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Abstract: Metabolic programs are rewired in tumors to support growth, progression, and immune
evasion. A wealth of work in the past decade has delineated how these metabolic rearrangements are
facilitated by signaling pathways downstream of oncogene activation and tumor suppressor loss. More
recently, this field has expanded to include metabolic interactions among the diverse cell types that
exist within a tumor and how this impacts the immune system. In this special issue, 17 review articles
discuss these phenomena, and, alongside four original research manuscripts, the vulnerabilities
associated with deregulated metabolic programming are highlighted and examined.
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The reprogramming of cellular metabolism is a hallmark feature observed across cancers [1].
Contemporary research in this area has led to the discovery of tumor-specific metabolic mechanisms
and illustrated ways that these can serve as selective, exploitable vulnerabilities. In this Editorial,
we provide a high-level overview of the central themes from among the 21 review articles and original
research studies in the Special Issue on Metabolic Reprogramming and Vulnerabilities in Cancer.

Nutrient acquisition and cancer growth: Metabolic programs are rewired in cancer cells to facilitate
macromolecular biosynthesis required for cellular proliferation and tumor growth. These programs
are frequently driven by oncogenic signaling pathways. This observation gave rise to the notion that
metabolic pathways may exist that cancer cells are over-reliant or uniquely dependent upon and could
therefore serve as drug targets. Accordingly, there has been considerable interest in mapping the
regulation and activity of metabolic pathways across virtually every type of cancer. In this Special
Issue, a detailed review on the regulation of glucose metabolism in pancreatic cancer is provided
by Yan et al. [2], nucleotide metabolism by Villa et al. [3], and amino acid metabolism by Choi and
Coloff [4].

In order to fuel such biosynthetic pathways, cancer cells employ a variety of mechanisms to enhance
the uptake and utilization of nutrients including the over-expression of carbohydrate, amino acid,
and lipid transporters as well as the activation of other bulk nutrient uptake programs (Figure 1A).
Based on their abundance in circulation and the ubiquity of metabolic pathways into which they can
integrate, glucose and glutamine are two of the primary nutrient inputs that support the growth of
cancer cells. However, much of the work on these important fuels has been determined using cell
culture models, where nutrient and oxygen concentrations, matrix effects, inter-cellular interactions,
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among other factors, do not accurately reflect the physiochemical makeup of a tumor. Accordingly,
the relevance of in vitro described glucose and glutamine pathways in tumors in vivo is now being
delineated. Here, several reviews tackle this challenging topic as it relates to glutamine [5–7].
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In the research article from Guda et al., the authors illustrate that glucose uptake correlates with
aggressive features of brain cancer and describe new strategies to target this axis [8]. Outside of the
brain, access to glucose for some tumors can be more restricted, and alternate pathways must be
employed to support growth in its absence. For example, in the research article by Hodakoski et al.,
the authors found that non-small cell lung cancers employ macropinocytosis, a process of bulk
extracellular engulfment or “cell drinking” to obtain nutrients to support glucose independence [9].
Notably, Hodakoski et al. found that protein-derived alanine obtained via macropinocytosis and
released upon lysosomal protein breakdown served as a gluconeogenic intermediate.

Stress resistance: Metabolic pathways are also reprogrammed in cancer cells to enable resistance
to intrinsic stressors including oxidative stress and apoptosis as well as to promote resistance to
therapies. Reactive oxygen species (ROS) are byproducts of metabolism that can activate signaling
pathways or damage biomolecules including DNA. In cancer cells, the production of ROS are often
elevated as a consequence of metabolic rearrangements and are selected to promote genetic mutations
(Figure 1B). Petronek et al. provide an up-to-date review on the role of iron as a central player in these
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processes [10]. However, if unchecked, excessive ROS can also be toxic to cancer cells. As such, cancer
cells simultaneously drive antioxidant pathways that quench ROS. These are detailed from a metabolic
perspective in the reviews by Purohit et al. [11] and Cockfield and Schafer [12]. Similarly, the role of
cysteine in mitigating ROS is reviewed by Combs and DeNicola [13].

The Nrf2 transcription factor responds to oxidative stress by activating an antioxidant signaling
program. In a research article by Haley et al., the authors found that inhibition of Nrf2 promoted
epithelial to mesenchymal transition (EMT) of non-small cell lung cancer cells and facilitated
metastasis [14]. These studies provide new insights into the role of this important antioxidant
signaling program in cancer cell dissemination. Finally, cancer cells must also protect themselves
against cell death programs. Sharma et al. present an argument for the rewiring of metabolism as an
active player that directly maintains survival and defends against apoptosis [15].

Metabolism in the tumor microenvironment: Tumors are composed of a complex myriad of
malignant and non-malignant cells that cooperate to support the growth of the tumor and the
evasion of the anti-tumor immune system [16]. This collective group of cells is known as the tumor
microenvironment (TME), and can play deterministic roles directing the dysregulated metabolic traits
of the cancer cells (Figure 1C). For example, Loponte et al. discuss how differential nutrient access,
cell–cell interactions, and intrinsic genetic programs lead to metabolic heterogeneity among different
malignant cells in a tumor [17]. These sorts of interactions also impact the redox state, for example,
based on the local oxygenation state, and Weinberg et al. discuss how this impacts metabolic programs
in malignant cells [18].

The TME can also reprogram the metabolism of non-tumorigenic cells within solid tumors, which
supports their survival and growth and that of the tumor. For example, a major component of many
tumors is the activated stroma comprised of cancer associated fibroblasts (CAFs). These cells have
been reported to play an ever increasing role in tumor metabolism, as detailed in the review by
Sanford-Crane et al. [19]. Finally, outside of the TME, Ramteke et al. describe how systemic factors
including blood glucose levels, circulating insulin, growth factors, and other nutrients impacts tumor
growth [20].

Therapeutic targeting of metabolic vulnerabilities: The detailing of metabolic programs in cancer
cells and the TME has suggested numerous vulnerabilities and opened the door to new drug targets
and therapeutic options [21]. This topic takes center stage across the reviews and research articles
in this Special Issue. In this vein, it is important to remember that metabolism-targeted therapies
are among the first and most successful chemotherapeutic paradigms [22]. As a prime example,
Naffouje et al. detail the storied history of inosine monophosphate dehydrogenase (IMPDH) inhibitors,
an enzyme that acts at a central node in nucleotide biosynthesis [23]. Deregulated metabolic programs
also promote resistance to many established therapies [24]. In the research work by Luanpitpong et al.,
the authors illustrate that upregulation of lipid import and the formation of lipid droplets promotes
resistance to the proteasome inhibitor bortezomib in mantle cell lymphoma [25].

New insights into metabolism have also been leveraged to expand current modalities or design
new drug targets. For example, Zhou and Wahl provide a contemporary perspective on the deregulated
metabolic state in brain tumors, detailing insights into how these vulnerabilities can sensitize tumor
cells to radiation and epigenetic therapies [26]. Of note, the authors describe how the oncometabolite
2-hydroxyglutarate (2HG), a product of the mutant isocitrate dehydrogenase 1 (IDH1) enzyme, rewires
the epigenome, creates a metabolic vulnerability, and sensitizes these tumors to DNA damage-targeted
combination therapy. The discovery of mutant IDH1, and the function of the oncometabolite 2HG,
has paved the way for one of the most successful metabolism-targeted modalities in oncology in the
modern era [27].

Knowledge about the metabolic programs operative in cancer has grown tremendously in the
past 15 years. Many of the emerging themes in this rapidly growing field are comprehensively detailed
in this collection of up-to-date reviews and research articles. They also contain insightful perspectives
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on the emerging areas of study and the associated therapeutic opportunities. It is our hope that readers
find them to be timely and informative.
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