

DOI: 10.1002/open.201500203

Enzymatic Strategy for the Resolution of New 1-Hydroxymethyl Tetrahydro- β -carboline Derivatives in Batch and Continuous-Flow Systems

Rita Megyesi, [a] Enikő Forró, *[a] and Ferenc Fülöp*[a, b]

Many alkaloids containing a tetrahydro- β -carboline skeleton have well-known therapeutic effects, leading to increased interest in the synthesis of these natural products. Enantiomers of *N*-Boc-protected 1-hydroxymethyl-1,2,3,4-tetrahydro- β -carboline [(\pm)-7], 1-hydroxymethyl-6-methoxy-1,2,3,4-tetrahydro- β -carboline [(\pm)-8], and 1-hydroxymethyl-6-fluoro-1,2,3,4-tetrahydro- β -carboline [(\pm)-9] were prepared through enzymecatalyzed asymmetric acylation of their primary hydroxyl group. The preliminary experiments were performed in a continuous-flow system, while the preparative-scale resolutions

were done as batch reactions. Excellent enantioselectivities (E>200) were obtained with *Candida antarctica* lipase B (CAL-B) and acetic anhydride in toluene at $60\,^{\circ}$ C. The recovered alcohols and the produced esters were obtained with high enantiomeric excess values $(ee \ge 96\,\%)$. The O-acylated enantiomers [(S)-10-(S)-12)] were transformed into the corresponding amino alcohols [(S)-7-(S)-9)] with methanolysis. Microwave-assisted Boc removals were also performed and resulted in the corresponding compounds (R)-4-(R)-6 and (S)-4-(S)-6 without a drop in the enantiomeric excess values $(ee \ge 96\,\%)$.

Introduction

Many alkaloids containing a tetrahydro-β-carboline skeleton have been isolated from natural sources. Several of them have well-known pharmaceutical effects and are used in therapy. As examples, reserpine displays antihypertensive activity,[1] while vincristine and vinblastine exhibit cytotoxic activity.[2] In view of their potential pharmaceutical activity, tetrahydro- β -carboline alkaloids are currently at the forefront of research. New alkaloids have recently been isolated from Vinca major, including vincamajorines A and B^[3] and vinmajines A-I.^[4] Terpenoid indole alkaloids, mappiodines A-C, and mappiodosides A-G are found in the stems of Mappianthus iodoides. [5] Harmicine, extracted in optically pure form from Kopsia griffithii, has antileishmanial^[6] and antinociceptive effects.^[7] The antiproliferative activity of arborescidine alkaloids and their derivatives has been evaluated in vitro in human tumor cell lines.[8] A number of studies have reported antimalarial effects of tetrahydro- β carbolines such as (+)-7-bromotrypargine, which was extracted from an Australian marine sponge,^[9] and some pyridoxal β -carbolines derivatives.^[10] Trujillo and co-workers investigated tetrahydro- β -carboline-1-carboxylic acids and their analogs, such as (\pm)-5, as inhibitors of mitogen-activated protein kinase-activated protein kinase 2.^[11] Syntheses of β -carboline alkaloids, such as henrycinol A and B^[12] or Eg5, an inhibitor of hydantoin hybrids, have also been reported.^[13] Several routes for the synthesis of pharmacologically important natural products have been reviewed.^[14,15]

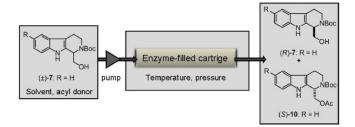
Continuous-flow techniques are increasingly more often used in lipase-catalyzed transformations, for example acylation reactions^[16-18] or esterifications, such as the resolution of flurbi-profen^[19] and sugar ester synthesis.^[20] Most of the lipase-catalyzed reactions involving the use of continuous-flow techniques have been reviewed, for example, the compilation by Itabaiana and co-workers.^[21]

On the basis of earlier excellent results on the enzymatic preparation of various *N*-Boc-protected tetrahydroisoquinolines, intermediates for the preparation of crispine $A^{[22]}$ homocalycotomine, or calycotomine, we set out to develop a new enzymatic method for the resolution of new tetrahydro- β -carboline derivatives: 1-hydroxymethyl-1,2,3,4-tetrahydro- β -carboline $[(\pm)$ -4], 1-hydroxymethyl-6-methoxy-1,2,3,4-tetrahydro- β -carboline $[(\pm)$ -5], and 1-hydroxymethyl-6-fluoro-1,2,3,4-tetrahydro- β -carboline $[(\pm)$ -6]. We planned to carry out the enantioselective O-acylation of Boc-protected derivatives of the above-mentioned compounds $[(\pm)$ -7, (\pm) -8, and (\pm) -9].

- [a] R. Megyesi, Prof. E. Forró, Prof. F. Fülöp University of Szeged Institute of Pharmaceutical Chemistry Eötvös u. 6, 6720 Szeged (Hungary) E-mail: fulop@pharm.u-szeged.hu
- [b] Prof. F. Fülöp MTA-SZTE Stereochemistry Research Group Hungarian Academy of Sciences Eötvös u. 6, 6720 Szeged (Hungary)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/open.201500203.
- © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Results and Discussion

The starting compounds $[(\pm)$ -7, (\pm) -8, and (\pm) -9] were synthetized through Pictet–Spengler cyclization of the corresponding



tryptamine hydrochloride derivatives [1, 2, and 3] and glycolal-dehyde, by a method from the literature. Finally, to ensure the acylation exclusively at the OH function, the nitrogen at position 2 was Boc protected (Scheme 1).

A number of preliminary experiments were performed in order to determine the optimal conditions for the enzymatic acylation of (±)-7 (Scheme 2). These preliminary reactions were carried out in a continuous-flow system, using an H-Cube, [24] considering the advantages ensured by this system vs. batch reactions, such as facile automation, reproducibility, constant reaction parameters, and rapid implementation of the reactions (Figure 1). [26] The substrate and the acyl donor were dissolved in the solvent, and the solution was pumped through a 70 mm-long heat- and pressure-resistant CatCart filled with enzyme. We investigated how the enzyme, the acyl donor, the solvent, temperature, and pressure influenced the enantiose-lectivity and the reaction rate.

In an earlier study on the synthesis of N-Boc-protected calycotomine enantiomers, the CAL-B (Candida antarctica lipase B)catalyzed enantioselective acylation (E > 200) was performed with vinyl acetate in toluene, with a flow rate of 0.1 mLmin⁻¹ in a continuous-flow system.^[24] We therefore started the acylation of model compound (\pm) -7 under similar conditions (Table 1, entry 1). Poppe and co-workers^[16] described the preparative-scale resolution of different racemic secondary alcohols by using a continuous-flow system and also at a flow rate of 0.1 mLmin⁻¹. CAL-B catalyzed the reaction with excellent enantioselectivity (E > 200), but the conversion (conv.=4%) was very low after one cycle. Next, several other enzymes, such as PS-IM (Burkholderia cepacia lipase), CAL-A (Candida antarctica lipase A) and AK (Pseudomonas fruorescens lipase), were tested under the same conditions (entries 2-4). Lipase PS-IM catalyzed the reaction with excellent E (entry 2), but with an even lower reaction rate than for CAL-B (entry 1). CAL-A displayed moderate reactivity and low E (entry 4), while lipase AK practically did not catalyze the reaction (no product was detected after one

Figure 1. Enzyme-catalyzed resolution of (\pm) -7 in a continuous-flow system.

Table 1. Enzyme screening for the acylation of (\pm) - 7 ^[a] .									
Entry	Entry Enzyme $ee_s^{[b]}$ [%] $ee_p^{[b]}$ [%] Conv. [%] E								
1	CAL-B	4	99	4	> 200				
2	PS-IM	1.5	99	1.5	> 200				
3	AK	No reaction							
4	CAL-A	3	24	11	1.6				

[a] Substrate (0.0125 mmol, 3.7 mg); CAL-B (230 mg), PS-IM (248 mg), AK (338 mg), CAL-A (231 mg, 70 mm cartridge); toluene (1 mL); 1.1 equiv vinyl acetate (1.2 μ L); 45 °C; 0.1 mL min⁻¹ flow rate; 1 bar; 1 cycle. [b] According to HPLC.

cycle) (entry 3). In view of these results, CAL-B was chosen for further optimization.

In an attempt to increase the reaction rate, the enzymatic acylation of (\pm) -7 was performed with other acyl donors (Table 2). Ethyl acetate and isopropenyl acetate did not react (entries 1 and 2). Although it is known that acylation with an anhydride acyl donor may lead to 'chemical esterification' besides enzymatic acylation, thereby causing a decrease in the product enantiomeric excess, [27] two anhydride acyl donors, butyric anhydride (entry 4) and acetic anhydride, [28,29] (entry 5), were also tested. When butyric anhydride was used, a low E and a relatively good conversion were observed (entry 4).

Scheme 1. Synthesis of starting compounds (\pm) -7, (\pm) -8, and (\pm) -9. Reagents and conditions: a) 1) water, HCl, glycolaldehyde dimer, 0 °C then 90 °C, 4 h, 2) NaOH, 87 % [(\pm) -4], 51% [(\pm) -5], 91% [(\pm) -6]; b) 1,4 dioxane, water, NaOH, (Boc)₂O, 0 °C for 1 h then rt for 24 h, 81% [(\pm) -7], 87% [(\pm) -8], 73% [(\pm) -9].

Scheme 2. Enzymatic resolution of (\pm) -**7**, (\pm) -**8**, and (\pm) -**9**. *Reagents and conditions*: a) lipase CAL-B, acetic anhydride, toluene, 60 °C, 1.5 h: 47 % [(*R*)-**7**], 46 % [(*S*)-**10**], 2.5 h: 47 % [(*R*)-**8**], 43 % [(*S*)-**11**], 2 h: 47 % [(*R*)-**9**], 45 % [(*S*)-**12**].

Table 2. Acyl donor screening for the acylation of (\pm) - $7^{[a]}$. ees [b] [%] ee_p[b] [%] Entry Acyl donor Conv. [%] F No reaction ethyl acetate isopropenyl No reaction acetate 3 vinyl acetate > 200 31 4 butyric 63 32 anhydride acetic anhydride 17 5 20 99 > 2002,2,2-trifluoroethyl 42 22 2.7 12 butvrate

[a] Substrate (0.0125 mmol, 3.7 mg); CAL-B (230 mg, 70 mm cartridge); toluene (1 mL); 1.1 equiv acyl donor; $60\,^{\circ}$ C, 0.1 mL min $^{-1}$ flow rate; 1 bar; 1 cycle. [b] According to HPLC.

Under the same reaction conditions, acylation with acetic anhydride proceeded in a relatively fast reaction (conversion = 17%) with excellent enantioselectivity (E > 200). Consequently, acetic anhydride was chosen as acyl donor in further reactions.

We next investigated the acylation of (\pm) -7 at different temperatures (Table 3). When the temperature was increased from 60 °C (entry 1) to 70 °C (entry 2) and then to 80 °C (entry 3), the reaction rate increased, but at the same time, *E* decreased.

Table 3. Effects of temperature on E and the conversion in the acylation of (\pm) - $\mathbf{7}^{[a]}$.

Entry	Temperature [°C]	ee _s [b] [%] ee _p [b] [%]		Conv. [%]	Ε
1	60	20	99	17	> 200
2	70	23	98	19	124
3	80	35	97	26	92

[a] Substrate (0.0125 mmol, 3.7 mg); CAL-B (230 mg, 70 mm cartridge); toluene (1 mL); 1.1 equiv acetic anhydride (1.2 μ L); 0.1 mL min⁻¹ flow rate; 1 bar; 1 cycle. [b] According to HPLC.

In an effort to increase the reaction rate without a loss in enantioselectivity, a set of experiments were performed in different solvents, such as toluene, methyl *tert*-butyl ether, acetonitrile, diisopropyl ether, chloroform, and 1,4-dioxane (Table 4). The results demonstrated excellent E (> 200) in methyl *tert*-butyl ether and 1,4-dioxane (entries 2 and 6), but the conversions were very low (conv. \leq 4%). Excellent E (> 200) and rela-

Table 4. Solvent screening for the acylation of (\pm) -**7**^[a].

Table 4. Solvent screening for the acytation of $(\pm j-7)^{-1}$.								
Entry	Solvent	ee _s [b] [%]	ee _p [b] [%]	Conv. [%]	Ε			
1	toluene	20	99	17	> 200			
2	methyl tert-butyl ether	4	99	4	> 200			
3	acetonitrile	1	95	1	39			
4	diisopropyl ether	20	99	17	> 200			
5	chloroform	2	73	3	7			
6	1,4-dioxane	3	99	3	> 200			

[a] Substrate (0.0125 mmol, 3.7 mg); CAL-B (230 mg, 70 mm cartridge); solvent (1 mL); 1.1 equiv acetic anhydride (1.2 μ L); 60 °C; 0.1 mLmin⁻¹ flow rate; 1 bar; 1 cycle. [b] According to HPLC.

tively good reaction rates were observed in toluene and diisopropyl ether (entries 1 and 4). Finally, diisopropyl ether was chosen for further reactions.

The pressure of the reactions performed in the continuous-flow system was also examined (Table 5). It was interesting to observe that at about 60 bar, the reaction rate reached a maximum (conversion=32% after one cycle, entry 4), and further increase of the pressure resulted in a decrease in the conversion

Table 5. Effects of pressure on E and the conversion in the acylation of (+)- $\mathbf{7}^{[a]}$

Entry	Pressure [bar]	ee _s [b] [%]	ee _p [b] [%]	Conv. [%]	Ε
1	1	18	99	15	> 200
2	20	34	99	25	> 200
3	40	35	99	26	> 200
4	60	48	99	32	> 200
5	80	34	99	25	> 200
6	100	21	99	18	> 200

[a] Substrate (0.0125 mmol, 3.7 mg); CAL-B (230 mg, 70 mm cartridge); diisopropyl ether (1 mL); 1.1 equiv acetic anhydride (1.2 μ L); 60 °C; 0.1 mL min $^{-1}$ flow rate; 1 cycle. [b] According to HPLC.

The CAL-B-catalyzed acylation of (\pm) -7 was next carried out in an incubator shaker, under the optimized reaction conditions for the H-Cube (CAL-B, diisopropyl ether, acetic anhydride, $60\,^{\circ}$ C). The reaction performed in batch mode reached a conversion of $46\,\%$ after 3 h, but the enantioselectivity was relatively low (E=36). Consecutively, the diisopropyl ether was replaced by toluene, which also ensured good results when the acylation of (\pm) -7 was carried out in the H-Cube (Table 4, entry 1 vs. 4). The batch reaction in toluene gave excellent enantioselectivity (E>200) and a conversion of $48\,\%$ after 3 h. When the amount of acetic anhydride was increased from 1.1 equiv to 2 equiv, a higher reaction rate was observed (E>200, conversion $=50\,\%$ after 3 h).

In the small-scale acylations of (\pm) -8 and (\pm) -9 under the conditions optimized for (\pm) -7 (CAL-B, 2 equiv acetic anhydride, toluene, 60 °C), lower reaction rates and enantioselectivities were observed (Table 6). The results revealed that the enzymatic acylations slowed down or even stopped after a while, and ee_p decreased considerably, as a consequence of chemical

Table 6. CAL-B-catalyzed O-acylation of (\pm) -8 and (\pm) -9 with acetic anhydride. (a)

Entry	Substrate	Acetic anhydride [equiv]	Time [h]	ees ^[b] [%]	ee _p [b] [%]	Conv. [%]	Ε
1	(±)- 8	2	3	69	99	41	> 200
2	(±)- 8	2	7	70	95	42	82
3	(±)- 8	8	2.5	98	98	50	> 200
4	(±)- 9	2	3	68	97	41	134
5	(±)- 9	2	7	75	89	45	39
6	(±)- 9	6	2	97	96	50	> 200

[a] Substrate (0.0125 mmol); CAL-B (30 mg); toluene (1 mL); 60 $^{\circ}\text{C}.$ [b] According to HPLC.

esterifications (entries 2 and 5). When the amount of acetic anhydride was increased from 2 equiv to 6 and then 8 equiv, the reactions became faster, and when 50% conversions were achieved, the enantioselectivities were excellent (> 200) (entries 3 and 6).

On the basis of the above results, the preparative-scale enzymatic resolutions of (\pm) -7– (\pm) -9 were performed in toluene, with CAL-B, acetic anhydride [2 equiv for (\pm) -7, 8 equiv for (\pm) -8, 6 equiv for (\pm) -9], at 60 °C. The results are presented in Table 7 and the Experimental Section.

Table	Table 7. CAL-B-catalyzed preparative-scale resolution of (\pm) -7– (\pm) -9 ^[a] .									
Entry	Substrate	Time [h]	Conv. [%]	Alcohol recovered			Ester produced [(S)-10-(S)-12] Yield ee^{lb} [α] _D ²⁵ [%] [%]			
1 2 3	(±)-7 (±)-8 (±)-9	1.5 2.5 2	50 50 49	47 47 47	98 98 96	$+107.5^{[c]} + 82^{[e]} + 97^{[g]}$	46 43 45	98 98 98	$-102.2^{[d]}$ $-92.3^{[f]}$ $-131.8^{[h]}$	

[a] Toluene, with acetic anhydride, at 60 °C. [b] According to HPLC. [c] c=0.34 in EtOH. [d] c=0.32 in EtOH. [e] c=0.23 in EtOH. [f] c=0.61 in EtOH. [g] c=0.21 in EtOH. [h] c=0.38 in EtOH.

Further transformations

The O-acylated enantiomers [(*S*)-10–(*S*)-12] were transformed via methanolysis into the corresponding amino alcohols [(*S*)-7–(*S*)-9] in $K_2CO_3/MeOH$ at 60 °C without a loss in *ee* values (98%) (Scheme 3). When the protecting Boc in (*R*)-8 and (*S*)-11 was removed with 18% HCl at 80 °C, a considerable decrease in *ee* (\leq 89%) was observed. Since methods of Boc deprotection, including catalyst-free water-mediated, [30] and microwave (MW)-assisted methods [31] are known in the literature, we performed MW-assisted Boc group removal for (*R*)-7–(*R*)-9 and (*S*)-10–(*S*)-12, in water at 100 °C. [32] This strategy resulted in the desired products [(*R*)-4–(*R*)-6 and (*S*)-4–(*S*)-6] with high *ee* (\geq 96%).

For determination of the absolute configuration, amino alcohol 4 was transformed to its N-acetyl analog (13) by a known literature method (Scheme 3). [33]

Determination of absolute configuration

The specific rotation earlier reported for (*R*)-13 (ee = 98%) was $[\alpha]_D^{25}$ = +17.3 (c = 0.2 in EtOH), $^{[34]}$ whereas the enantiomeric 13 that we prepared (see Experimental Section) gave $[\alpha]_D^{25}$ = +164 (c = 0.2 in EtOH), with the same sign, but with a higher order of magnitude, although the ¹H NMR spectroscopic data for our (*R*)-13 were similar to those given in the literature. $^{[34][35]}$ Taking into account our earlier observations with regard to the enantioselectivity in the CAL-B-catalyzed O-acylation of related amino alcohols, $^{[24]}$ (*S*) selectivity was accepted in the CAL-B-catalyzed O-acylation of (\pm)-7.

Conclusion

An effective enzymatic method was developed for the enantio-selective O-acylation of the primary hydroxyl group of tetrahydro- β -carbolines (\pm)-7, (\pm)-8, and (\pm)-9. Taking advantage of the continuous-flow system, we carried out the preliminary experiments in a continuous-flow system, while the preparative-scale resolutions were performed as batch reactions (incubator shaker). Excellent E values (> 200) were observed when CAL-B and acetic anhydride were used in toluene at 60°C. Enantiomeric N-Boc-protected amino alcohols [(R)-7–(R)-9], and amino esters [(S)-10–(S)-12] were obtained with high ee (\geq 96%) in good yields (\geq 43%). The transformations of (R)-7–(R)-9 and (S)-10–(S)-12 with MW-assisted Boc deprotection resulted in the desired tetrahydro- β -carboline amino alcohols without a drop in the ee values (> 96%).

Experimental Section

Materials and methods

CAL-B (lipase B from *Candida antarctica*, Catalog No. L4777, specification: ≥ 5000 U g⁻¹) was purchased from Sigma–Aldrich; lipase AK (*Pseudomonas fruorescens*) was from Amano Pharmaceuticals. Lipase PS-IM (*Burkholderia cepacia* immobilized on diatomaceous earth) was from Amano Enzyme Europe Ltd. Chyrazyme L-5 (lipase A from *Candida antarctica*) was from Novo Nordisk. Reactions in the continuous-flow system were carried out in the H-Cube from

Scheme 3. Further transformations. Reagents and conditions: a) MeOH, K_2CO_3 , 60 °C, 10 min, 90% [(S)-7], 88% [(S)-8], 75% [(S)-9]; b) MW, water, 100 °C, 1 h, 52% [(S)-4], 38% [(S)-5], 28% [(S)-6], 79% [(R)-4], 38% [(R)-5], 52% [(R)-6]; c) CH₂Cl₂, water, acetic anhydride, NaOH, rt, 48 h, 49%.

ThalesNano Inc (Budapest, Hungary). The stainless-steel cartridges used (70 mm in length, 4 mm in internal diameter and 0.75 mL in volume), were also from ThalesNano Inc. With CAL-B (230 mg) as enzyme charge and a flow rate of 0.1 mLmin⁻¹ (toluene), the experimentally determined (staining procedure) residence time within the packed bed of the reactor was 7 min and 40 s. The H-cube was used in "no H₂" mode. The ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Avance DRX 400 instrument (Billerica, MA, USA). Elemental analyses were performed with a PerkinElmer CHNS-2400 Ser II Elemental Analyzer (Waltham, MA, USA). Optical rotations were measured with a PerkinElmer 341 polarimeter. Microwave (MW) reactions were performed in a CEM Discover MW reactor (Matthews, NC, USA). Melting points were determined on a Kofler apparatus.

The *ee* values of the *N*-Boc-protected amino alcohols [(R)-7-(R)-9) and (S)-7-(S)-9] and amino esters [(S)-10-(S)-12)] were determined directly, while those of the deprotected enantiomers [(R)-4-(R)-6] and (S)-4-(S)-6] were determined after derivatization with Boc_2O by using high-performance liquid chromatography (HPLC) with a Chiralpak OD-H column (4.6 mm×250 mm), eluent: n-hexane:isopropyl alcohol (93:7), flow rate: 0.5 mLmin⁻¹, detection at 260 nm, at rt. Retention times (min): for (R)-7: 27.7, (S)-7: 16.6, (R)-8: 38.6, (S)-8: 21.9, (R)-9: 28.8, (S)-9: 15.6, (S)-10: 13.8, (R)-10: 18.8, (S)-11: 17.0, (R)-11: 25.3, (S)-12: 12.6, and (R)-12: 19.9. The *ee* value of *N*-acetyl amino alcohol (R)-13 was determined with a Chiralpak IA column (4.6 mm×250 mm), eluent: n-hexane:isopropyl alcohol (95:5), flow rate: 0.5 mLmin⁻¹, detection at 210 nm, at rt. Retention times (min): for (R)-13: 92.8 and (S)-13: 88.2.

Small-scale enzymatic resolutions

Small-scale experiments in the continuous-flow system: the racemic substrate [(\pm)-7, 0.0125 mmol] and the acyl donor (1.1 equiv) were dissolved in the solvent (1 mL), and the mixtures were pumped with an HPLC pump through the heated (45 °C, 60 °C, 70 °C, and 80 °C) and compressed (1 bar, 20 bar, 40 bar, 60 bar, 80 bar, and 100 bar) cartridge filled with enzyme (flow rate: 0.1 mL min $^{-1}$).

Small-scale experiments in batch mode: the racemic compound [(\pm)-7, (\pm)-8, or (\pm)-9, 0.0125 mmol] was dissolved in the solvent (1 mL), and the enzyme (30 mg mL $^{-1}$) and acyl donor (2, 6, or 8 equiv of acetic anhydride) were then added. The mixture was shaken at 60 °C.

Syntheses

Synthesis of racemic N-Boc-protected 1-hydroxymethyl-1,2,3,4-tetrahydro- β -carboline [(\pm)-7]

Tryptamine hydrochloride (1, 5.9 g, 0.03 mol) was dissolved in a mixture of water and 2 n HCl (15 mL). The solution was cooled to 0 °C, and a solution of glycolaldehyde dimer (2.3 g, 0.02 mol, dissolved in 5 mL water) was added. The reaction mixture was stirred at 90 °C for 4 h. The cooled solution was treated with activated carbon, and then extracted with diethyl ether. To the aqueous layer, 20% NaOH was added until pH 10, and the mixture was then extracted with EtOAc (3×30 mL). The organic layer was dried on anhydrous Na₂SO₄ and evaporated. The product (\pm)-4 was purified by column chromatography (5.2 g, yield: 87%, m.p. = 146-147 °C, light-yellow crystals, $R_{\rm f}$ =0.27, eluent: MeOH). Alcohol (\pm)-4 (3.0 g, 0.015 mol) was dissolved in 80 mL 1,4-dioxane and cooled to 0 °C, and a solution of NaOH (0.62 g, 0.016 mol, in 5 mL water) and then

a solution of di-*tert*-butyl dicarbonate (3.56 g, 0.016 mol, in 10 mL 1,4-dioxane) were added. The reaction was carried out at 1 h under ice-cooling, and then at room temperature for 24 h. The reaction mixture was extracted with dichloromethane (3×30 mL) and the extract was dried on anhydrous Na₂SO₄ and evaporated. The resulting *N*-Boc-protected amino alcohol (\pm)-7 (3.6 g, yield: 81%, m.p.= 115-117°C, light-yellow crystals from with diethyl ether.) was purified by column chromatography [R_f =0.23, eluent: n-hexane:EtOAc (2-1)]

¹H NMR (400 MHz, CDCl₃) for (±)-**4**: δ = 8.12–8.26 (br s, 1 H, NH), 7.49–7.56 (d, J=7.69 Hz, 1 H, Ar–H), 7.32–7.39 (d, J=8.14 Hz, 1 H, Ar–H), 7.10–7.23 (m, 2 H, Ar–H), 4.18–4.26 (t, J=2.30 Hz, 1 H, CH), 3.77–3.96 (m, 2 H, CH₂), 3.11–3.36 (m, 2 H, CH₂), 2.71–2.87 ppm (m, 2 H, CH₂); ¹³C NMR (400 MHz, [D₄]MeOH) for (±)-**4**: δ = 135.35, 131.43, 125.98, 119.67, 117.22, 116.13, 109.46, 107.18, 62.11, 53.19, 40.17, 20.35 ppm; Anal. calcd. for C₁₂H₁₄N₂O: C 71.26, H 6.98, N 13.85, found: C 71.21, H 6.93, N 13.79.

¹H NMR (400 MHz, DMSO) for (±)-**7**: δ = 10.66–10.87 (br s, 1H, NH), 7.35–7.43 (d, J=7.6 Hz, 1H, Ar–H), 7.28–7.35 (d, J=8.0 Hz, 1H, Ar–H), 7.01–7.09 (t, J=7.3 Hz, 1H, Ar–H), 6.91–6.99 (t, J=7.2 Hz, 1H, Ar–H),), 4.88–5.24 (m, 2H, CH₂), 4.10–4.43 (m, 1H, CH), 3.69–3.84 (m, 2H, CH₂), 2.57–2.74 (m, 2H, CH₂), 1.44 ppm (s, 9H, C(CH₃)₃); ¹³C NMR (400 MHz, CDCl₃) for (±)-**7**: δ =136.68, 132.30, 127.01, 122.24, 119.76, 118.50, 111.56, 81.10, 64.62, 53.32, 28.94, 21.91 ppm; Anal. calcd. for C₁₇H₂₂N₂O₃: C 67.53, H 7.33, N 9.26, found: C 67.43, H 7.39, N 9.22.

Synthesis of racemic N-Boc-protected 1-hydroxymethyl-6 methoxy-1,2,3,4-tetrahydro- β -carboline [(\pm)-8]

With the procedure described above [5-methoxytryptamine hydrochloride (**2**, 1.0 g, 4.4 mmol), water (40 mL), 2 n HCl (2.8 mL), glycolaldehyde dimer (0.52 g, 4.3 mmol)], the reaction resulted in (\pm)-**5** [0.52 g, yield: 51%, m.p. = 152–153 °C, R_f =0.25, eluent: MeOH] as yellow crystals. To a solution of (\pm)-**5** (0.52 g, 2.26 mmol) in 1,4-dioxane (35 mL), NaOH (0.09 g, 2.25 mmol) in water (5 mL) and ditert-butyl dicarbonate (0.54 g, 2.47 mmol) in 1,4-dioxane (5 mL) were added. The method was as described above. (\pm)-**8** [0.65 g, yield: 87%, m.p.=155–156 °C from n-hexane, R_f =0.34, eluent: n-hexane:EtOAc (2:1)] was obtained as light-yellow crystals.

¹H NMR (400 MHz, CDCl₃) for (±)-**5**: δ = 8.08–8.24 (br s, 1 H, NH), 7.22–7.24 (d, 1 H, J = 8.80 Hz, Ar–H), 6.95 (s, 1 H, Ar–H), 6.78–6.88 (d, J = 8 Hz, 1 H, Ar–H), 4.13–4.26 (m, 1 H, CH), 3.75–3.97 (m, 2 H, CH₂) overlapping with s, 3 H, CH₃), 3.04–3.37 (m, 2 H, CH₂), 2.63–2.88 ppm (m, 2 H, CH₂); ¹³C NMR (400 MHz, [D₄]MeOH) for (±)-**5**: δ = 152.55, 132.38, 130.56, 126.30, 110.07, 109.48, 107.05, 98.70, 62.12, 53.90, 53.27, 40.23, 20.42 ppm; Anal. calcd. for C₁₃H₁₆N₂O₂: C 67.22, H 6.94, N 12.06, found: C 67.20, H 6.88, N 12.14.

¹H NMR (400 MHz, DMSO) for (±)-**8**: δ = 10.49-10.72 (br s, 1H, NH), 7.16–7.31 (d, 1H, J= 8.48 Hz, Ar–H), 6.88 (s, 1H, Ar–H), 6.61–6.77 (dd, J= 2.2 Hz, 8.7 Hz, 1H, Ar–H), 4.90–5.23 (m, 2H, CH₂), 4.08–4.43 (m, 1H, CH), 3.70–3.85 (m, 2H, CH₂ overlapping with s, 3H, CH₃), 2.51–2.61 (m, 2H, CH₂), 1.44 ppm (s, 9H, C(CH₃)₃); ¹³C NMR (400 MHz, CDCl₃) for (±)-**8**: δ =154.45, 133.12, 131.80, 127.37, 112.18, 100.91, 81.05, 64.68, 56.42, 53.32, 28.90, 21.92 ppm; Anal. calcd. for C₁₈H₂₄N₂O₄: C 65.04, H 7.28, N 8.43, found: C 65.07, H 7.19, N 8.49.

Synthesis of racemic N-Boc-protected 1-hydroxymethyl-6-fluoro-1,2,3,4-tetrahydro- β -carboline, (\pm)-9

With the procedure described above [5-fluorotryptamine hydrochloride (**3**, 1.0 g, 4.6 mmol), water (40 mL), 2 n HCl (2.5 mL), glycolaldehyde dimer (0.55 g, 4.6 mmol)], the reaction resulted in (\pm)-**6** [0.93 g, yield: 91%, m.p. = 138–141 °C, $R_{\rm f}$ =0.15, eluent: toluene:-MeOH (1:1)] as yellow crystals. To a solution of (\pm)-**6** (0.83 g, 3.77 mmol) in 1,4-dioxane (30 mL), NaOH (0.15 g, 3.75 mmol) in water (5 mL) and di-*tert*-butyl dicarbonate (0.91 g, 4.17 mmol) in 1,4-dioxane (5 mL) were added. The method was as described above. The product (\pm)-**9** [0.88 g, yield: 73%, m.p. = 124–125 °C from n-hexane, $R_{\rm f}$ =0.26, eluent: n-hexane:EtOAc (2:1)] was obtained as light-yellow crystals.

 ^1H NMR (400 MHz, [D_4]MeOH) for (±)-**6**: $\delta\!=\!7.16\!-\!7.28$ (q, $J\!=\!4.44$ Hz, 1 H, Ar–H), 7.00–7.08 (dd, $J\!=\!2.48$ Hz, 9.68 Hz, 1 H, Ar–H), 6.72–6.85 (dt, $J\!=\!2.44$ Hz, 9.16 Hz, 1 H, Ar–H), 4.03–4.15 (m, 1 H, CH), 3.78–3.92 (m, 1 H, CH₂), 3.56–3.66 (m, 1 H, CH₂), 3.25–3.32 (m, 1 H, CH₂), 2.93–3.03 (m, 1 H, CH₂), 2.62–2.78 ppm (m, 2 H, CH₂); ^{13}C NMR: (400 MHz, [D₄]MeOH) for (±)-**6**: $\delta\!=\!157.62$, 155.31, 133.72, 131.84, 126.26, 110.07, 107.34, 100.86, 62.02, 47.39, 40.16, 20.28 ppm; Anal. calcd. for C₁₂H₁₃FN₂O: C 65.44, H 5.95, N 12.72, found: C 65.27, H 5.99, N 12.85.

¹H NMR (400 MHz, DMSO) for (±)-**9**: δ = 10.78–10.92 (br s, 1H, NH), 7.25–7.34 (q, J=8.7 Hz, 1H, Ar–H), 7.09–7.18 (dd, J=2.4 Hz, 9.8 Hz, 1H, Ar–H), 6.83–6.91 (dt, J=2.8 Hz, 9.4 Hz, 1H, Ar–H), 4.95–5.19 (m, 2H, CH₂), 4.11–4.39 (m, 1H, CH), 3.69–3.81 (m, 2H, CH₂), 2.56–2.69 (m, 2H, CH₂), 1.44 ppm (s, 9H, C(CH₃)₃); ¹³C NMR: (400 MHz, CDCl₃) for (±)-**9**: δ =159.37, 157.04, 134.25, 133.13, 127.32, 112.03 110.33, 103.54, 81.22, 64.49, 53.24, 40.36, 28.89, 21.85 ppm; Anal. calcd. for C₁₇H₂₁FN₂O₃: C 63.74, H 6.61, N 8.74, found: C 63.70, H 6.71, N 8.68.

Enzymatic resolutions

Enzymatic resolution of (\pm) -7

To (\pm) -**7** (0.5 g, 1.66 mmol) in toluene (30 mL), lipase CAL-B (900 mg) and acetic anhydride (2 equiv, 310 μ L) were added, and the reaction mixture was shaken in an incubator shaker at 60 °C for 1.5 h. The reaction was stopped at 50% conversion (ee = 98%) by filtering off the enzyme, and the solvent was then evaporated off. The products were separated by column chromatography on silica [eluent: n-hexane:EtOAc (2:1)], resulting in the unreacted amino alcohol (R)-**7** as light-yellow crystals [235 mg, yield: 47%, $[\alpha]_D^{25} = +107.5$ (c = 0.34 in EtOH), m.p. = 136–137 °C, R_f = 0.24] and the product amino ester (S)-10 as white crystals [263 mg, yield: 46%, $[\alpha]_D^{25} = -102.2$ (c = 0.32 in EtOH), m.p. = 124–125 °C, R_f = 0.76].

The ^{1}H NMR (400 MHz, DMSO) spectroscopic data for (*R*)-**7** were similar to those for (±)-**7**. ^{1}H NMR (400 MHz, CDCl₃) for (*S*)-**10**: δ = 7.98–8.15 (br s, 1H, NH), 7.52–7.54 (d, 1H, J=8.0 Hz, Ar–H), 7.37–7.39 (d, 1H, J=7.6 Hz, Ar–H), 7.2–7.26 (t, J=7.5 Hz, 1H, Ar–H), 7.12–7.18 (t, J=7.2 Hz, 1H, Ar–H), 5.31–5.69 (m, 1H, CH), 4.29–4.47 (m, 1H, CH₂ overlapping with m, 2H, CH₂), 3.47–3.56 (m, 1H, CH₂), 2.71–2.96 (m, 2H, CH₂), 2.15 (s, 3 H, CH₃), 1.46 ppm (s, 9 H, C(CH₃)₃); ^{13}C NMR: (400 MHz, CDCl₃) for (*S*)-**10**: δ =171.30, 136.70, 130.76, 127.06, 122.57, 120.00, 118.66, 111.47, 80.81, 65.16, 50.09, 39.90 28.87, 21.90, 21.37 ppm; Anal. calcd. for C₁₉H₂₄N₂O₄: C 66.26, H 7.02, N 8.13, found: C 66.29, H 7.12, N 8.04.

Enzymatic resolution of (\pm) -8

With the procedure described above, the reaction of (±)-**8** (200 mg, 0.6 mmol), in toluene (25 mL), CAL-B (750 mg) and acetic anhydride (8 equiv, 466 μ L) after 2.5 h resulted in (*R*)-**8** as white crystals [93 mg, yield: 47%, $\left[\alpha\right]_{\rm D}^{25}=+82$ (c=0.23 in EtOH), m.p.= 196–198 °C, ee=98%, $R_{\rm f}=0.20$, eluent: n-hexane:EtOAc (2:1)] and (*S*)-**11** as a yellow oil [98 mg, yield: 43%, $\left[\alpha\right]_{\rm D}^{25}=-92.3$ (c=0.61 in EtOH), ee=98%, $R_{\rm f}=0.63$, eluent: n-hexane:EtOAc (2:1)].

The ^1H NMR (400 MHz, DMSO) spectroscopic data for (*R*)-8 were similar to those for (±)-8. ^1H NMR (400 MHz, DMSO) for (*S*)-11: $\delta=10.72-10.88$ (d, 1H J=14.04 Hz, NH), 7.18–7.25 (d, 1H, J=8.4 Hz, Ar–H), 6.89–6.94 (d, 1H, J=2.12 Hz, Ar–H), 6.69–6.75 (dd, 1H, J=2.34 Hz, 8.84 Hz, Ar–H), 5.28–5.47 (m, 1H, CH), 4.10-4.50 (m, 2H, CH₂ overlapping with m, 2H, CH₂), 3.75 (s, 3 H, CH₃), 2.55–2.73 (m, 2H, CH₂), 1.95–2.10 (m, 3H, CH₃), 1.44 ppm (s, 9H, C(CH₃)₃); ^{13}C NMR: (400 MHz, CDCl₃) for (*S*)-11: $\delta=171.36$, 154.56, 131.84, 127.45, 112.19, 100.96, 80.78, 65.07, 56.39, 50.17, 28.87, 21.93, 21.35 ppm; Anal. calcd. for $C_{20}H_{26}N_2O_5$: C 64.15, H 7.00, N 7.48, found: C 64.26, H 7.02, N 7.39.

Enzymatic resolution of (±)-9

Similarly, the preparative-scale reaction of (\pm) -**9** (500 mg, 1.56 mmol) in toluene (50 mL), CAL-B (1500 mg) and acetic anhydride (6 equiv, 885 μ L) resulted after 2 h in (*R*)-**9** as light-yellow crystals [234 mg, isolated yield: 47%, $[\alpha]_0^{25} = +97$ (c=0.21 in EtOH), m.p.=99-100 °C, ee=96%, $R_f=0.12$, eluent: n-hexane:EtOAc (3:1)] and (S)-**12** as white crystals [255 mg, isolated yield: 45%, $[\alpha]_0^{25} = -131.8$ (c=0.38 in EtOH), m.p.=143-145 °C, ee=98%, $R_f=0.49$, eluent: n-hexane:EtOAc (3:1)].

The ^1H NMR (400 MHz, DMSO) spectroscopic data for (*R*)-**9** were similar to those for (±)-**9**. ^1H NMR (400 MHz, DMSO) for (*S*)-**12**: δ = 10.99–11.21 (d, 1 H, J = 16 Hz, NH), 7.27–7.35 (2d, J = 4.6 Hz, 1 H, Ar–H), 7.15–7.21 (dd, 1 H, J = 2.4 Hz, 9.82 Hz, Ar–H), 6.87–6.96 (dt, J = 2.5 Hz, 9.4 Hz, 1 H, Ar–H), 5.31–5.53 (d, 1 H, J = 27.4 Hz, CH), 4.10–4.59 (m, 2 H, CH $_2$) overlapping with m, 2 H, CH $_2$), 2.55–2.70 (m, 2 H, CH $_2$), 1.94–2.12 (m, 3 H, CH $_3$), 1.44 ppm (s, 9 H, C(CH $_3$) $_3$); 13 C NMR: (400 MHz, CDCl $_3$) for (*S*)-**12**: δ = 171.31, 159.46, 157.12, 133.17, 132.64, 127.45, 111.98, 110.79, 103.73, 80.94, 65.07, 50.13, 28.85, 21.82, 21.35 ppm; Anal. calcd. for C $_{19}$ H $_{23}$ N $_2$ O $_4$: C 62.97, H 6.40, N 7.73, found: C 62.89, H 6.44, N 7.78.

Deacylation of (S)-10, (S)-11, and (S)-12

Enantiomeric (*S*)-**10** (30 mg, 0.09 mmol), (*S*)-**11** (40 mg, 0.11 mmol), or (*S*)-**12** (50 mg, 0.14 mmol) was dissolved in MeOH (10 mL). K_2CO_3 (50 mg, 0.36 mmol) was added, and the reaction mixture was shaken at 60 °C for 10 min. The following products were obtained as white crystals: (*S*)-**7** [24 mg, yield: 90%, $[\alpha]_D^{25} = -108.8$ (c = 0.33 in EtOH), m.p. = 135–137 °C, ee = 98%, $R_f = 0.48$, eluent: n-hexane:EtOAc (1:1)], (*S*)-**8** [31 mg, yield: 88%, $[\alpha]_D^{25} = -81$ (c = 0.12 in EtOH), m.p. = 195–197 °C, ee = 98%, $R_f = 0.47$, eluent: n-hexane: EtOAc (1:1)], or (*S*)-**9** [33 mg, yield: 75%, $[\alpha]_D^{25} = -105$ (c = 0.195 in EtOH), m.p. = 98–100 °C, ee = 98%, $R_f = 0.20$, eluent: n-hexane: EtOAc (3:1)].

Deprotection of (R)-7, (R)-8, (R)-9, (S)-10, (S)-11, and (S)-12

(*R*)-**7** (50 mg, 0.16 mmol), (*R*)-**8** (30 mg, 0.09 mmol), (*R*)-**9** (30 mg, 0.09 mmol), (*S*)-**10** (50 mg, 0.15 mmol), (*S*)-**11** (40 mg, 0.1 mmol), or (*S*)-**12** (30 mg, 0.08 mmol) was suspended in water (5 mL) in

a tube, and stirred at 100 °C for 1 h under maximum MW irradiation of 150 W. The solvent was evaporated off, and the residue was purified by column chromatography with toluene:MeOH (1:1) as eluent. The following products were crystallized from n-hexane: (R)-4 as yellow crystals [26 mg, yield: 79%, [α]₀²⁵ = -37.8 (c = 0.41 in EtOH), m.p. = 145–147 °C, ee = 98%, R_f = 0.15], (S)-4 as yellow crystals [15 mg, yield: 52%, [α]₀²⁵ = +36.1 (c = 0.4 in EtOH), m.p. = 146–147 °C, ee = 98%, R_f = 0.16], (R)-5 as light-yellow crystals [8 mg, yield: 38%, [α]₀²⁵ = -22.0 (c = 0.4 in EtOH), m.p. = 167–168 °C, ee = 98%, R_f = 0.18], (S)-5 as light-yellow crystals [9 mg, yield: 38%, [α]₀²⁵ = +21.8 (c = 0.45 in EtOH), m.p. = 168–170 °C, ee = 98%, R_f = 0.21], (R)-6 as light-yellow crystals [11 mg, yield: 52%, [α]₀²⁵ = -29 (c = 0.155 in EtOH), m.p. = 96-98 °C, ee = 96%, R_f = 0.14], or (S)-6 as light-yellow crystals [5 mg, yield: 28%, [α]₀²⁵ = +29 (c = 0.25 in EtOH), m.p. = 99-101 °C, ee = 98%, R_f = 0.18].

Synthesis of racemic and enantiomeric 1-hydroxymethyl-2-acetyl-1,2,3,4-tetrahydro- β -carboline [(\pm)-13 and (R)-13]

A mixture of (\pm)-4 (30 mg, 0.13 mmol), 6 equiv acetic anhydride (75 μ L, 0.8 mmol) and NaOH (100 mg, 2.5 mmol) in CH₂Cl₂ (20 mL) and water (20 mL) was stirred for 48 h at rt. The reaction mixture was then extracted with CH₂Cl₂ (3×15 mL). The organic phase was dried on anhydrous Na₂SO₄ and evaporated. The resulting dark-yellow oil was purified by column chromatography with CH₂Cl₂:MeOH (30:1) as eluent. The product (\pm)-13 (18 mg, yield: 49%, m.p.=191-192 °C, $R_{\rm f}$ =0.10) was obtained as white crystals from EtOH and diisopropyl ether (1:9).

¹H NMR (400 MHz, CDCl₃) for (\pm) -13: δ = 8.58–8.71 (br s, 1H, NH), 7.44–7.49 (d, J=7.72 Hz, 1H, Ar–H), 7.31–7.35 (d, J=8.36 Hz, 1H, Ar–H), 7.13–7.20 (dt, J=1 Hz, 7.02 Hz, 1H, Ar–H), 7.06–7.13 (t, J=7.2 Hz, 1H, Ar–H), 5.74–5.82 (t, J=6.56 Hz, 1H, CH), 3.96–4.11 (m, 2H, CH₂), 3.84–3.93 (m, 1H, CH₂), 3.43–3.55 (m, 1H, CH₂), 2.79–2.96 (m, 2H, CH₂), 2.29 ppm (s, 3 H, CH₃).

With the above procedure, the reaction of (*R*)-4 (26 mg, 0.11 mmol) resulted in the desired product (*R*)-13 as white crystals [22 mg, yield: 70 %, $\left[\alpha\right]_0^{25} = +164$ (c=0.2 in EtOH), m.p. = 201–203 °C, ee=98%]. The ¹H NMR (400 MHz, CDCl₃) spectroscopic data for (*R*)-13 were similar to those for (\pm)-13.

Acknowledgements

The authors are grateful to the Hungarian Research Foundation (OTKA No. K108943 and K115731) for financial support.

Keywords: acylation \cdot *Candida antarctica* lipase B \cdot continuous-flow system \cdot enzyme catalysis \cdot tetrahydro- β -carboline

- [1] L. Garrett, O. Carrier Jr., B. H. Douglas, Eur. J. Pharmacol. 1967, 2, 236– 238.
- [2] W. A. Creasey, M. E. Markiw, Biochim. Biophys. Acta 1964, 87, 601-609.
- [3] Z.-J. Zhang, J. Yang, J. He, X.-D. Wu, L.-D. Shao, Y. Li, S.-X. Huang, R.-T. Li, Q.-S. Zhao, *Tetrahedron Lett.* 2014, 55, 6490 – 6494.
- [4] G.-G. Cheng, Y.-L. Zhao, Y. Zhang, P.-K. Lunga, D.-B. Hu, Y. Li, J. Gu, C.-W. Song, W.-B. Sun, Y.-P. Liu, X.-D. Luo, *Tetrahedron* 2014, 70, 8723–8729.
- [5] H.-J. Cong, Q. Zhao, S.-W. Zhang, J.-J. Wei, W.-Q. Wang, L.-J. Xuan, Phytochemistry 2014, 100, 76–85.

- [6] T.-S. Kam, K.-M. Sim, Phytochemistry 1998, 47, 145 147.
- [7] H. M. Spindola, D. B. Vendramini-Costa, M. T. Rodrigues Jr., M. A. Foglio, R. A. Pilli, J. E. Carvalho, *Pharmacol. Biochem. Behav.* 2012, 102, 133– 138.
- [8] L. S. Santos, C. Theoduloz, R. A. Pilli, J. Rodriguez, Eur. J. Med. Chem. 2009, 44, 3810 – 3815.
- [9] R. A. Davis, S. Duffy, V. M. Avery, D. Camp, J. N. A. Hooper, R. J. Quinn, Tetrahedron Lett. 2010, 51, 583 – 585.
- [10] R. Brokamp, B. Bergmann, I. B. Müller, S. Bienz, *Bioorg. Med. Chem.* 2014, 22, 1832 – 1837.
- [11] J. I. Trujillo, M. J. Meyers, D. R. Anderson, S. Hegde, M. W. Mahoney, W. F. Vernier, I. P. Buchler, K. K. Wu, S. Yang, S. J. Hartmann, D. B. Reitz, *Bioorg. Med. Chem. Lett.* 2007, 17, 4657–4663.
- [12] K. R. Prasad, J. E. Nidhiry, M. Sridharan, Tetrahedron 2014, 70, 4611 4616.
- [13] N. Shankaraiah, S. Nekkanti, K. J. Chudasama, K. R. Senwar, P. Sharma, M. K. Jeengar, V. G. M. Naidu, V. Srinivasulu, G. Srinivasulu, A. Kamal, *Bioorg. Med. Chem. Lett.* 2014, 24, 5413 – 5417.
- [14] P. Roszkowski, S. Czarnocki, J. K. Maurin, A. Siwicka, A. Zawadzka, J. Szawkało, A. Leniewski, Z. Czarnocki, Int. Congr. Ser. 2007, 1304, 46 59.
- [15] I. Chakraborty, S. Jana, Synthesis 2013, 45, 3325-3331.
- [16] Cs. Csajági, G. Szatzker, E. R. Tőke, L. Ürge, F. Darvas, L. Poppe, *Tetrahedron: Asymmetry* 2008, 19, 237 246.
- [17] A. Tomin, G. Hornyánszky, K. Kupai, Zs. Dorkó, L. Ürge, F. Darvas, L. Poppe, Process Biochem. 2010, 45, 859–865.
- [18] A. S. De Miranda, J. C. Gomes, M. T. Rodrigues Jr., I. C. R. Costa, W. P. Almeida, R. de O. Lopes, L. S. M. Miranda, F. Coelho, R. O. M. A. de Souza, J. Mol. Catal. B 2013, 91, 77 80.
- [19] L. Tamborini, D. Romano, A. Pinto, A. Bertolani, F. Molinari, P. Conti, J. Mol. Catal. B 2012, 84, 78–82.
- [20] F. K. Sutili, H. S. Ruela, S. G. F. Leite, L. S. de M. Miranda, I. C. R. Leal, R. O. M. A. de Souza, J. Mol. Catal. B 2013, 85–86, 37–42.
- [21] I. Itabaiana Jr., L. S. de M. Miranda, R. O. M. A. de Souza, J. Mol. Catal. B 2013, 85–86, 1–9.
- [22] E. Forró, L. Schönstein, F. Fülöp, *Tetrahedron: Asymmetry* **2011**, *22*, 1255–1260
- [23] L. Schönstein, E. Forró, F. Fülöp, Tetrahedron: Asymmetry 2013, 24, 1059 – 1062.
- [24] L. Schönstein, E. Forró, F. Fülöp, *Tetrahedron: Asymmetry* **2013**, *24*, 202–206
- [25] I. D. Spenser, Can. J. Chem. 1959, 37, 1851 1858.
- [26] J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583–4592.
- [27] E. Forró, K. Lundell, F. Fülöp, L.T. Kanerva, *Tetrahedron: Asymmetry* 1997, 8, 3095 – 3099.
- [28] A. B. C. Simas, A. A. T. da Silva, A. G. Cunha, R. S. Assumpção, L. V. B. Hoelz, B. C. Neves, T. C. Galvão, R. V. Almeida, M. G. Albuquerque, D. M. G. Freire, R. B. de Alencastro, J. Mol. Catal. B 2011, 70, 32 40.
- [29] T. Miyazawa, E. Kaito, T. Yukawa, T. Murashima, T. Yamada, J. Mol. Catal. B 2005, 37, 63 – 67.
- [30] G. Wang, C. Li, J. Li, X. Jia, Tetrahedron Lett. 2009, 50, 1438-1440.
- [31] S. R. Dandepally, A. L. Williams, Tetrahedron Lett. 2009, 50, 1071 1074.
- [32] G. Benedek, M. Palkó, E. Wéber, T. A. Martinek, E. Forró, F. Fülöp, Tetrahedron: Asymmetry 2009, 20, 2220 – 2225.
- [33] Z. Araźny, Z. Czarnocki, K. Wojtasiewicz, J. K. Maurin, Tetrahedron: Asymmetry 2000, 11, 1623 1628.
- [34] Z. Araźny, Z. Czarnocki, K. Wojtasiewicz, J. K. Maurin, Tetrahedron: Asymmetry 2000, 11, 2793 2800.
- [35] Apparently the value of the specific rotation of compound questioned was incorrectly given in the text in our publication (Ref. [28]) due to an error in decimal point placement (Czarnocki, Z., personal communication).

Received: November 3, 2015 Published online on March 1, 2016