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A B S T R A C T

Machine learning (ML) methods have rapidly developed in various theoretical and practical research areas, 
including predicting genomic breeding values for large livestock animals. However, few studies have investi-
gated the application of ML in broiler breeding. In this study, seven different ML methods—support vector 
regression (SVR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting 
(XGBoost), light gradient boosting machine (LightGBM), kernel ridge regression (KRR) and multilayer perceptron 
(MLP) were employed to predict the genomic breeding values of laying traits, growth and carcass traits in a 
yellow-feathered broiler breeding population. The results indicated that classic methods, such as GBLUP and 
Bayesian, achieved superior prediction accuracy compared to ML methods in five of the eight traits. For half- 
eviscerated weight (HEW), ML methods showed an average improvement of 54.4% over GBLUP and Bayesian 
methods. Among the ML methods, SVR, RF, GBDT, and XGBoost exhibited improvements exceeding 60%, with 
respective values of 61.3%, 61.0%, 60.4%, and 60.7%; while MLP improved by 54.4% and LightGBM by 53.7%, 
KRR had the lowest improvement at 29.4%. For eviscerated weight (EW), ML methods still outperformed GBLUP 
and Bayesian methods. MLP gained the largest improvement at 19.0%, while SVR, RF, GBDT, XGBoost, 
LightGBM, and KRR improved by 15.0%, 16.5%, 9.5%, 7.0%, 1.6%, and 15.9%, respectively. Compared to 
default hyperparameters, the average improvement of ML methods with tuned hyperparameters was 34.0%, 
32.9%, 27.0%, 19.3%, 26.8%, 13.2%, 18.9%, and 46.3%, respectively. The prediction accuracy of above algo-
rithms could be optimized using genome-wide association study (GWAS) to select subsets of significant SNPs. 
This work provides valuable insights into genomic prediction, aiding genetic breeding in broilers.

Introduction

Genomic selection (GS) was first proposed by Meuwissen et al. 
(2001) and has been widely used in animal breeding programs. The basis 
of genomic selection is to incorporate genomic variants and phenotypic 
data to predict genomic breeding values or unknown phenotypes. The 
classic statistical models applied in GS can be divided into direct and 
indirect methods, based on whether they predict individual breeding 
values or each marker effect. Direct methods, such as GBLUP and 
SSGBLUP, straightforwardly predict individual breeding values by 
solving the mixed model equations (MME) from the best linear unbiased 
prediction, replacing the pedigree relationship matrix (A matrix) with 

the genomic relationship matrix (G matrix) or the transformed genomic 
relationship matrix (H matrix). Representative indirect methods are 
Bayesian methods, which first estimate each marker effect stepwise and 
obtain the genomic breeding values by summarizing all genetic marker 
effects. Although GS methods integrate genomic variants into the pre-
diction model, they have higher prediction accuracy than the 
pedigree-based BLUP model. Factors such as the number and density of 
markers (Solberg et al., 2008; Zhu et al., 2017; Karimi et al., 2019), the 
size and structure of the reference population (Makgahlela et al., 2013; 
Song et al., 2019; Karaman et al., 2021; Nilson et al., 2024; Yin et al., 
2024), and the heritability of objective traits (Goddard and Hayes, 2009; 
Hayes et al., 2009; Karimi et al., 2019; Yin et al., 2024) are critical 
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contributors that may affect the predictive outcome of GS. In addition, 
linear assumptions constrain GS models, making them less adaptable in 
interpreting the complex interactive relationships in high-dimensional 
genomic data, thus the traditional GS models may result in 
lower-than-expected accuracy in some small populations (Gianola et al., 
2011).

Machine learning (ML) methods offer an alternative for genomic 
prediction in animal breeding (González-Recio et al., 2014; Bayer et al., 
2021; Chafai et al., 2023) and perform as a “black-box” without 
requiring knowledge of the distribution of variables or the genetic ef-
fects of target traits in advance (Li et al., 2018), breaking the limitations 
of mixed linear models and Bayesian assumptions. Compared with 
traditional linear models, ML demonstrates superior capability in 
capturing the complex relationships among genotypes, phenotypes and 
environment. In recent years, ML methods have been extensively 
applied to genomic prediction in pigs and cattle. Wang et al. (2022b)
found that ML methods outperformed the conventional methods in 
predicting pig reproductive trait performance by comparing support 
vector regression (SVR), kernel ridge regression (KRR), random forest 
(RF), and Adaboost.R2 with traditional methods such as GBLUP, 
SSGBLUP, and Bayesian Horseshoe (BayesHE). Alves et al. (2021) re-
ported that SVR showed the best accuracy compared to other parametric 
ML models in predicting the reproductive trait performance of Nellore 
cattle. Liang et al. (2021) also compared different ML methods in pre-
dicting genomic breeding values for carcass weight, live weight, and eye 
muscle area in Chinese Simmental beef cattle, finding that Adaboost.RT 
performed with the highest reliability and would be an efficient method 
for genomic prediction. Alves et al. (2023) explored the application of 
SVR to broiler carcass traits and found that SVR with a nonlinear kernel 
could improve the prediction accuracy compared to GBLUP and BayesC. 
Abdollahi-Arpanahi et al. (2020) reported that using simulated data and 
real cattle datasets, the Multilayer Perceptron (MLP) provided better 
predictive performance than parametric methods for traits with 
non-additive gene action. In addition, ML algorithms have also been 
used in the field of broilers to identify SNPs associated with early mor-
tality, revealing risk factors affecting the death upon arrival (Long et al., 
2007; Pirompud et al., 2024).

However, there is still a lack of systematical assessments of different 
ML methods for predicting the genomic effects of important economic 
traits in broilers. Therefore, in this study, we evaluated the genomic 
prediction accuracy of classic and ML methods in broiler economic 
traits, comparing the efficiency and stability of different ML methods to 
select the optimal algorithm for each specific trait.

Materials and methods

Population and phenotypes

All animal handling procedures were approved by the Institutional 
Animal Care and Use Committee (IACUC) of Hunan Agricultural Uni-
versity (Changsha, China, Permit No. HAU ACC 2023181).

The experimental broilers were selected from the breeder population 
of Xiangjia Black Feather chickens (S1 and S2 lines) bred for 7 genera-
tions by Hunan Xiangjia Husbandry Co., Ltd (Hunan Province, China). In 
this study, laying traits of the 5th and 6th generations of the S1 line and 
growth and carcass traits from the 6th and 7th generations of the S2 line 
were collected as the experimental phenotypes. The laying traits 
included age at the first egg (AFE), 40-week egg production (EP40), and 
43-week average egg weight (EW43), while the growth and carcass 
traits included 10-week body weight (BW10), 13-week body weight 
(BW13), half-eviscerated weight (HEW), eviscerated weight (EW), and 
breast muscle weight (BRW). A single-trait animal model was used to 
estimate heritability for each trait. The fixed effect included generation, 
batch, and sex, while the random effects were additive genetic effects 
and random residuals. The response variables used in genomic predic-
tion were the corrected phenotypes (yc), adjusted by removing the 

estimated values of the fixed effects.

Genotype data

Genomic DNA was extracted from blood samples collected by 
needling the wing vein. Two SNP panels, IASCHICK 55K (Liu et al., 
2019) and XiangXin 60K, were used for genotyping for each chicken. 
The PLINK (V1.90) (Purcell et al., 2007a) software was used to control 
the quality of the genotype data, retaining SNPs with a minor allele 
frequency (MAF) > 5%, SNP detection rate > 90%, and the individuals 
with genotype detection rate > 90%. All the individuals were imputed to 
the same SNP density with high fidelity (DR2 ≥ 0.9) for the subsequent 
analysis using Beagle 5.4 software and BCFtools v1.8 (Danecek et al., 
2021) software. The descriptive statistics for all traits are shown in 
Table 1.

Statistical models

Six classical models, including GBLUP, BayesA, BayesB, BayesC, 
Bayesian Lasso (BL), and Bayesian Ridge Regression (BRR), as well as 
seven machine learning methods, such as support vector regression 
(SVR), random forest (RF), gradient boosting decision tree (GBDT), 
extreme gradient boosting (XGBoost), light gradient boosting machine 
(LightGBM), kernel ridge regression (KRR) and Multilayer Perceptron 
(MLP) were employed for the genomic prediction of eight distinct 
phenotypes.

GBLUP

yc = 1μ + Zg + e (1) 

In the above formula, yc is the vector of corrected phenotypes, μ is the 
overall mean, 1 is a vector of 1 s, g is the vector of genomic breeding 

values following a normal distribution: g ∼ N
(

0, Gσ2
g

)
, and e is the 

vector of random errors following e ∼ N
(
0,Iσ2

e
)
. Z is a design matrices of 

g, G was the genomic relationship matrix (G matrix), and σ2
g and σ2

e were 
the additive genetic variance and the residual variance, respectively.

Table 1 
Summary statistics of eight economic traits from Xiangjia Black Feather 
chickens.

Trait Markers Number of 
observations

Mean SD CV 
(%)

h2(SE)

Laying 
traits

     

AFE (d) 31934 1094 158.91 7.68 4.83 0.26 
(0.06)

EP40 (n) 31934 1140 91.17 14.35 15.74 0.21 
(0.05)

EW43 (g) 31934 989 48.99 3.25 6.63 0.44 
(0.06)

Growth 
and 
carcass 
traits

     

BW10 (g) 24082 1347 961.13 165.76 17.25 0.48 
(0.05)

BW13 (g) 24033 1345 1341.93 169.72 12.65 0.46 
(0.05)

HEW (g) 23930 1338 1030.18 145.09 14.08 0.40 
(0.05)

EW (g) 24009 1340 852.30 117.37 13.77 0.41 
(0.05)

BRW (g) 16962 1036 110.81 34.08 30.75 0.21 
(0.05)
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Bayesian

The general formula of Bayes A, Bayes B and Bayes C is as follows: 

yc = μ +
∑m

i=1
Zigi + e (2) 

where yc is the vector of corrected phenotypes; i = 1…for the m marker, 
Zi is the genotype (0/1/2) of the ith locus; gi is the effect value of the ith 
locus; and e is the vector of random residual effects. BayesA assumes that 
each SNP locus has an effect and the effect variance follows the same 
prior distribution; BayesB assumes that only a small fraction of SNPs 
have an effect (a scale of 1-π); and the BayesC approach takes π as an 
unknown parameter. Park and Casella (2008) proposed Bayesian lasso in 
2008, which differs from BayesA in that the marker effect follows Lap-
lace distribution. The Bayesian ridge regression was proposed by Hsiang 
(1975), which assumes that all markers have effects, and the marker 
effects follow a normal distribution. In theory, RRBLUP is equivalent to 
GBLUP with a smoothening parameter λ as the ratio to adjust variance 
components (Tomar et al., 2021), meaning that Bayesian ridge regres-
sion can represent RR-BLUP and GBLUP (Wang et al., 2022a). The five 
models were implemented based on the BGLR (Pérez and de Los Cam-
pos, 2014) package in R. The iterations were set to 12,000, burn-in at 2, 
000, and the value of π was set to 0.95 for the BayesB method.

Support vector regression

Support vector regression (SVR) is based on the support vector ma-
chine (SVM) method and is used in this study because it uses kernel 
functions to solve nonlinear problems, providing incomparable advan-
tages over other algorithms based on the empirical risk minimization 
principle (Long et al., 2011). The model expression of SVR is written as 
follows: 

f(x) = β0 + h(x)Tβ (3) 

in which h(x)Tβ denotes the kernel function of the SVR, β is the vector of 
weights, and β0 is the bias.

Random Forest

Random forest (RF), gradient boosting decision tree (GBDT), and 
extreme gradient boosting (XGBoost) are typical ensemble learning al-
gorithms applied to predicting genomic breeding values. RF was first 
proposed by Breiman (2001) and essentially consists of several inde-
pendent decision trees (Liaw and Wiener, 2002). The combination of the 
prediction outcomes of each decision tree determines the prediction 
effect of RF, so the critical step in RF prediction is the formation of de-
cision trees and a forest (Zhang et al., 2023). The expression for RF 
regression is as follows: 

y =
1
M

∑M

m=1
tm(ψm(y : X)) (4) 

where y is the predicted value of RF, tm(ψm(y : X)) is each independent 
decision tree, and M is the number of decision trees in the random forest.

Gradient boosting decision tree

Gradient boosting decision tree (GBDT) is implemented based on the 
Boosting algorithm. The core idea is to first fit an initial decision tree 
with training data, then train the next tree based on the residuals of the 
previous tree, and finally sum up the predictions of a series of trees 
(Zhang and Jung, 2020). The computational complexity of GBDT is 
proportional to the number of features and the number of instances, 
making it very time-consuming to deal with big data. According to the 
additivity model, the final model of GBDT is expressed as follows: 

fM(x) =
∑M

m=1
T(x;Θm) (5) 

where T(x;Θm) is the base model represented by the decision tree, Θm is 
the decision tree parameter, and M is the number of decision trees.

Extreme gradient boosting

Extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016) is 
an improved version of GBDT, superior to GBDT in performance and 
speed. Similar to GBDT, XGBoost is also an additive model composed of 
multiple base models. The XGBoost algorithm uses serial dataset 
training processes to merge decision trees, and the final model is a forest 
containing several decision trees (Kiangala and Wang, 2021). XGBoost is 
expressed as follows: 

ŷˆi =
∑K

k=1
fk(xi) (6) 

where ŷˆi is the predicted value of XGBoost, fk(xi) is the base model for 
the decision tree representation, and K is the number of decision trees.

Light gradient boosting machine

Light gradient boosting machine (LightGBM) (Ke et al., 2017) is a 
new GBDT implementation with Gradient-based One-Side Sampling 
(GOSS) and Exclusive Feature Bundling (EFB) developed by Microsoft. 
Among them, GOSS and EFB algorithms are used to optimize the number 
of samples and features, respectively. It has been proven that, with the 
help of GOSS and EFB, LightGBM can significantly outperform XGBoost 
in computing speed and memory consumption.

Kernel ridge regression

Kernel ridge regression (KRR) is a nonlinear regression method based 
on ordinary least square (OLS) regression and Ridge regression 
(Exterkate et al., 2016). KRR uses a kernel function to map the original 
data into high-dimensional space, where the mapped data tend to be 
linear in the reproducing kernel Hilbert space (RKHS). The ridge 
regression method is then used to analyze and process the data in this 
high-dimensional feature space (Rosipal, 2001). The final KRR predic-
tion model is written as follows: 

y(xi) = kʹ(K + λI) − 1y (7) 

in which xi is the individuals in the training set, λ is the regularization 
parameter, K is the Gram matrix, I is the identity matrix, kʹ = K(xi,xj), j =
1,2,3,…,n, and n is the number of individuals in the training set.

Multilayer perceptron

The Multilayer Perceptron (MLP) is a type of feedforward artificial 
neural network that has extensive applications in the field of genomic 
prediction (Abdollahi-Arpanahi et al., 2020; Pedrosa et al., 2024). An 
MLP consists of an input layer, one or more hidden layers, and an output 
layer. Each layer is composed of multiple neurons (nodes), and each 
neuron is connected to all the neurons in the previous layer, receiving 
and transmitting signals. Input signals are passed through weighted 
connections. After comparing the input values with the thresholds, an 
output value is produced by activating the corresponding function.

The seven ML methods, including the MLP which was employed with 
default parameters, were implemented using the Sklearn package in 
Python. Based on the Tree-structured Parzen Estimator (TPE) algorithm, 
this study used 10-fold cross-validation (CV) to find the most suitable 
kernel function model and the optimal parameters of the other six ML 
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algorithms. The key hyperparameters are detailed in Supplementary 
Table 1. In addition, the optimization process of hyperparameters for the 
ML methods and the optimal hyperparameters for each trait are detailed 
in the Supplementary Text and Supplementary Table 2.

Genome-wide association study

Since the integration of trait-related SNPs in GS models may help 
improve prediction accuracy (Luo et al., 2021), the genome-wide asso-
ciation study (GWAS) was performed to sort the SNPs with high asso-
ciation significance. The independent SNPs were extracted by PLINK 
(V1.90) (Purcell et al., 2007b), and the parameter was set to 
–indep-pairwise 25 5 0.2. The first two principal component analyses 
(PCA) were used to correct the population structure. GEMMA (v0.98.5) 
(Zhou and Stephens, 2012) was used to identify SNPs associated with 
traits. The SNPs were sorted according to their nominal P values after 
GWAS, and different numbers of SNP sets were selected for the subse-
quent genome prediction.

Evaluation of the accuracy of genomic prediction

The accuracies of genomic prediction were evaluated by Pearson 
correlation coefficient between corrected phenotypes (yc) and predicted 
value (PV). Additionally, root mean square error (RMSE) and mean 
absolute error (MAE) were used as evaluation metrics for the regression 
models. Two more metrics, the coefficient of determination (R²) and 
unbiasedness, were also incorporated to further assess the models per-
formance. RMSE is one of the most commonly used performance 
assessment metrics in regression tasks, indicating the average degree of 
deviation between the predicted and true values of the model. The 
calculation formula is given below: 

RMSE(y,ypre) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
yi − yi,pre

)2

√
√
√
√ (8) 

The MAE value reflects the absolute deviation of the true value from 
the predicted value; the smaller the MAE, the more accurate the model 
prediction. The calculation formula is provided below: 

MAE(y,ypre) =
1
N

∑N

i=1

⃒
⃒
⃒yi − yi,pre

⃒
⃒
⃒ (9) 

In the above two formulas, y and ypre represent yc and PV, respec-
tively, and N represents the number of individuals.

The coefficient of determination, denoted as R², represents the pro-
portion of the variation in the dependent variable that is predictable 
from the independent variable(s), indicating the model’s explanatory 
power for the predicted results. The expression for this coefficient is as 
follows: 

R2 = 1 −
SSres

SStot
(10) 

Where 

SSres =
∑N

i=1
(ŷi − yi)

2
, SStot =

∑N

i=1
(yi − yi)

2 (11) 

Here, N represents the number of individuals, ŷ denotes the pre-
dicted values by the model, yi represents the actual values, and yi is the 
mean of the samples.

Unbiasedness is assessed by regressing the corrected phenotypes 
onto the predicted values.

The final averages of five metrics were obtained by randomly 
selecting 10% of the samples as the validation population and the 
remaining 90% as the reference population. The 10-fold CV was 
repeated for 10 times.

Time consumption

The runtime for different methods was calculated on a server running 
CentOS Linux 7, with a 2.5 GHz Intel Xeon processor and 1.0 TB of total 
memory.

Results

Heritability of eight phenotypic traits

The heritability of the eight traits in this study ranged from 0.21 to 
0.48. Among the three laying traits, the heritability of AFE, EP40, and 
EW43 was 0.26, 0.21, and 0.44, respectively. Except for the low heri-
tability of BRW (0.21), the four growth and carcass traits had relatively 
high heritability: BW10 (0.48), BW13 (0.46), HEW (0.40), and EW 
(0.41). The results of the heritability estimates are shown in Table 1.

Fine tuning of ML method hyperparameters

Fig. 1 illustrates the comparison of the ML algorithms before and 
after hyperparameter optimization. For most of the algorithms, the 
prediction accuracy significantly improved after parameter optimiza-
tion, among which SVR had the most significant improvement effect in 
various traits. For different traits, the average improvement of the ML 
method with tuned hyperparameters was 34.0%, 32.9%, 27.0%, 19.3%, 
26.8%, 13.2%, 18.9%, and 46.3%, respectively. The ratios were deter-
mined by dividing the pre-optimization to post-optimization difference 
by the pre-optimization accuracy.

For laying traits, KRR had the highest prediction accuracy of 0.207 
and 0.320 for AFE and EW43, respectively; RF and XGBoost had the 
highest prediction accuracy for EP40 (0.237 and 0.234). Combined with 
MAE and RMSE values, it was found that RF and XGBoost had less 
fluctuation in these three traits. Compared to other ML methods, KRR 
also showed superior prediction performance in BW13 (0.369), EW 
(0.381), and BRW (0.197). In the case of BW10, SVR achieved the 
highest accuracy (0.427), while SVR, RF, GBDT, and XGBoost had very 
similar prediction accuracies for HEW. In terms of growth and carcass 
traits, the MAE and RMSE values for SVR were relatively low, indicating 
that SVR exhibited greater robustness in its predictive ability.

Comparison of the prediction accuracies between 12 GS methods for 
different traits

Table 2 shows the genomic prediction accuracies of GBLUP, Bayesian 
methods, and ML methods for the traits of AFE, EP40, EW43, BW10, 
BW13, HEW, EW, and BRW. Overall, the ML methods showed little 
advantage in prediction accuracy for the three laying traits, regardless of 
whether hyperparameters were tuned, compared to GBLUP and 
Bayesian models. In addition, as shown in Fig. 2, the prediction accuracy 
of the classical models (GBLUP and Bayesian methods) increased with 
the heritability of the trait from low to high, but the ML methods showed 
weak relationships between the prediction accuracy and heritability.

In the prediction of AFE, GBLUP, BayesA, BayesB, BayesC, and BL 
models had similar performance, among which BL had the highest 
prediction accuracy of 0.237. Both BayesC and BRR performed the best 
in the prediction of EP40, with accuracies of 0.246 and 0.242, respec-
tively. In addition, BRR had the highest accuracy in predicting the 
EW43. As shown in Table 3 and 4, the BRR method had relatively lower 
MAE values and RMSE compared with other methods.

For the BW10 trait, most of the methods had comparable prediction 
accuracy close to 0.40, and the SVR with optimized hyperparameters 
showed the highest prediction accuracy of 0.427. Similar to laying traits, 
GBLUP and Bayesian models performed better than ML methods in 
predicting BW13 and BRW traits. BayesA and BL had high prediction 
accuracy of 0.389 and 0.382 for BW13, and BayesC had the highest 
prediction accuracy of 0.216 for BRW.
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The prediction accuracy of ML methods with optimized hyper-
parameters for HEW and EW is much higher than that of GBLUP and 
Bayesian models. For two carcass traits HEW and EW, all ML methods 
except MLP yielded lower MAE and RMSE than GBLUP, BayesA, BayesB, 
BayesC, BL, and BRR. Compared within the classic models, BayesC had 
relatively low MAE (103.938) and RMSE (130.915) on HEW, and GBLUP 
generated a slightly lower MAE (83.584) and RMSE (105.103) on EW. In 
addition, as shown in Table 5, the unbiasedness indicators calculated by 
ML methods fluctuated significantly for certain traits, while the unbi-
asedness of classical methods was generally around 1. The R2 values 
indicated an overall low performance in this study (Supplementary 
Table 3).

Computing time

The average computation time required for each method to complete 
one round of 10-fold CV is presented in Supplementary Table 4. As ex-
pected, the three Bayesian methods—Bayes A, Bayes B, and Bayes C, 
required approximately 1 hour to complete one round of 10-fold CV, 
while GBLUP cost 35 minutes to complete. Different ML methods 
showed distinct running time cost. KRR was the fastest and used only 15s 
to finish. However, RF spent the longest time about 6.9 hours to 

Fig. 1. Prediction accuracies of machine learning methods before and after hyperparameter optimization.

Table 2 
Prediction accuracies for 8 traits based on thirteen methods using 10-fold CV.

Method Laying traits Growth and carcass traits

EP40 AFE EW43 BRW HEW EW BW13 BW10

GBLUP 0.233 0.233 0.358 0.204 0.304 0.336 0.372 0.401
BayesA 0.224 0.232 0.344 0.183 0.324 0.329 0.389 0.394
BayesB 0.224 0.235 0.343 0.194 0.313 0.328 0.371 0.399
BayesC 0.246 0.223 0.357 0.216 0.311 0.331 0.366 0.395
BL 0.226 0.237 0.344 0.201 0.318 0.330 0.382 0.406
BRR 0.242 0.223 0.364 0.198 0.327 0.319 0.379 0.399
SVR 0.195 0.126 0.228 0.139 0.510 0.378 0.309 0.427
RF 0.237 0.174 0.277 0.177 0.509 0.383 0.314 0.400
GBDT 0.205 0.156 0.274 0.163 0.507 0.360 0.332 0.386
XGBoost 0.234 0.188 0.301 0.136 0.508 0.352 0.305 0.396
LightGBM 0.196 0.155 0.261 0.094 0.486 0.334 0.285 0.395
KRR 0.153 0.207 0.320 0.197 0.409 0.381 0.369 0.404
MLP 0.102 0.174 0.219 0.158 0.488 0.391 0.368 0.413

Fig. 2. Average predictive accuracy of models for traits with varying 
heritability.
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complete.

Integration of trait-associated SNPs on genomic prediction in different 
methods

To evaluate the performance of different SNP selection strategies in 
low and high heritability traits, EP40 and HEW were selected for sub-
sequent analysis. For EP40 and HEW traits, the top 500, 1000, 2000, 
5000, and 10000 SNPs that were associated with each phenotype were 
selected as a subset of genotype data for genomic prediction. The same 
number of SNPs were also selected from the genome randomly for 
comparison. A comparison of the effects of the SNP subsets obtained by 
the two methods on the accuracy of genomic prediction is presented in 

Figs. 3-6.
The results demonstrated that the prediction accuracies obtained by 

selecting the top SNPs (Top SNPs) through GWAS were much higher 
than those obtained by randomly selecting the SNPs (Rand SNPs). 
Specifically, for HEW, the average accuracy obtained by GWAS selection 
at different SNP densities was 0.634 versus 0.360 for random selection, 
while for EP40, it was 0.538 and 0.205, respectively.

In the Top SNPs scenario, the predictive accuracies of EP40 or HEW 
by GBLUP, BayesA, BayesB, BayesC, BL, BRR, and KRR methods were 
consistently higher and more comparable to other ML methods such as 
SVR, RF, GBDT, XGBoost, and LightGBM. In particular, the BRR model 
showed to increase the predictive accuracy by 2.8 times when incor-
porating the Top 2000 trait-associated SNPs (0.696 ± 0.011), compared 

Table 3 
Mean absolute error (MAE) for 8 traits based on thirteen methods using 10-fold CV.

Method Laying traits Growth and carcass traits

EP40 AFE EW43 BRW HEW EW BW13 BW10

GBLUP 1.075 5.719 2.406 20.682 105.293 83.584 106.219 77.907
BayesA 1.073 5.696 2.428 20.815 104.443 83.798 105.968 78.897
BayesB 1.071 5.663 2.454 20.375 105.172 83.976 106.076 78.407
BayesC 1.074 5.699 2.413 20.379 103.938 84.301 106.590 79.254
BL 1.071 5.713 2.419 20.273 105.272 84.724 106.148 77.465
BRR 1.071 5.653 2.408 20.316 104.008 84.801 105.943 78.708
SVR 1.086 5.774 2.522 20.707 95.179 81.532 108.815 78.268
RF 1.072 5.798 2.524 20.583 95.126 81.539 109.517 79.460
GBDT 1.092 5.849 2.502 20.601 96.901 82.282 107.975 79.447
XGBOOST 1.068 5.795 2.485 20.757 95.170 82.458 108.626 79.270
LightGBM 1.085 5.889 2.547 20.863 96.677 83.322 109.202 79.258
KRR 1.233 6.091 2.623 20.440 100.601 82.044 106.313 78.565
MLP 1.546 6.298 3.160 22.855 99.583 85.134 110.829 81.264

Table 4 
Root mean square error (RMSE) for 8 traits based on thirteen methods using 10-fold CV.

Method Laying traits Growth and carcass traits

EP40 AFE EW43 BRW HEW EW BW13 BW10

GBLUP 1.386 7.019 2.991 25.937 133.080 105.103 133.311 98.323
BayesA 1.381 7.017 3.022 25.979 131.936 105.046 132.880 99.568
BayesB 1.382 6.969 3.048 25.580 131.988 105.221 133.172 99.130
BayesC 1.382 7.031 3.013 25.558 130.915 105.663 133.916 100.255
BL 1.380 7.040 3.018 25.421 132.843 106.381 133.241 98.394
BRR 1.376 6.951 3.003 25.545 131.223 106.275 133.199 99.534
SVR 1.401 7.188 3.170 26.187 119.970 103.652 137.519 98.233
RF 1.385 7.090 3.154 25.848 120.040 103.300 138.329 99.943
GBDT 1.405 7.211 3.128 25.888 121.932 104.162 136.501 100.116
XGBOOST 1.385 7.074 3.104 26.084 120.077 104.474 137.315 99.750
LightGBM 1.402 7.172 3.188 26.227 121.862 105.217 138.133 99.688
KRR 1.587 7.707 3.267 25.703 127.286 103.186 133.829 99.236
MLP 2.012 8.013 4.346 28.806 125.631 107.532 139.610 102.979

Table 5 
Unbiasedness for 8 traits based on thirteen methods using 10-fold CV.

Method Laying traits Growth and carcass traits

EP40 AFE EW43 BRW HEW EW BW13 BW10

GBLUP 0.963 0.900 1.010 0.877 0.945 1.052 0.947 1.028
BayesA 0.878 0.843 0.964 0.903 0.979 0.935 1.010 1.046
BayesB 0.813 0.869 0.967 0.963 0.995 0.986 0.972 0.998
BayesC 0.926 0.940 1.038 0.900 1.033 1.036 1.059 1.008
BL 0.933 0.876 0.982 0.938 0.957 0.967 0.986 0.979
BRR 0.933 0.840 1.025 0.862 0.996 0.958 1.020 1.002
SVR 1.750 0.584 0.776 0.488 0.967 0.851 0.794 0.912
RF 1.218 1.126 1.905 1.594 1.044 1.147 1.901 1.297
GBDT 0.604 0.442 0.883 0.755 1.414 1.081 1.401 1.039
XGBOOST 1.031 1.239 1.252 0.590 1.039 1.033 1.244 1.123
LightGBM 1.054 0.778 1.297 0.409 0.974 1.040 1.175 1.082
KRR 0.216 0.331 0.497 0.861 1.081 1.011 0.972 0.999
MLP 0.098 0.281 0.264 0.247 0.681 0.579 0.574 0.609
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Fig. 3. Accuracy of genomic prediction of EP40 by GWAS selection of different numbers of SNPs.

Fig. 4. Accuracy of genomic prediction of EP40 by random selection of different numbers of SNPs.

Fig. 5. Accuracy of genomic prediction of HEW by GWAS selection of different numbers of SNPs.
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to the accuracy obtained by using all SNPs (0.25 ± 0.008).
For the Rand SNPs situation, most methods have improved predic-

tion accuracy as more SNPs are used in the model. Notably, the im-
provements in prediction accuracies by classical methods (average 
0.418) were slightly larger than those obtained by ML models (average 
0.224). Interestingly, in the HEW trait, ML methods even maintained 
relatively high prediction accuracy when utilizing Rand SNPs, compared 
to using Top SNPs.

Discussion

GS has been widely used in animal and plant breeding, and its al-
gorithms are continually evolving, but there is no algorithm suitable for 
all species and traits at present. The characteristics of ML algorithms 
facilitate the identification of intricate relationships between genes, 
phenotypes, and environments when dealing with high-dimensional 
genomic data. To date, there have been studies comparing the applica-
tion effect of ML algorithms and classic linear models in genome pre-
diction of livestock and aquatic animals (Moser et al., 2009; Alves et al., 
2020; Alves et al., 2021; Wang et al., 2022b). The results showed that 
ML algorithms exhibited superior results in prediction accuracy. 
Currently, there are few researches on the application of ML algorithms 
in poultry genome prediction. In this study, we systematically evaluated 
the application of 12 algorithms for genomic prediction, including 
GBLUP, Bayesian, and ML methods, using phenotypic and genotypic 
data of laying traits, growth traits, and carcass traits from two genera-
tions of Xiangjia black feather chickens as experimental material.

In our experiments, both BayesC and BRR methods performed well in 
EP40. Furthermore, BRR also had the highest prediction accuracy for 
EW43, indicating that BRR may be the optimal algorithm for laying 
traits. In terms of computational efficiency, BRR consumed less 
computing time than BayesC. BL had the highest accuracy in predicting 
AFE. Furthermore, KRR exhibited the highest accuracy in several traits; 
however, its MAE and RMSE values were not the smallest in comparison 
to other ML methods. This finding is in accordance with the results of 
previous research, which indicates that the comparison of different 
models with varying evaluation criteria will invariably yield disparate 
ranking outcomes (Nikooienejad et al., 2020; Li et al., 2023). The R2 

value showed negative values in the application of nonlinear models, 
which may be due to the complexity of nonlinear data and the risk of 
overfitting. The ML algorithms did not show superior performance in all 
scenarios, only a huge gain in the prediction of HEW and EW. For HEW 
traits, compared with that of GBLUP and Bayesian methods, the 
improvement of ML methods was 54.4% on average. Among ML 
methods, the improvement of SVR, RF, GBDT, and XGBoost were more 

than 60%, which was 61.3%, 61.0%, 60.4%, and 60.7%, respectively; 
MLP achieved an improvement of 54.4%, LightGBM showed an 
improvement of 53.7%; KRR yielded the lowest improvement of 29.4%. 
For EW traits, the performance of ML methods was still better than 
GBLUP and Bayesian methods, MLP gained the largest improvement 
16.5%, SVR, GBDT, XGBoost, LightGBM, and KRR were improved by 
15.0%, 9.5%, 7.0%, 1.6%, and 15.9%, respectively. The possible reason 
for this is that the genome prediction accuracy of different algorithms is 
influenced by many factors, such as population structure and the genetic 
structure of the traits (Neves et al., 2012). For traits completely regu-
lated by additive effects, the classic linear models showed higher pre-
diction accuracy (Zingaretti et al., 2020). When the target traits are 
more affected by non-additive effects (such as epistatic effects and 
environmental effects), ML methods can obtain more accurate pre-
dictions (Long et al., 2011; Millet et al., 2019). Therefore, the choice of 
the appropriate algorithm based on the structural characteristics of the 
trait is critical for prediction accuracy. Moreover, for complex traits 
under directed selection, non-additive gene effects such as epistasis also 
translate into additive genetic variance when allele frequencies are low 
(Hill et al., 2008; Huang and Mackay, 2016), which may explain to some 
extent why the ML models performed better on only some traits in this 
study. Additionally, we found that the SVR model exhibited negative 
accuracy values for predicting AFE and BRW. This situation may occur 
when the machine learning model is insufficient to capture the rela-
tionship between genotype and phenotype. (Wang et al., 2023; Wang 
et al., 2024)

It is worth noting that the adjustment of hyperparameters in ML al-
gorithms has a great impact on the calculation accuracy and efficiency of 
ML algorithms. Currently, there are three mainstream optimization 
methods. The grid search method is the most commonly used hyper-
parameter tuning method. Its principle is to combine the parameters 
within a given range and search for the parameter combination with the 
highest score through CV. This kind of enumeration search method is the 
most direct, but it is very resource-intensive, especially when dealing 
with large datasets or many parameters to optimize, and relies on 
parameter adjustment experience to determine the appropriate param-
eter range. The random search method randomly selects a subset from 
the parameter combination for training and validation, and its opera-
tional speed and the parameter space it covers per unit time are better 
than the grid search method. Whether it is the grid search method or the 
random search method, its essence is to verify a large number of points 
in the parameter space and finally obtain the optimal solution, which 
makes it difficult to achieve both accuracy and efficiency. Using the 
Bayesian optimization algorithm for hyperparameter optimization is the 
recommended choice. Some studies have shown that the Bayesian 

Fig. 6. Accuracy of genomic prediction of HEW by random selection of different numbers of SNPs.
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optimization algorithm based on TPE performs well in hyperparameter 
optimization (Nguyen et al., 2020; Ozaki et al., 2020; Liang et al., 2022; 
Shen et al., 2022). The TPE optimization algorithm can handle not only 
continuous variables but also discrete, classified, and conditional vari-
ables which are difficult to solve with Kriging (Ozaki et al., 2020).

ML algorithms are sensitive to user-defined parameters during the 
training phase (Alves et al., 2021; Wang et al., 2022b). Taking RF as an 
example, the number of decision trees in the tree model (n_estimators), 
that is, the number of weak learners, has a great impact on the prediction 
accuracy, complexity, generalization ability, and computational effi-
ciency of the RF model. The computational time and complexity of the 
model increase with the number of decision trees. The depth of the 
decision tree (max_depth) directly determines the overfitting risk of the 
RF model, and the overfitting of the model can be prevented by lowering 
the depth of the tree. Liang et al. (2022) determined the optimal pa-
rameters of the KRR model by TPE algorithm in Simmental beef. The 
results showed that compared to the GBLUP model, the prediction ac-
curacy of KRR-TPE was improved by 8.73%. Wang et al. (2022b)
compared the prediction effects of different ML methods before and after 
hyperparameter adjustment for pig offspring. The results showed that 
compared with the results of using default hyperparameters, the pre-
diction accuracy of ML methods after hyperparameter optimization was 
improved by 21.8% on average. In summary, the optimization of 
hyperparameters is necessary for the ML methods to achieve better 
performance in GS.

Theoretically, the accuracy of genomic prediction increases with the 
increase of marker density, but not all SNPs in the whole genome are 
related to traits. Filtering SNPs related to traits is of great significance for 
GS. Li et al. (2018) explored the effect of three ML methods, such as 
gradient boosting machine (GBM), XGBoost and RF on the genomic 
prediction of the identified SNPs subsets. The results showed that the 
prediction effect of the SNP subsets was significantly better than that of 
the SNPs evenly distributed in the genome. Some studies have shown 
that the addition of marker effect and P value information in GS helps to 
improve the accuracy of prediction (Su et al., 2014). The common 
approach is to use the filtered SNPs to weight the relationship matrix 
(Yin et al., 2020), and directly using SNPs to rank according to P value 
for GS can reduce the cost of subsequent genotyping (Luo et al., 2021). 
Our study explored the impact of different numbers of SNPs selected by 
GWAS on the accuracy of genomic prediction. The results showed that 
the prediction accuracy obtained by the top SNPs was much higher than 
that of the randomly selected SNPs. Most algorithms achieve the highest 
prediction accuracy when using the top 2000 SNPs. The construction of 
low-density SNP chips based on the identification of SNPs related to trait 
biology has the potential to reduce the cost of genotyping, while it also 
can facilitate the application of GS in yellow-feathered broilers.

Conclusions

In this study, we explored the efficiency of ML methods such as SVR, 
RF, GBDT, XGBoost, LightGBM, KRR and MLP for genomic prediction in 
broilers. The ML methods were evaluated in comparison to the GBLUP 
and Bayesian methods, focusing on the prediction accuracy, MAE, 
RMSE, R2 and unbiasedness of the different models by repeating 10 
times 10-fold CV. The results showed that the prediction performance of 
the classic GS methods was better than that of the ML methods in most 
traits. For AFE, BL had the highest accuracy. BayesC and BRR had the 
highest accuracy in predicting EP40 and EW43, respectively. BayesA 
and BayesC showed the best prediction performance for BW13 and BRW, 
respectively. ML methods significantly outperformed classic methods in 
predicting EW and HEW. To explore the effect of the GWAS selection of 
different numbers of SNPs on the accuracy of genomic prediction, we 
found that the prediction accuracy obtained by selecting top SNPs was 
much higher than that obtained by selecting SNPs randomly, with the 
hierarchy of Top SNPs > All SNPs > Random SNPs. Overall, our findings 
highlighted the importance of selecting appropriate methods and SNPs 

while considering the genetic structure of traits, dataset size, and 
computational efficiency to enhance the accuracy of genomic pre-
dictions in broiler breeding. While computational resources limited the 
efficiency of hyperparameter optimization in ML, future advancements 
in this area could lead to further improvements in prediction accuracy.
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