell
types (Supplementary Table S8). The analysis on LPs and
on MLs did not bring out any GO terms. Thus, our focus
was on BCs and SCs which had the largest numbers of dif-
ferential H3K27ac regions between NCs and MUTs (Fig-
ure 2C). A number of BRCA1-associated processes, includ-
ing progesterone metabolism (39–42), RNA polymerase II
transcription (43–45) and unfolded protein response (UPR)
(46), were enriched in both BCs and SCs. BRCA1 has been
shown to inhibit progesterone signaling (42) and reduction
in BRCA1 level has been shown to increase expression of
GRP78, a key UPR regulating gene (46). Moreover, BRCA1

is part of the RNA polymerase II holoenzyme (43). Ontolo-
gies related to apoptosis (47,48), antigen processing (49–
51) and DNA damage response (52,53) are only signifi-
cant in SCs. BRCA1 has extensive association with apop-
tosis, including those due to endoplasmic reticulum stress
that is related to UPR (54). For example, BRCA1 binding
at the endoplasmic reticulum leads to a release of calcium
that causes apoptosis. Furthermore, a reduction in BRCA1
level has been shown to increase activation of CD8+ tumor-
infiltrating lymphocytes. There are also several ontologies
associated with DNA damage response significant in SCs.
For instance, DNA replication-independent nucleosome as-
sembly and organization can only occur with histone vari-
ant 3.3, which is part of the DNA repair pathway (55,56).
In addition, histone H4 acetylation also opens up the chro-
matin for easier access to damaged regions (57). In contrast,
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we largely see ontologies associated with cell motility and
adhesion in BCs. BRCA1 mutations have been shown to in-
crease cell motility in cancer cells (58–60). However, epithe-
lial cell fate commitment is also present only in BCs. Cells
within the BC compartment have been previously shown to
have the potential to differentiate into LPs (61).

Next, we predicted enhancers present in each of the cell
types for both NC and MUT samples (Figure 3A). En-
hancers were determined by finding H3K27achigh regions
that did not intersect with areas nearby transcription start
sites (±500 bp from TSS). For the purposes of this anal-
ysis, we have defined the region within 500 bp of the TSS
as the promoter region. Using the NCs as the reference,
MUT enhancers cover 67%, 90%, 79% and 29% of the NC
enhancers in BCs, LPs, MLs and SCs, respectively. Further-
more, while MUT BCs and LPs had a similar number of

unique enhancers, 85% of MUT BC enhancers were unique
compared to 39% of MUT LP enhancers, supporting the
notion that BRCA1 mutation affects BCs more than LPs.
The enhancers were then mapped to genomic regions (Fig-
ure 3B and Supplementary Table S9). The most exaggerated
differences due to BRCA1 mutation were seen in BCs, in-
cluding a 6.9% increase in the distal intergenic fraction and
12.3% decrease in the promoter vicinity fraction (i.e. <2 kb
from the edge of the promoter regions). In addition, we also
found that super enhancers are significantly attenuated in all
cell types except for BCs, in congruence with our previous
homogenate data (Supplementary Figure S2). It is clear that
BRCA1 mutation plays a different role in enhancer activity
that is unique to each cell type.

Enhancer regions were then scanned to determine the
transcription factor (TF) binding motifs significantly en-
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riched in each cell population (Figure 4 and Supplemen-
tary Table S10). BCs had substantially more differentially
enriched TF motifs than any other cell type, likely due to
the smaller overlap between NC and MUT enhancers for
BCs. We defined differentially enriched TFs as those that
are uniquely enriched in one condition, but not the other.
In MUT samples, BCs primarily have many additional TFs,
while SCs mainly lacked TFs. In all cases, over 50% of dif-
ferentially enriched TFs were found to have no known link
to BRCA1 mutation. However, some TFs were found to be
differentially enriched between MUT and NC in multiple
cell types with known association with BRCA1 mutation.
These include PAX5 (62) (BCs, MLs and SCs), CHOP (46)
(BCs and SCs), EGR1 (63,64) (BCs and LPs) and P73 (65)
(BCs and SCs). Some TFs found were not associated with
BRCA1 yet were associated with breast cancer. These in-
clude EGR2 (66,67) (BCs, LPs and SCs), HOXC9 (68,69)
(BCs, MLs and SCs), HSF1 (70–72) (BCs, LPs and SCs),
NPAS2 (73) (BCs, LPs and MLs) and USF1 (74) (BCs, LPs
and MLs). We then used PANTHER to classify the com-
bined differential TFs from each cell type comparison into
pathways and found that pathways such as Gonadotropin-
releasing hormone (GnRH) receptor pathway, Wnt signal-
ing pathway, apoptosis pathway and p53 pathways were
present in all four cell types (Supplementary Table S11).
BRCA1 has a key role in the Wnt signaling pathway (75,76),
regulates apoptotic responses (47,48) and has been shown to
interact with P53 (77–80). As for the GnRH pathway, while
there is not a direct link to BRCA1, GnRH agonists have
been shown to be effective in the treatment of breast cancer
(81).

Overall, we see the most significant epigenomic changes
in BCs and SCs due to BRCA1 mutation among the four
cell types from these pre-cancer breast tissue samples, while
fewer variations were seen in LPs. This is unexpected as LPs

have been implicated as the driver in the onset of BRCA1
mutation associated breast cancer (82). Thus, we exam-
ine the possibility of basal cells differentiating into luminal
cells, as proposed in previous literature (61). First, we ex-
amined the cell-type specific genes identified for the three
epithelial cell types (BCs, LPs and MLs) in the literature
(4). The expression of these genes largely defines the identity
of specific cell types. By comparing NC and MUT BCs, we
found that 6% (41/712) of the BC-specific genes experiences
significant changes in H3K27ac state due to the mutation,
compared to 1% (4/305) for LPs and 2% (11/444) for MLs
(Supplementary Table S12). Of these differentially marked
basal genes, 95% had lower H3K27ac signal in MUT, sug-
gesting that there is primarily a loss of basal gene expres-
sion in MUT basal cells. In the same fashion, we also exam-
ined cell-type-specific TFs in the three cell types and how
they vary due to the mutation. Enriched TFs in each cell
population were predicted based on motif analysis of en-
hancers profiled using H3K27ac data (83). By examining
NC samples, we extract 8, 55 and 6 cell-type-specific TFs (P-
value < 0.0001) for BCs, LPs, and MLs, respectively (Figure
5 and Supplementary Table S13). These cell-type-specific
TFs are TFs that are uniquely enriched in one NC cell type
but not in the others. In comparison, MUT BCs, LPs and
MLs preserved 6, 44 and 5 of these TFs, respectively. In-
terestingly, MUT BCs also enriched 28 of the LP-specific
TFs and 3 of the ML-specific TFs, compared to MUT LP
enriching 1 BC-specific TFs and 5 ML-specific TFs; and
MUT ML enriching 2 BC-specific TFs and 5 LP-specific
TFs. These results indicate that the BC state experiences
more substantial change than LPs and MLs due to BRCA1
mutation, consistent with the notion of BC differentiation
into LPs.

To further validate the possibility of the basal compart-
ment being a significant contributor in BRCA1-mutation
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Figure 6. Percent of enhancers that are within ±150 kb of SNPs signifi-
cantly associated with ER-negative breast cancers through GWAS for all
four cell types.

associated breast cancer, we determined the number of en-
hancers that were in proximity to 123 SNPs involved in ER-
negative breast cancer as discovered by GWAS (34) (Fig-
ure 6). ER-negative breast cancer is a term that effectively
covers both basal-like and triple-negative breast cancers
(84,85). Thus, we used the ER-negative SNP set due to its
strong connection to BRCA1 breast cancer. In a cohort of
3797 BRCA1 mutation carriers diagnosed with breast can-
cer, 78% had ER-negative breast cancers (86). Overall, we
saw increases in the percent of enhancers that were proximal
to ER-negative SNPs in each cell type due to BRCA1 mu-
tation, suggesting an overall increase in breast cancer risk.
Furthermore, we see the largest increase (∼55%) between
NC and MUT BCs followed by SCs (∼21%). This further
supports that the BRCA1 mutation leads to profound epi-
genetic changes in BCs and that these changes have the po-
tential to increase breast cancer risk.

DISCUSSION

The interactions between genomics and epigenomics are
well-recognized events. Gene mutation may alter the epige-
nomic landscape in a significant way and such alterna-
tion may carry important implications on cancer develop-
ment. Several lines of evidence support the feasibility of
sorting out epigenomic differences between BRCA1 muta-
tion carriers and non-carriers using a cell-type specific ap-
proach. First, we found very high correlations among bio-
logical replicates in both H3K4me3 and H3K27ac within
either MUT or NC group. When we compare across the
two groups (MUT versus NC), H3K27ac is more differen-
tiating than H3K4me3, which is consistent with previous
findings by Ma et al. (83) and Roadmap Epigenomics et al.
(87). Second, we compared our NC data with published re-
sults obtained by examining normal breast tissues pooled
from multiple individuals (4). Each of the top 5 signifi-
cantly enriched transcription factors in BCs, LPs and MLs
were also significantly enriched in our respective NC cell
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populations. Basal-associated transcription factors (4) such
as TP53, TP63, STAT3 and SOX9 were also enriched in
NC BCs. Similarly, luminal-associated transcription factors
(88–90) CEBPB, GATA3, ELF5 and FOXA1 were all sig-
nificantly enriched in our NC LP and MLs. Third, we found
that three members of the GATA family (GATA1, GATA2
and GATA3) were enriched in either NC BCs or LPs but
not in MUT epithelial cells (Figures 4 and 5). This agrees
with our earlier study conducted using breast tissue ho-
mogenates (17). GATA3 is known to be critically involved
in the regulation of luminal cell differentiation (91,92). Fi-
nally, we also compared our cell-type-specific data with our
published data on breast tissue homogenates obtained us-
ing a separate patient cohort and conventional ChIP-seq
technology (17) (Supplementary Figure S3). The H3K27ac
data taken using the breast tissue homogenate (mix) do not
differentiate MUT and NC. The homogenate data show a
similar degree of correlations with all individual cell types
(Pearson correlation in the range of 0.741–0.890). This also
underscores the importance for cell-type-specific profiling
to pinpoint specific roles for each cell type. These com-
parisons suggest that although epigenomic differences exist
among individual humans (93,94), careful cell-type-specific
ChIP-seq profiling captures important genome-wide epige-
nomic differences due to BRCA1 mutation. However, the
small sample size limited our ability to adequately control
confounding factors, such as age or environment. In addi-
tion, more subjects would improve the power of the analysis.
Despite this, the consistency of our data with other sources
support the substantive nature of our findings and strongly
warrant further investigation.

Epigenetic profiles define cell identity by regulating cell-
type-defining genes and transcription factors. The differ-
ence in the epigenomic landscape between BRCA1 mutants
and non-carriers may be important for explaining the high
propensity of BRCA1 mutation carriers for breast cancer.
Our data on the sensitive mark H3K27ac are the most dif-
ferent in BCs and SCs when MUTs and NCs are compared.
In comparison, very few changes were observed in LPs and
MLs due to the mutation. Furthermore, our analysis of
the cell-type-specific genes and TFs also reveal that MUT
BCs resemble LPs. Such resemblance was in accordance
with previous reports on the presence of LP-fated cells and
bi-potent mammary stem cells in the basal compartment
(61,95). Thus, we propose that the precancerous process
within BRCA1 mutation carriers may start with substantial
epigenomic changes in basal cells among all epithelial cell
types and these basal cells share similarity with luminal pro-
genitor cells. These findings provide new insights into epige-
nomic factors involved in BRCA1 cancer biology.
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