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Abstract

The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis
are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995–2006 to generate a timeseries of monthly
estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for
exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the
fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation
season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure
enabled us to construct a ‘‘primary’’ exposure season that spans August-March and a ‘‘secondary’’ season that spans April–
June which are then used in subsequent analyses. We show that October–December precipitation is positively associated
with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County
(R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with
concurrent precipitation in Maricopa (R = 20.79, p = 0.004) and Pima (R = 20.64, p = 0.019), possibly due to reduced spore
dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure
season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima
counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study
builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the
‘‘grow and blow’’ hypothesis.
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Introduction

Coccidioidomycosis (also known as ‘‘Valley Fever’’) is a non-

communicable febrile respiratory disease caused by the inhalation of

arthroconidia (i.e., spores) from the fungi Coccidioides spp. [1,2]. The

fungi reside in warm, arid and semi-arid soils of the Americas [3].

Approximately 40% of Coccidioides spp. infections are symptomatic and

can result in severe complications such as community acquired

pneumonia (CAP), lung cavities, and disseminated infections that can

affect the central nervous system, skin, bones, joints and other organs

[4]. Risk factors for severe infections include race, age, and

immunosuppression [2,5,6]. Approximately 29% (95% confidence

interval: 16%, 44%) of diagnosed CAP cases in Tucson, Arizona are

related to Coccidioides spp. infection [7].

It has long been speculated that environmentally mediated

mechanisms cause significant seasonal and inter-annual fluctuations

in the incidence of coccidioidomycosis infection [8]. One proposed

mechanism suggests that precipitation modifies the suitability of the

environment for fungal growth. Consistent with this hypothesis are

several relationships identified between case rates and precedent

precipitation in Arizona [8–10]. In addition to influencing the

presence of Coccidioides spp. in the soil, the absence of precipitation

may cause the fungus to sporulate and aerosolize more readily.

Several studies point to a negative association between the seasonality

of cases and precipitation as support of this claim [8,9]. Together,

these mechanisms constitute the ‘‘grow and blow’’ hypothesis:

precipitation facilitates the growth of the fungus, while subsequent

dry conditions result in sporulation and enable the spores to become

airborne, ultimately resulting in human exposures [11]. Yet, despite

extensive study, there is currently no clear-cut and ecologically

consistent link identified between the environment and coccidioido-

mycosis rates. This is likely due in part to noisy case data of

inadequate temporal extent, and the absence of a simple method for

identifying the fungus in the soil and describing its spatial and

temporal variability.

Here we use 12 years of laboratory-confirmed Arizona case data

for Maricopa and Pima counties to investigate patterns of

coccidioidomycosis and relate these to climate conditions. This is

the first study to examine relationships between coccidioidomy-

cosis and climate both in Maricopa and Pima counties. This study

improves on previous studies conducted in Arizona by using a

more straightforward and accurate adjustment to account for the

duration between exposure and disease reports. We also examine

autocorrelation patterns in exposure rates to improve our

understanding of the seasonality of the disease. We investigate

the relationships between case rates and several climate variables

using lag correlation and regression techniques to corroborate the
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‘‘grow and blow’’ hypothesis. Finally, we create a multivariate

model that can be used to predict variability of coccidioidomycosis

rates in Pima and Maricopa 9–16 months in advance.

Materials and Methods

Case data were obtained from the Arizona Department of Health

Services (ADHS) for January 1995 through December 2006. Case

data that did not indicate the diagnosis county (,1%) or diagnosis

date (,10%) were removed. A total of 18,954 cases in Maricopa

County and 4,645 cases in Pima County were included in the study.

These counties encompass the two major Arizona cities of Phoenix

and Tucson where the vast majority of coccidioidomycosis cases

occur.

We determined monthly case incidence per 100,000 of the

general population for both Maricopa and Pima counties using

linearly interpolated annual population estimates provided by the

US Census Bureau. The date of exposure for each diagnosed case

was estimated using the results of an enhanced surveillance study

conducted in 2007 by ADHS. The enhanced surveillance

indicated that the median time from symptom-onset-to-diagnosis

was 55 days and an average of 209 days [12]. To account for the

symptom-onset-to-diagnosis lag we subtracted 54 days (median lag

provided to us from preliminary analysis of the ADHS study, prior

to final publication [12]) from the diagnosis date of each case to

estimate the time of symptom onset. We then subtracted 14 days

from the estimated symptom onset date to account for the

incubation period which generally lasts 1–4 weeks [13]. Case data

were aggregated by month since it is unlikely that the date of

exposure can be accurately estimated at a finer resolution; this also

improves the signal-to-noise ratio. Counties were modeled

separately since climate effects may differ between regions. This

resulted in a monthly time series of estimated Coccidioides spp.

exposure rates for Pima and Maricopa counties.

The strong increasing linear trend in exposure rates observed

across the study period (see Figure 1A and 1B) cannot easily be

attributed to climatic fluctuations [11]. Since the observed trend

will bias potential relationships between the climate conditions and

exposure rates, the trend was removed by subtracting a best-fit line

from the exposure time series (i.e. ‘‘detrended’’) (see figure 1C and

1D). The average exposure rate from the time series of mean raw

exposure rates (i.e. not detrended) was added to the detrended

exposure rates to equalize the average between the detrended and

raw time series.

Daily weather data were retrieved from the Arizona Meteoro-

logical Network (AZMET) for all available stations in the

population centers of Maricopa County (Phoenix; n = 3) and

Pima County (Tucson; n = 1). Variables included temperature,

relative humidity, wind speed, mean wind vector, soil temperature

(2 and 4 inch depths), vapor pressure deficit, precipitation, solar

radiation, and heat units. The soil temperature variables were

discarded due to large inconsistencies in the signal over time. The

remaining data were aggregated by county and monthly climatic

averages were generated. This resulted in a monthly time series for

each climate variable and county.

Monthly precipitation data from all available National Weather

Service stations in Phoenix (n = 10) and Tucson (n = 5) were used in

preference to AZMET precipitation data since a greater number of

stations were available. Air quality data that describes the

concentration of particles of 10 micrometers or less (PM10) were

obtained from Maricopa County Air Quality Department (n = 10)

Figure 1. Estimated exposure rates. Estimated exposure rates per 100,000 population from January 1995 through December 2006. The plots
describe the crude estimated exposure rates with best-fit line for (a) Maricopa County and (b) Pima County. We also show the detrended estimates of
exposure rates with the average crude exposure rate added for (c) Maricopa County and (d) Pima County.
doi:10.1371/journal.pone.0021009.g001
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and Pima County Department of Environmental Quality (n = 7).

PM10 data has been hypothesized to be a strong proxy for

windblown spore concentrations, and seasonal variability in case

rates of coccidioidomycosis have been shown to be correlated with

seasonal variations in PM10 [9]. The data were aggregated by county

and monthly averages were calculated, as for the climate data.

We investigated the seasonality of exposure rates in Maricopa

and Pima counties by examining the exposure rates for each

month over the study period. To further examine seasonality, we

evaluated the autocorrelation structure of the exposure rates by

correlating each month with all other months up to 12 months

prior:

R m, m{lagð Þ~Corr (ERm, ERm{lag) ð1Þ

where ERm is a vector of exposure rates per 100,000 population

for month m (e.g., January), ERm-lag is a vector of exposure rates

per 100,000 population for month m minus a lag that varied

between 1 (e.g., December) and 12 (e.g., previous January)

months, and R is Pearson’s correlation coefficient. This resulted in

a 12612 ‘‘lag correlation matrix’’ which was used to generate an

image plot so that the correlation between each combination of

months could be assessed. This lag correlation matrix showed a

strong seasonal autocorrelation structure in exposures which

enabled us to define a ‘‘primary’’ exposure season spanning

August-March and a ‘‘secondary’’ exposure season spanning

April–June (see Results for justification of these groupings) . We

averaged exposure rates across these seasons, generating time

series of average seasonal exposure rates. Because the primary

exposure season spans the New Year, only 11 primary exposure

seasons (i.e. 1995/1996–2005/2006) were generated from the 12

years of data.

To capture both concurrent and long-lead influences on the

disease ecology, we investigated associations between monthly

exposure rates and concurrent and preceding environmental

variability by creating a bivariate lag correlation matrix:

R m, m{lagð Þ~Corr (ERm, EVm{lag) ð2Þ

where EVm-lag is a time series of an environmental variable (e.g.,

precipitation) for month m minus a lag that varied between 0 and

36 months. This resulted in 36612 lag correlation matrices for

each of the 12 environmental variables derived for our study,

which were then used to generate an image plot for each county.

Visual examination of the image plots and correlation statistics

indicated precipitation yielded the strongest relationships with

exposure rates; other climate variables showed weaker or

inconsistent relationships to exposure rates. Thus, subsequent

analysis focused on relationships between precipitation and

exposure rates and we only report on these relationships hereafter.

The correlation between average monthly exposure rates for the

primary and secondary season and precipitation up to 36 months

prior were then calculated:

Rs, m-lags~Corr ERs, PPTm-lag

� �
ð3Þ

where PPTm-lag is a time series of precipitation for month m (the

last month in the season) minus a lag that varied between 0 and 36

months. This showed statistically significant associations in both

counties between exposure rates during the primary season and

concurrent and antecedent monthly precipitation approximately 1

year prior. No significant relationships were observed between

precipitation and the secondary season.

Identification of the most promising statistical relationships

between precipitation and exposure rates during the primary

season enabled the production of a multivariate regression model

to estimate the number of exposures during the fall exposure

season. The model inputs include October–November (previous

year; ‘‘grow’’) and September-March (concurrent; ‘‘blow’’)

precipitation to estimate exposure rates for August-March:

ERF(PPT1, PPT2)~Constantzb1PPT1zb2PPT2 ð4Þ

where ERF is a vector of average fall exposure rates for August-

March from 1995–2006 (n = 11), PPT1 is a vector indicating the

total precipitation (mm) for October–December for 1994–2005

(n = 11), and PPT2 is the total precipitation (mm) for August-

March from 1995–2006 (concurrent with exposure period; n = 11).

Results

The estimated exposure rate increased substantially between

1995 and 2006 in both Maricopa and Pima counties. Over all

study years, the average monthly exposure rate for both Maricopa

and Pima were approximately 4 per 100,000 population (Figure 1A

and 1B). During 1995 Maricopa County averaged approximately

1 exposure per 100,000 population per month, increasing to

approximately 7 exposures per 100,000 per population per month

by the end of 2006. Similarly, in Pima County the average

exposure rate increased from 1 to 6 exposures per 100,000

population from January 1995 to December of 2006. The data

were detrended to account for the increasing trend in exposures

observed during the study period. The average exposure rate from

the time series of mean raw exposure rates (i.e. not detrended) was

added to the detrended exposure rates to equalize the average

between time series. Thus, the detrended exposure rates should be

treated with caution. Further, the variance of the exposure rates

increased strongly with time in both counties, especially after 2000

(Figure 1). This variance was not removed by detrending and has

implications for subsequent statistical analyses (Figures 1C and 1D;

see Discussion).

In general, monthly exposure rates between counties are highly

correlated throughout the study period (R = 0.64; p = 0.0001).

Periods of elevated exposure (defined here as exposure rates

greater than 6 per 100,000 population) occurred in both counties

during the primary exposure season of 1998, 2001, and 2002. In

addition, Maricopa County had independent periods of elevated

exposure during the primary season in 2005 and 2006, whereas

Pima County had independent periods of elevated exposure

during the secondary season in 2001, 2002 and 2006.

A seasonal signal characterizes the exposures rates in both

counties (Figure 2). On average, exposures for Maricopa peak at

approximately 6 per 100,000 population in September, decline

rapidly to approximately 4 exposures per 100,000 by December, and

then gradually decline through July prior to a slight increase in

exposures in August. In Pima County, exposure rates are

characterized by two peaks, one in May and the other in September.

The average exposure rate for May and September are nearly

identical with approximately 5 exposures per 100,000 population for

each month. Exposure rates are minimal between the peaks, in

January (,3 exposures per 100,000 population) and July (,3.5

exposures per 100,000 population). For both counties, the highest

exposure rates observed during the study period occurred in

September of 2001, with 12.5 and 9.5 exposures per 100,000

population in Maricopa and Pima counties, respectively.

Exposure rates are significantly autocorrelated in time at approx-

imately 3–4 month lags in both counties (not shown). However,

Coccidioidomycosis and Seasonal Precipitation
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autocorrelation is not equal across all months of the year (Figure 3). In

Maricopa County, exposure rates are positively correlated from

September-July, but this association ends abruptly in August. In Pima

County, there are similar relationships but they are not as strong and

have less structure than those in Maricopa County. Specifically,

autocorrelations of exposure rates in Pima County are positive between

August-March becoming inconsistent from April–June. In July, Pima

County exposure rates are not correlated with any of the twelve

previous months, comparable to August in Maricopa County. The

autocorrelation structures of both counties suggested that the exposure

rates from August-March are likely dependent on the same

mechanism. Thus, the exposure rates for August-March months were

aggregated to simplify analysis and increase the strength of the signal.

This period from August-March is referred to as the ‘‘primary’’

exposure season since it is the only season of elevated exposures that is

consistent across counties. We also define a ‘‘secondary’’ exposure

season that spans April–June which is associated with the elevated

exposure rates during these months in Pima County. Although an

increase in exposure rates during April–June is nearly non-existent in

Maricopa, we generated a time series of exposure rates for the

secondary season here for consistency with Pima County. Since July

does not naturally fall into the primary or secondary exposure season

and a minimal number of exposures are observed during this month,

we do not include it in either season.

We examined all antecedent and concurrent precipitation-

exposure relationships for Maricopa and Pima. We determined

there are two significant associations between the fall exposure

season and precipitation. First, accumulated precipitation during

October–December is significantly correlated with exposure rates

during the subsequent primary exposure season (i.e. August-

March) in both Maricopa (R = 0.72, p = 0.012) and Pima

(R = 0.69, p = 0.019). A leave-one-out jackknife method was used

to demonstrate that the association is not strongly dependent upon

a single observation. In Maricopa, the jackknife analysis resulted in

an Rmax = 0.80 (p = 0.005), and Rmin = 0.61 (p = 0.061), whereas in

Pima the Rmax = 0.76 (p = 0.010) and the Rmin = 0.57 (p = 0.086).

In addition to the relationship with precedent precipitation,

exposure rates during the primary exposure season are negatively

correlated with concurrent precipitation in both Maricopa

(R = 20.79, p = 0.004) and Pima (R = 20.64, p = 0.019) counties.

The leave-one-out jackknife analysis for Maricopa indicated an

Rmin = 20.87 (p = 0.001) and Rmax = 20.71 (p = 0.023). In Pima,

the jackknife analysis indicated an Rmin = 20.75 (p = 0.013) and

Rmax = 20.51 (p = 0.134). We were unable to identify a significant

relationship between precipitation and the secondary exposure

season in either Maricopa or Pima counties.

The relationships between precipitation and exposure rates

during the primary coccidioidomycosis exposure season enabled

the production of a linear regression model (Equation 3; Table 1).

The Maricopa model explains 69% (p = 0.009) of the variance in

the study period, with an adjusted R2 = 0.62. The Pima model

explains 54% (p = 0.045) of the variance with an adjusted

R2 = 0.42 (Table 1; Figure 4).

A weakness of this study is that only 12 years of data were available,

limiting confidence in the statistical associations identified. To address

this weakness we examined independent data on coccidioidomycosis

cases at Williams Air Force Base in Maricopa County for 1943–1956

[8]. Using PRISM precipitation data [14] for Williams Air Force

Base we were able to show that October–December precipitation is

significantly correlated with case rates for the subsequent calendar

year (R = 0.50, p = 0.068; Figure 5). However, since these data were

aggregated across the calendar year instead of the exposure seasons as

defined herein, it is difficult to assess the importance of this result.

Further, this relationship is strongly dependent upon 1953 since case

rates and the corresponding 1952 October–December precipitation

were 234% and 271% of average (both maxima), respectively.

Finally, the seasonality of these coccidioidomycosis data are strongly

bimodal [8], in contrast to the single peak that is present in the ADHS

data reported herein, making comparisons even more difficult.

Discussion

A data set of laboratory-confirmed coccidioidomycosis cases for

12 years has enabled the production of a time series of predicted

Coccidioides spp. exposure. An enhanced surveillance study by

ADHS was used to estimate exposure dates and resulted in a

slightly modified characterization of the seasonality of Coccidioides

spp. exposure in Pima County relative to that previously reported

[9]. Further, a consistent linear increase in exposures over the

study period, which has been reported previously [15] was

removed from the time series. This trend may be due to increased

surveillance and reporting [16], or soil disturbance caused by

construction [15].

Similarities and contrasts in the seasonality of exposure rates

were observed between Maricopa and Pima counties. Both

counties observed an increase in exposure rates beginning in

August with maximum exposure rates observed in September

followed by a gradual decline into January. In Maricopa average

Figure 2. The seasonality of exposure rates. Box plots of monthly
exposure rates for Maricopa (top) and Pima (bottom) counties. The
central hash mark is the median, the edges of the box indicate the 25th
and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and the ‘‘o’’ markers indicate outliers.
The plots show the bimodal nature of exposure rates in Pima County,
with peaks occurring in May and September. In Maricopa County, only a
fall peak in September is observed. The average seasonal precipitation
is also showed (black line).
doi:10.1371/journal.pone.0021009.g002
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monthly exposure rates remained relatively consistent for January–

July. In Pima, on the other hand, exposures began to rise in

February and a second peak was observed in May with minimal

rates observed in July between the May and September exposure

maxima (Figure 2). The bimodal seasonality in Pima County is

consistent with a previous study [9]. Although Maricopa County

did occasionally experience significant increases in exposure rates

during the secondary exposure season (e.g., 2001 and 2003), these

were less substantial and less consistent relative to those observed

in Pima County. The absence of a consistent secondary peak in

Maricopa County is unexpected since it was observed in an earlier

study [8] and because the secondary peak is pronounced in Pima

County which has very similar climate (Figure 2).

Lag correlation analyses indicated a strong seasonal autocorre-

lation structure in exposures for both counties. This is especially

true for Maricopa County where exposures from August-June are

highly correlated with each other. In other words, if the rate of

exposure is greater than average during September, the monthly

rate of exposures will likely be above average for each month

through June of the following year. In Pima County, autocorre-

lation is strong for August-February. These autocorrelation

structures suggest that the fungal spores released during the late-

summer/fall ‘‘bloom’’ (i.e. period when the fungus sporulates) may

persist in the environment and continue to infect humans for

several months. In turn, this implies the intensity of the fall bloom

is the primary factor determining the number of exposures

through the winter and into the spring. An abrupt end in the

monthly autocorrelation of exposures occurs in July/August

(Figure 3) which coincides with the summer precipitation season.

This suggests that the end of the season may be due to the

suppressing effects of precipitation on the aerosolization of spores.

Another possibility is that during July/August the effects of a new

crop of spores on exposures is beginning to exceed the effects of

the previous year’s crop, thus obscuring any relationship from the

previous season. Although Pima County has a similar autocorre-

lation structure to that in Maricopa County, autocorrelation in

Pima County diminishes in April–June before disappearing

completely in July. This discrepancy between autocorrelation

structures may be due to the increases in exposure rates in Pima

during the secondary exposure season, thereby interfering with the

association. This is supported by the fact that the months in the

middle of the secondary peak (i.e., April and May) are not

significantly correlated with any of the previous 12 months. Yet in

June, when rates have declined notably from May, exposure rates

are again related to those from the previous fall (Figures 2 and 3).

Precipitation in October–December is positively correlated with

exposure incidence during the following August-March (i.e., 8–16

months later). This relationship is consistent across both Maricopa

and Pima, explaining 61% and 45% of the variance for detrended

monthly exposure rates from 1995–2006, respectively. It is unclear

what environmentally-mediated mechanisms potentially link Octo-

ber–December precipitation and human exposure to the fungal

spores 8–16 months later. It is possible that the precipitation does not

act directly on the fungus, but catalyzes events in the environment

that produce favorable conditions months afterward. Though rodent-

borne coccidioidomycosis has not previously been considered for the

Table 1. Results of the linear regression model (Equation 3)
for Maricopa County and Pima County.

Predictor
Coefficient
(95% CI) P-Value R2

Adjusted
R2

P-
Value

Maricopa County

Constant 5.24
(2.33, 8.15)

0.003 0.69 0.62 0.01

Oct–Dec
Precipitation

0.012
(20.01, 0.03)

0.23

Aug-Mar
Precipitation

20.01
(20.02, 0.001)

0.06

Pima County

Constant 3.86
(0.99, 6.73)

0.02 0.54 0.42 0.05

Oct–Dec
Precipitation

0.01
(20.01, 0.03)

0.17

Aug-Mar
Precipitation

20.005
(20.02, 0.01)

0.33

The models indicate that inter-annual variation in exposure rates during the
period of August-March are significantly associated by concurrent and
antecedent precipitation during the study period.
doi:10.1371/journal.pone.0021009.t001

Figure 3. Autocorrelation of exposure rates. These plots indicate
the autocorrelation of exposure rates in Maricopa (top) and Pima
(bottom) counties. The x-axis is the month of the year, and the y-axis is
the lag in months. The surface color indicates the Pearson’s correlation
coefficient (R) for each combination of months going back one year. The
stars indicate the significance level of individual R at the 0.10 (*), the 0.05
(**) and the 0.01 (***). A large wedge of positive correlations in Maricopa
beginning in August and lasting through July are shown, suggesting that
exposure rates during these months are regulated by the same
mechanism. Pima County shows a similar pattern from August-March,
but the correlations from April–June become inconsistent.
doi:10.1371/journal.pone.0021009.g003
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maintenance of C. spp., this long delay in response to precipitation

hints at the possibility for a rodent reservoir host. Similar to the

trophic cascade hypothesis associated with variable outbreaks of

plague and hantavirus, high precipitation during the preceding winter

may result in an increase in rodent populations [17]. This mechanism

potentially increase the density of rodent carcasses the following fall,

which have been hypothesized to be suitable environments for fungal

growth due to their high nutrient content [18]. Furthermore, the

relationship between exposure rates and concurrent precipitation

during the months of August-March is negative. This is consistent

with the hypothesis that precipitation suppresses spore aerosolization

and, conversely, that dry soils enhance spore aerosolization.

However, October–December precipitation was negatively correlat-

ed with September-March precipitation of the following year (,one

year later) during the study period in both Maricopa (R = 20.69) and

Pima (R = 20.65). This correlation made it difficult to assess

the effects of the ‘‘grow’’ and ‘‘blow’’ precipitation mechanisms

independently. Thus, it is possible that only one of these mechanisms

is affecting the epidemiology of the disease. Attempts to separate the

independent effects of these mechanisms by examining individual

months and outliers were inconclusive.

Studies in Kern County, California, have not shown a significant

relationship between coccidioidomycosis rates and precipitation [19].

Differences between findings in California and Arizona may be a

result of different precipitation patterns in the Central Valley versus

Maricopa and Pima counties; difference in the physiology of the fungi

since two difference species, Coccidioides immitis and Coccidioides posadasii,

are the causal agents of coccidioidomycosis in the Central Valley and

Arizona, respectively; and soil characteristics between locations may

also modify the effects of precipitation on soil moisture [19].

One weakness of this study is that the variance of the estimated

exposure rates increase with time in both counties. Our assumption is

that this is not due to climatic changes. This creates statistical problems

since seasons that occur later in the study period will have more

leverage thereby influencing statistical associations more than those of

earlier seasons. In an attempt to ameliorate the effects of this increasing

trend in variance, we equalized the variance across the time series and

found that the statistical associations between October–December

precipitation and August-March become marginally stronger. How-

ever, for simplicity, we only reported the results from the basic

detrended time series.

In all, this study builds on previous studies examining the causes

of fluctuations in coccidioidomycosis case rates in Arizona, and

directly corroborates the ‘‘blow and grow’’ hypothesis [11].

Although this study investigated natural factors involved in the

dispersion of spores across large spatial scales, it is possible that

human factors such as construction may also play a role [4].

Further specification of environmentally-mediated relationships

will likely require highly-resolved data of longer duration or a

reliable and rapid method for systematic sampling of Coccidioides

spores in the soil or air.

Acknowledgments

We gratefully acknowledge input from Joe Tabor, Steve Yool and the

Arizona Department of Health Services.

Author Contributions

Analyzed the data: JDT ACC. Wrote the paper: JDT ACC.

Figure 5. Validation of model. This figure shows the case rates (left
y-axis) in Hugenholtz (1957) and the corresponding October–December
precipitation (right y-axis) the previous year. Unfortunately, the
coccidioidomycosis data were aggregated across the calendar year,
making it difficult to assess the impacts of antecedent and concurrent
precipitation on case rates.
doi:10.1371/journal.pone.0021009.g005

Figure 4. Observed versus modeled exposure rates. Observed
and modeled exposure rates for Maricopa (top) and Pima (bottom)
counties per 100,000 population. The exposure rates are the average
monthly exposure rates for August-March. The model inputs include
October–December precipitation (mm) from the previous year (‘‘grow’’)
and concurrent August-March precipitation (‘‘blow’’).
doi:10.1371/journal.pone.0021009.g004

Coccidioidomycosis and Seasonal Precipitation

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21009



References

1. Fisher MC, Koenig GL, White TJ, Taylor JT (2002) Molecular and phenotypic
description of Coccidioides Posadasii sp nov., previously recognized as the non-

California population of Coccidioides immitis. Mycologia 94: 73–84.
2. Pappagianis D (1988) Epidemiology of coccidioidomycosis. In: Current Topics

in Medical Mycology, Vol 2. New York: Springer-Verlag. pp 199–238.
3. Fisher FS, Bultman MW, Johnson SM, Pappagianis D, Zaborsky E (2007)

Coccidioides Niches and habitat parameters in the southwestern United States.

Ann NY Acad Sci 1111: 47–72.
4. Park BJ, Sigel K, Vaz V, Komatsu K, McRill C, et al. (2005) An epidemic of

coccidioidomycosis in Arizona associated with climatic changes, 1998–2001.
J Infect Dis 191: 1981–1987.

5. Ampel NM (2007) Coccidioidomycosis in persons infected with HIV-1. Ann NY

Acad Sci 1111: 336–342.
6. Mosley D, Komatsu K, Vaz V, Vertz D, England B, et al. (1996)

Coccidioidomycosis - Arizona, 1990–1995. MMWR 45(49): 1069–1073.
7. Valdivia L, Nix D, Wright M, Lindberg E, Fagan T, et al. (2006)

Coccidioidomycosis as a common cause of community-acquired pneumonia.

Emerg Infect Dis 12(6): 958–62.
8. Hugenholtz P (1957) Climate and coccidioidomycosis. In: Proceedings of the

Symposium on Coccidioidomycosis, Phoenix, Arizona. Publication 575.
Washington, DC: US Public Health Services. pp 136–143.

9. Comrie AC (2005) Climate Factors Influencing Coccidioidomycosis Seasonality
and Outbreaks. Env Hlth Persp 113: 688–692.

10. Kolivras KM, Comrie AC (2003) Modeling valley fever (coccidioidomycosis)

incidence on the basis of climate conditions. Int J Biometeorol 47: 87–101.

11. Comrie AC, Glueck MF (2007) Assessment of climate-coccidioidomycosis model:
model sensitivity for assessing climatologic effects on the risk of acquiring

coccidioidomycosis. Ann NY Acad Sci 1111: 83–95. doi: 10.1196/annals.1406.024.
12. Tsang CA, Anderson SM, Imholte SB, Erhart LM, Chen S, et al. (2010)

Enhanced surveillance of coccidioidomycosis, Arizona, USA, 2007–2008. Emerg
Infect Dis 16(11): 1738–1744.

13. Chin J (2000) Control of Communicable Disease Manual. American Public

Health Association, Washington, D.C.
14. WestMap: Western Climate Mapping Initiative (2010) Climate Analysis and

Modeling. Available: http://www.cefa.dri.edu/Westmap/. Accessed August 1,
2010.

15. Sunenshine RH, Anderson S, Erhart L, Vossbrink A, Kelly PC, et al. (2007)

Public health surveillance for coccidioidomycosis in Arizona. Ann NY Acad Sci
1111: 96–102.

16. Tabor JA, O’Rourke MK (2010) A risk factor study of coccidioidomycosis by
controlling differential misclassifications of exposure and susceptibility using a

landscape ecology approach. Sci Tot Env 408(10): 2199–2207.

17. Brown J, Morgan-Ernest SK (2002) Rain and rodents: complex dynamics of
desert consumers. BioScience 52(11): 979–987.

18. Sharpton TJ, Stajich JE, Rounsley SD, Wortman JR, et al. (2009) Comparative
genomic analyses of the human fungal pathogens Coccidioides and their

relatives. Genome Res 19(10): 1722–1731.
19. Talamantes J, Behseta S, Zender C (2007) Fluctuations in Climate and

Incidence of Coccidioidomycosis in Kern County, California: A Review. Ann

NY Acad Sci 1111: 73–82.

Coccidioidomycosis and Seasonal Precipitation

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21009


