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Abstract: In this review, we chart the major milestones in the research progress on the DyP-type
peroxidase family over the past decade. Though mainly distributed among bacteria and fungi, this
family actually exhibits more widespread diversity. Advanced tertiary structural analyses have
revealed common and different features among members of this family. Notably, the catalytic
cycle for the peroxidase activity of DyP-type peroxidases appears to be different from that of other
ubiquitous heme peroxidases. DyP-type peroxidases have also been reported to possess activities
in addition to peroxidase function, including hydrolase or oxidase activity. They also show various
cellular distributions, functioning not only inside cells but also outside of cells. Some are also cargo
proteins of encapsulin. Unique, noteworthy functions include a key role in life-cycle switching in
Streptomyces and the operation of an iron transport system in Staphylococcus aureus, Bacillus subtilis
and Escherichia coli. We also present several probable physiological roles of DyP-type peroxidases
that reflect the widespread distribution and function of these enzymes. Lignin degradation is the
most common function attributed to DyP-type peroxidases, but their activity is not high compared
with that of standard lignin-degrading enzymes. From an environmental standpoint, degradation of
natural antifungal anthraquinone compounds is a specific focus of DyP-type peroxidase research.
Considered in its totality, the DyP-type peroxidase family offers a rich source of diverse and attractive
materials for research scientists.

Keywords: DyP; DyP-type peroxidase; structure-based sequence alignments; antifungal anthraquinone
compounds; lignin degradation; iron uptake; life cycle; hydrolase; oxidase; encapsulin; nano compart-
ment; cargo protein

1. Introduction

General peroxidase research has seemed to wane in recent years, at least in part
because peroxidases are ubiquitous and their generally accepted physiological role in
plants—removing hydrogen peroxide (H2O2) generated inside of cells and constructing
a part of the cell wall such as lignin—has been long and thoroughly studied. In contrast,
the research history of DyP-type peroxidases is in its early stages, with the first identi-
fication of the enzyme occurring only two decades ago. The first DyP-type peroxidase,
dye decolorizing peroxidase (DyP) from Geotrichum candidum, was reported in 1999 [1,2].
The origin of this enzyme was later revised to Bjerkandera adusta [3]. In 2007, DyP-type
peroxidases were recognized as being distinguishable from other known peroxidase and
were defined as a novel peroxidase family—the DyP-type peroxidase family [4]. To date,
DyP-type peroxidases have been found in a variety of organisms (Figure 1). These enzymes
also exhibit a varied distribution, functioning not only inside but also outside of cells.
In prokaryotes, in particular, the cellular distribution ranges widely from intracellular to
extracellular, including periplasmic space. Some secreted DyP-type peroxidases have a Tat
(twin arginine translocation) signal, suggesting that they are Tat substrates [5–10]. Notably,
all secreted DyP-type peroxidases with Tat signal belong to class I, as described in a later
section. Moreover, EfeB and YwbN, which are representative DyP-type peroxidases as
Tat substrates, reside in the periplasmic space and outside of the cell, respectively. They
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are homologs of each other and are inferred to play similar physiological roles [8,11].
Among eukaryotes, basidiomycetes have been a source of interesting findings on DyP-type
peroxidases. Surprisingly, the DyP-type peroxidases in these organisms are all extracellu-
lar, similar to some other peroxidases from basidiomycete. If the main role of DyP-type
peroxidases is to scavenge the H2O2 generated inside of the cell or construct a part of
cell tissues, it would be unnecessary to secrete the protein into the extracellular milieu.
Therefore, secreted DyP-type peroxidases likely serve a function independent of removal of
intracellular H2O2 or construct the cell tissues. Interestingly, it appears that some DyP-type
peroxidases exist as a cargo protein in encapsulin [12,13]. In particular, there is speculation
that MtDyP (class P) provides defense against attacks of host cells. Several DyP-type
peroxidases are summarized in outline form in Table 1.

Table 1. Characteristics of representative DyP-type peroxidase from classes P, I, and V.

Class Former
Class Name Length

(aa)

Reaction
with

Lignin a

Peroxidase Kinetic Parameters for
Anthraquinone Compound Comp

II c

Deduced
Radical

Sites

Remarkable
Comments Reference

Km
(µM)

kcat
(s−1)

kcat/Km
(s−1M−1)

Substrate
b

P B YfeX 299 [14]
DyPPa 299 107 0.024 2.2 × 102 rb5 [15]

PpDyP 287 40 8.0 2.0 × 105 rb5 manganese
oxidizing activity [16]

DyP1B 295 X 120 1.0 9.0 × 103 rb4 manganese
oxidizing activity [17]

DyP2B 324 X
Not

Detected rb4 manganese
oxidizing activity [17]

PfDyP B2 316 X 10 1.5 1.5 × 105 rb4 [18]
VcDyP 302 50 1.3 2.6 × 104 rb19 X [19]

ElDyP 299 manganese
oxidizing activity [20]

DyPB 350 X 350 0.05 1.4 × 102 rb4 X

manganese
oxidizing activity

(improved in
N246A),

[12,21–24]

encapsulin carrier
DtpB 316 [25]

Mt-DyP 335 encapsulin carrier [13,26]
KpDyP 299 X [27]
TyrA 311 84 5.9 7.0 × 104 rb5 [28]

I A EfeB
(YcdB) 423

Tat signal, EfeUOB
operon,

deferrochelatase?
[6,29]

DyPA 436 X 210 1.9 9.0 × 103 rb4 [17]
TcDyP 403 5 41 7.8 × 106 rb19 X X [30,31]

TfuDyP 430 29 10 3.5 × 105 rb19 Tat signal [5]
X 179 1.9 1.0 × 104 rb4 [32]

SviDyP 404 X rb19 [33]
DyPA 428 1,000 13 1.3 × 104 rb4 X [21,24]

DtpA 445 X
Tat signal, sco, ecuc,

Cu-transporter [7]

YwbN 416 Tat signal [8,9]

FepB 409
FepABC operon
(A,EfeO; B,EfeB;

C,EfeU),
[10]

deferrochelatase?
CboDyP 387 17 0.22 1.3 × 104 rb19 [34]

V C DyP2 473 X 48 34 7.1 × 105 rb5 Mn binding site in
crystal structure, [35]

Mn-dependent
oxidase activity

AnaPX 469 3.6 384 1.2 × 107 rb5 [36,37]
SaDyP2 456 61 0.78 1.2 × 104 ab324 [38]
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Table 1. Cont.

Class Former
Class Name Length

(aa)

Reaction
with

Lignin a

Peroxidase Kinetic Parameters
for Anthraquinone Compound Comp

II c

Deduced
Radical

Sites

Remarkable
Comments Reference

Km
(µM)

kcat
(s−1)

kcat/Km
(s−1M−1)

Substrate
b

D MsP1
(MscDyP) 513 X

β-carotene is a
substrate [39,40]

MsP2 510 β-carotene is
substrate [39]

TAP 504 [41]

DyP 498 80 980 1.2 × 107
The first found

DyP-type
peroxidase

[1–4,42–48]

AjPI
(AauDyP1) 509 X 23 114 5.0 × 106 rb5 X [40,49–52]

[53,54]
EglDyP 501 X [40]
MepDyP 526 X [40]

Pleos-
DyP1 516 45 5 1.1 × 105 rb19 manganese

oxidizing activity [55]

Pleos-
DyP4 504 82 152 1.9 × 106 rb19 X

manganese
oxidizing activity/ [55]

Mn binding site is
the same as DMP
binding site from

[43].
PsaDyP 516 24 18 7.5 × 105 rb5 oxidase activity/ [56]

β-carotene, annatto
are also substrates

PsaPOX 504 Not
Detected rb19

manganese
oxidizing

activity/alkene
cleavage/

[57]

β-carotene, annatto
are also substrates

Il-DyP4 502 X 133 5,345 4.0 × 107 rb19 manganese
oxidizing activity [58]

FtrDyP 484 187 2.6 1.4 × 104 manganese
oxidizing activity [59]

AncDyPD-
b1 511 42 22 5.3 × 105 rb19

ancestral fungal
dye-decolorizing

peroxidase
[60]

AjPII
(AauDyP2) unknown X 15 256 1.7 × 107 rb5 [40,50]

a include R-478 and model compounds of lignin b rb and ab mean reactive blue and acid blue, respectively. c comp II means compound II.

In any case, research performed over the past decade has clarified the unique charac-
teristics of DyP-type peroxidases, converging on the view that they do not exist solely to
remove H2O2 but instead have more important specific roles.

2. Importance of Tertiary Structure and Catalytic Mechanism
2.1. Characteristics Based on Tertiary Structure

In early-stage research, DyP-type peroxidases were categorized into classes A, B, C
and D according to primary structural homologies (RedOxiBase). Although this orthodox
classification is useful, it has limited value for studying catalytic mechanisms and active
sites because the primary structure provides only amino acid sequence information. In
contrast, tertiary structures define tangible entities that allow for detailed assessments
of the relationship between structure and function among members of the DyP-type
peroxidase family. In 2015, a new classification scheme was proposed for this family based
on structure-based sequence alignments obtained using the multiple three-dimensional
alignment tool, MATRAS [42]. Such tertiary structural analyses are apparently effective
for further analysis because they revealed genuine structural homologies among different
DyP-type peroxidases. Interestingly, this new scheme clearly reclassified the family into
three new classes, combining classes C and D into a new class V (adVanced) and renaming
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classes A and B as classes I (Intermediate) and P (Primitive), respectively [42]. Throughout
this review, we apply this new class I, P and V classification scheme. Typical structures of
each of the three classes are shown on the right side of Figure 1.
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Figure 1. DyP phylogenetic tree. The tree was constructed with the maximum-likelihood method
using RAxML-NG [61] with multiple sequence alignments of DyP amino acid sequences generated
by the MAFFT [62] program. Percentages of bootstrap values obtained from 1000 bootstrap replicates
are shown at the nodes. The best-fit model of evolution of the alignment was determined using
ModelTest-NG [63]. Branches and labels of different phyla are shown in different colors: green,
actinobacteria; blue, firmicutes; red, proteobacteria; purple, cyanobacteria; orange, basidiomycota.
Reference numbers for each DyP are shown in parentheses. Structures of representative DyPs of the
three classes are shown on the right: Class I, DtPA (PDB ID: 6gzw); Class P, DtPB (PDB ID: 6yrj);
Class V: DyP (PDB ID: 3afv).

The basic skeletal structure is common among the three classes and consists of a
dimeric α + β barrel structure [42]. The structures of classes I and V are constructed based
on class P, with some additional regions. Therefore, class P members have the smallest
molecular size among the three classes, with members of a class V having the largest size.
Notably, all important amino acid residues that define DyP-type peroxidases are included
in the skeletal structure (i.e., class P), suggesting that basic functions are determined by
this skeletal structure, with extra regions mediating additional functions. For instance,
catalytic efficiencies (kcat/Km) toward anthraquinone compounds are different among the
three classes. As shown in Table 1, the catalytic efficiencies of most class V members (104

to 107) are the largest among the three classes. By comparison, catalytic efficiencies range
from 103 to 106 for class I and from 102 to 105 for class P.
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2.2. Catalytic Mechanism

The enzyme commission number for DyP is EC 1.11.1.19, which corresponds to a
peroxidase group. Actually, in most cases, DyP-type peroxidases show typical peroxidase
activity, such as that shown by horseradish peroxidase (HRP). Therefore, the catalytic cycle
appears to be nearly the same as that of ubiquitous peroxidases [64]. As shown in Figure 2,
general heme peroxidases cycle through resting, compound I and compound II states. The
compound I formation process of DyP-type peroxidase is essentially inconsistent with
that of classical heme peroxidases such as lignin peroxidase [4]. In the case of DyP-type
peroxidase, resting and compound I states have been confirmed, but compound II is
controversial. DyPA (class I) from Rhodococcus jostii shows a spectrum corresponding to
compound II at pH 7.5 [21]. TcDyP (class I) from Thermomonospora curvata shows compound
II at pH 7.8 with both H2O2 and hydroquinone, but not with H2O2 only [30]. Furthermore,
compound II was not observed at pH 3, which is the optimum pH for dye decolorizing [30].
In support of this, Shrestha et al. reported that compound II was not observed at low
pH in ElDyP (class P) from Enterobacter lignolyticus, suggesting that the catalytic cycle
does not follow a typical two-step process [20]. The authors of this latter study suggested
that the enzyme adopts a two-electron reduction process for compound I, as shown in
Figure 3. Moreover, no exact compound II has yet been reported at low pH for DyP-
type peroxidases belonging to classes P or V. Therefore, further study at low pH—the
active pH for dye decolorization—is necessary regardless of whether the two-step catalytic
cycle with sequential one-electron reduction of the enzyme occurs or not. On the other
hand, excess H2O2 deactivates DyP-type peroxidsaes, a property also characteristic of
ubiquitous peroxidases.
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Figure 2. Catalytic cycle of a typical heme peroxidase. Oval denotes the heme plane in the enzyme.
AH is a substrate.
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Figure 3. Schematic diagram of two-electron oxidation of substrates by a DyP-type peroxidase,
proposed in [20]. Left, compound I; center, ES complex; right, resting state. Oval denotes the heme
plane in the enzyme. Asp is the catalytic residue. S and P denote substrate and product, respectively.
In a general peroxidase, compound I changes to compound II with one electron reduction, as shown
in Figure 2, but in this scheme, compound I of DyP-type peroxidases changes to the resting state
directly through two-electron reduction.
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2.3. Active or Binding Sites

DyP-type peroxidases show a broad range of substrate specificities, and several active
sites have been proposed [31,43,49,65]. It is likely that the binding site(s) of most substrates
are different from the H2O2 binding site. We will first focus on the H2O2 binding site,
which is located at the distal site of the heme. As described previously, aspartic acid and
arginine are absolutely conserved in the H2O2-binding site of most DyP-type peroxidases,
whereas general peroxidases have histidine and arginine at this site [44]. In particular,
aspartic acid (D) in the GXXDG motif, which is a well-known conserved region among DyP-
type peroxidases, replaces the histidine in general peroxidases, accounting for the lower
optimum pH of DyP-type peroxidases compared with general peroxidases [4,44]. A D171N
point mutation in DyP (class V) from B. adusta results in the disappearance of compound I
formation. This causes a drastic decrease in peroxidase activity [4], highlighting the critical
importance of aspartic acid in GXXDG. In contrast, Singh et al. reported that the arginine
in DyPB (class P) from R. jostii is essential for peroxidase activity [22]. It has similarly been
found that the arginine in DtpB (class P) from Streptomyces lividans is also a key residue
for peroxidase activity [25]. In this latter study, a serial femtosecond X-ray crystallography
approach was used to determine how the distal heme site in DyP-type peroxidase can be
tuned to choose either aspartic acid or arginine. In the case of YfeX (class P), the activity
toward guaiacol and catechol is retained if the arginine is replaced with other amino acids,
suggesting that this arginine may play a limited role [14]. Additionally, it has been reported
that the distal aspartic acid of ElDyP (class P) is catalytically more important than the distal
arginine and plays a key role in determining the acidic pH optimum of DyPs [20]. Similar
effect depending on pH has been reported in a resurrect class V DyP [60].

As noted above, it is clear that DyP forms compound I, indicating two-electron oxidiza-
tion using hydrogen peroxide. Actually, compound I of DtpB has been directly determined
for a peroxidase carrying a porphyrin π cation radical [25]. Although compound I oxidizes
various substrates, no reports provide direct evidence to show how and where substrates
bind to it. This is one of the least clarified and essential characteristics of DyP-type per-
oxidases. The active sites of substrates other than H2O2 are probably located apart from
the distal heme region, which would otherwise limit access to bulky molecules, such as
synthetic dyes. A likely hypothesis is that this site is located at the molecular surface of the
enzyme, and that an electron is transferred from the distal area of the heme to the substrate
via a long-range electron-transfer route [31,49,66]. A similar speculation has been raised
for versatile peroxidases [67]. Several studies have shown that aromatic residues such as
tryptophan and tyrosine accumulate and retain radicals, thereby serving as a point of sub-
strate oxidation [19,31,49,66]. This hypothesis seems reasonable, although unfortunately
there are no reports of a genuine enzyme–substrate (ES) complex between bulky substrates
and aromatic residues in DyP-type peroxidases. In contrast, DMP (2,6-dimethoxyphenol),
which is a general substrate for peroxidases, has been reported to associate with asparagine
313 at the molecular surface of DyP from B. adusta (class V), and a hydrogen-bonding
network has been reported from there to the propionate of heme [43]. This network is
similar to that of ascorbate peroxidase [68]. To date, this is the sole report of an ES complex
for a DyP-type peroxidase. Although a Mn2+ binding pocket was observed in an artificial
N246A mutant of DypB [23], there was no report of an ES complex in the case of native
DypB. Despite these advances, the location of the binding site for bulky substrates such as
synthetic dyes, the representative substrates of DyP, has remained elusive.

3. Functions Besides Peroxidase
3.1. Hydrolase

Some DyP-type peroxidases have been reported to have other functions besides
peroxidase activity. One of the reaction products confirmed to arise from catalysis of
Reactive blue 5—a representative anthraquinone dye—by DyP from Bjerkandera adusta is
phthalic acid [44,45]. This indicates that the anthraquinone frame is degraded by hydrolysis.
If this is the case, it is reasonable that DyP acts as a hydrolase because this hydrolysis would
never proceed in the absence of H2O2, suggesting the necessity of forming H2O from H2O2.
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The importance of H2O produced from H2O2 is also reported for classical heme peroxidases
and catalases. Jones reported that wet (H2O-containing) and dry (non-H2O-containing)
forms of compound I apparently play independent roles. He proposed a redox pathway
switching mechanism, such that the states for the two electron-equivalent reduction of
compound I are accessible in the dry form, but in the wet form only one-electron-equivalent
processes are possible, unless the release of water can be stimulated [69]. The importance
of a water molecule in the heme distal area was also reported for DtpB from S. lividans
(class I) [25]. These reports suggested that H2O from H2O2 might play a specific role in
the catalytic mechanism. Together, these observations suggest that DyP from B. adusta is a
bifunctional enzyme that exerts hydrolase activity using the H2O released by the peroxidase
function. In contrast, Linde et al. have reported that spontaneous hydrolysis would occur
if an anthracenetetrone was formed as an intermediate from an anthraquinone, given that
the ubiquitous heme peroxidase HRP also decolorizes Reactive blue 5 [66]. Actually, HRP
decolorizes Reactive blue 5, but there is no evidence that it degrades the anthraquinone
frame because phthalic acid has thus far not been detected. It is probably the case that
decolorization with HRP depends on degradation, not of the anthraquinone frame, but of
an auxochrome group. Moreover, there are no reports that anthracenetetrone is generated
as an intermediate for a DyP-type peroxidase. These two ideas are summarized in Figure 4.
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3.2. Deferrochelatase or Iron Uptake

In 2009, Létoffé et al. reported that EfeB (class I), a DyP-type peroxidase from
Escherichia coli, functions as a deferrochelatase [70]. They observed that EfeB captures
only iron without degradation of heme, which retains an intact tetrapyrrole skeleton. This
phenomenon is quite different from that of heme oxygenase, which degrades the heme
skeleton and then “picks out” the iron. This study created a profound impression on
many researchers of DyP-type peroxidases. However, the corresponding function of FepB
(class I), an EfeB homolog from Staphylococcus aureus, is obscure [11]. Moreover, YwbN
(class I) from Bacillus subtilis, also a homolog of EfeB, shows no deferrochelatase activity,
but does exhibit peroxidase activity [8]. Overall, whether DyP-type peroxidases have defer-
rochelatase activity remains a matter of controversy. Viewed from another standpoint, EfeB
is a part of the EfeUOB operon, which encodes components of an iron transport system [29].
Interestingly, a similar operon has been found in both B. subtilis and S. aureus [8,11], and it
has been proposed that both EfeB homologs are typical peroxidases that result in oxidation
of Fe2+. Moreover, the efeB gene of B. subtilis is under additional control of several σ
factors that are associated with the cell envelope stress response, suggesting a key role in
the life-cycle of the organism [8]. Collectively, these studies suggest that the relationship
between iron uptake and the role of DyP-type peroxidases must be critical to bacterial
viability because iron uptake is essential for life. Further study of this relationship can be
expected. A schematic diagram of the EfeUOB operon from the above three organisms is
shown in Figure 5.
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3.3. Oxidase

Peroxidase reactions absolutely depend on peroxides such as H2O2. Surprisingly,
MscDyP from Marasmius scorodonius, a typical class V DyP, appears to oxidize β-carotene
without H2O2 [39]. If this proves to be the case, it means that MscDyP not only shows
peroxidase activity but also possesses oxidase activity, suggesting a bifunctional enzyme.
Additionally, catalases, which are similar to heme peroxidases, are also suggested to show
phenol oxidase activity in the absence of H2O2 [71]. However, it has been reported that
PsaPOX (class V) from Pleurotus sapidus oxidizes β-carotene in the presence of H2O2,
suggesting peroxidase activity [57]. Strikingly, β-carotene was found to be transformed
by recombinant PsaDyP in both the presence and absence of H2O2, although enzymatic
activity was increased by the addition of H2O2 [56]. This suggests that rPsaDyP has an
oxidase function in addition to peroxidase activity. PsaPOX was also shown to oxidize
several alkenes, such as anethol to anisaldehyde, but the details of the reaction mechanism
are still obscure [57].

4. Physiological Role of DyP-Type Peroxidases

One of the accepted physiological role of a plant peroxidase is to form lignin of cell
wall consuming H2O2 generated inside of cells. In contrast, it is noteworthy that many
DyP-type peroxidases function in the extracellular environment. This suggests that the
main physiological role of these peroxidases is not removal of intracellular H2O2, leading to
speculation about other cryptic roles. An additional noteworthy characteristic of DyP-type
peroxidases is that they are distributed across a broad range of organisms, suggesting
possible divergent physiological roles. Probable physiological roles are considered below.
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4.1. Anthraquinone Degradation

The DyP (class V) from Bjerkandera adusta Dec 1 is a classic member of this family. This
strain was isolated from soil in Japan and exhibits broad decolorizing effects on various syn-
thetic dyes [72]. Notably, DyP showed stronger decolorizing actions against anthraquinone
dyes than azo dyes, a unique characteristic compared with other decolorizing enzymes
known to date, which have been reported to be effective toward azo dyes [73–76]. One of
the most distinctive characteristics of DyP from B. adusta is its unique ability to degrade
the anthraquinone skeleton. Reactive blue 5 is actually completely decolorized through
concerted reactions with versatile peroxidases and DyP [46], making these enzymes suit-
able for treating wastewater containing synthetic dyes. However, such synthetic dyes are
not true substrates because they are never generated in nature, suggesting that natural
anthraquinone compounds must be true substrates. For example, plants, including trees,
synthesize multiple anthraquinone compounds that serve antifungal functions. In this
context, DyP from B. adusta degrades alizarin, which is a natural antifungal anthraquinone
compound produced by plants [47]. B. adusta is a white rot fungus that parasitizes living
trees, which in response generate phytoalexin to protect against infection. Therefore, one
probable physiological role is to degrade antifungal anthraquinone compounds and accel-
erate tree parasitism. This is the only study of its kind to date, but future work on this issue
is expected.

4.2. Lignin Degradation

A relationship between lignin degradation and some DyP-type peroxidases has been
reported. In particular, there are many reports of this function for class V DyPs, as shown in
Table 1. To date, lignin peroxidase (LiP), versatile peroxidase (VP), manganese peroxidase
(MnP), and laccase (Lac) from basidiomycetes and ascomycetes have been well studied, as
have lignin-degrading enzymes from basidiomycetes, such as white rot fungi [67,76–78].
In recent years, several DyP-type peroxidases have been found to degrade lignin or its
model compounds [30,79–81]. Interestingly, lignin degradation by DyP-type peroxidases
has been reported for bacteria as well as basidiomycetes, whereas general lignin-degrading
enzymes are mainly isolated from basidiomycetes. DyPA from Pseudomonas fluorescens
pf-5 [17], TfuDyP from Thermobifida fusca [5], and SviDyP from Saccharomonospora viridis
DSM43017 [33] are class I, whereas DyP1B from Pseudomonas fluorescens pf-5 [17], DyP2B,
and DyPB from Rhodococcus jostii are class P. DypB from Rhodococcus jostii, which is an
actinomycete, has been reported to degrade lignin in the presence of Mn2+ and H2O2, but
its activity is low compared with that of fungal lignin-degrading enzymes [24,35,66]. DypB
might be a manganese peroxidase whose primary role is to oxidize Mn2+ to Mn3+ [24].
However, the kcat/Km ratio of DypB for Mn2+ was reported to be 1/31,250th of that of
a typical MnP, indicating that Mn2+ is unlikely an essential substrate for DypB [82]. In
contrast, DypA (class I) from the same strain shows no lignin-degrading activity, suggesting
a difference in physiological roles, despite the fact that both are DyP-type peroxidases [24].
More puzzlingly, TfuDyP (class I) from T. fusca, which is also an actinomycete, was shown
to degrade kraft lignin and oxidize a β-aryl ether lignin model compound [32]. Specifically,
this latter study demonstrated that Streptomyces sp. S6 grew in medium containing kraft
lignin as a sole carbon source and showed apparent LiP activity. However, in the case of
DyP, S6 showed low activity—at most 1% compared with LiP [81]. SviDyP from Saccha-
romonospora viridis showed optimum pH and temperatures of pH 7.0 and 70 ◦C, respectively.
These characteristics seem to offer advantages compared with other DyP-type peroxidases
for practical biobleaching of kraft pulp [33]. Furthermore, two lignin-degrading bacteria,
Ochrobacterium sp. and Paenibacillus sp., which contain no class P DyP-type peroxidases
that have been implicated in lignin degradation in other bacteria, alternatively possess a
multi-copper oxidase gene, which shows oxidation activity for β-aryl ether and biphenyl
lignin dimer model compounds [83]. Thus, the importance of DyP-type peroxidases in
lignin degradation, at least in bacteria, is open to interpretation.
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The situation is different in basidiomycetes, for which considerable research supports
lignin degradation. White rot fungi, such as Phanerochaete chrysosporium and Pleurotus
ostreatus, in particular have demonstrated prominent lignin degradation activity. Their
main enzymes are LiP, MnP and VP. Notably, P. chrysosporium does not have a DyP-type
peroxidase. Since DyP-type peroxidases were first identified, their potential for lignin
degradation has been a focus of research attention [39,40,49–52,84]. Such studies have
confirmed the widespread transcript-level expression of DyP-type peroxidases in almost
all samples of fungi from forest floor habitats [85]. The class V DyP-type peroxidases,
AjP I, AjP II, EglDyP and MepDyP, from basidiomycetes are secreted outside the cell and
degrade non-phenolic lignin model compounds through their peroxidase activity [40,50].
However, the lignin-degrading activity of DyP-type peroxidases from basidiomycetes is at
most 4% that of LiP from P. chrysosporium [40,66]. IlDyP (class V) from Irpex lacteus has been
characterized and suggested to hydrolyze wheat straw [86]. Because wheat straw contains
lignocellulose, IlDyP might function in lignin degradation. Consistent with this, IlDyP-1
and IlDyP-2 were reported to degrade the lignin model compound, DMP [87], although
this study reported no data on degradation of lignin itself by IlDyP.

Taken together, these observations indicate that most lignin-degrading organisms
that possess DyP also have general lignin-degrading enzymes, such as LiP, MnP, VP and
multi-copper oxidase; thus, whether lignin-degrading activity is an essential function of
DyP-type peroxidases remains obscure.

4.3. Life Cycle of an Actinomycete

DtpA (class I) from the actinomycete S. lividans appears to have a specific role in the life
cycle of the organism. In S. lividans, copper is important for stimulating the developmental
switch between vegetative mycelium and aerial hyphae. DtpA uses H2O2 to oxidize Cu+

to Cu2+, which causes maturation of GlxA; thus, DtPA is required for maturation of GlxA.
GlxA, in turn, generates H2O2 from O2, thereby providing the H2O2 necessary for DtPA-
mediated oxidation of Cu+ to Cu2+. GlxA is a key protein in the shift from vegetative
mycelium to aerial hyphae [88]. Mature GlxA acts in concert with the cellulose synthase-
like protein, CslA, to form an extracellular glycan specific for aerial hyphae. This role for
DtpA in oxidizing metal ions would thus be similar to the function of EfeB, which oxidizes
Fe2+ to Fe3+ [8]. Notable in this context, S. lividans also appears to have an efeB homologue,
which is located in a gene cluster harboring an iron transporter. Streptomyces avermitilis also
has an efeB homologue (SAV_5925), strongly suggesting its specific role.

4.4. Cargo Protein of Encapsulin

An additional unique characteristic of several DyPs is their function as a cargo protein
for encapsulin, a bacterial nanocompartment protein. One of the best-studied of these
DyPs is MtDyP (class P) from Mycobacterium tuberculosis [13,26], a bacterium that slips
through defenses generated by the host immune response and induces tuberculosis. MtDyP,
which is shielded from oxidative stress in the nanocompartment through association with
encapsulin, appears to play an important role in defending against the immune assault by
virtue of its peroxidase activity. DypB (class P) from R. jostii was shown to assemble with
encapsulin in vitro [12], suggesting the potential of class P DyPs to act as cargo proteins
of encapsulin. A recent high-resolution cryogenic electron microscopy study revealed
that a DyP-type peroxidase from Mycobacterium smegmatis is a primary cargo protein of
mycobacterial encapsulins [89]. Notably, this latter study noted that the encapsulin shell
plays a role in stabilizing DyP in a dodecameric form, which is larger than any previously
reported DyP oligomer. Considering this packaging of M. smegmatis encapsulin as a model
system for M. tuberculosis would suggest a similar role for DyP from M. smegmatis in
protecting cells against oxidative stress. By extension, if DyPs from pathogens indeed
serve to defend against immune assault from the host, VC2145 VcDyP (class P) from Vibrio
cholerae [67] might be speculated to have a similar role. One more noteworthy characteristic
is that encapsulated DyP has a specified target peptide toward encapsulin. If this is the case,
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screening for the presence of the target peptide is effective to find unknown encapsulated
DyP-type peroxidase [90].

5. Perspectives

In this review, we have highlighted the prominent themes in the progression of DyP-
type peroxidase research over the past decade. The feature of DyP-type peroxidase that has
received the greatest emphasis is the diversity of this family, which displays a widespread
expansion of three different classes: P, I and V. Tertiary structural analyses have clearly
identified both common and distinct features among the three classes. Substrate specificities
and catalytic efficiencies have also been shown to vary among the three classes. Therefore,
researchers should continue to apply the current structure–function approach to clarify
the catalytic mechanism, which remains unclear. In the end, the catalytic mechanism will
likely turn out to be more complicated than that of ubiquitous heme peroxidases, reflecting
additional functions such as hydrolase or oxidase activity. One issue in particular that will
require further careful study as part of efforts to elucidate the multifunctional feature of
DyP-type peroxidase is the wet and dry states of compound I.

Surprisingly, the true physiological roles of DyP-type peroxidases remain unclear;
thus, establishing these roles is an important area for future research. As noted above, DyP-
type peroxidases have been clearly shown to function in various environments, including
extracellular, periplasmic as well as intracellular environments, including within encap-
sulin. These observations suggest that the physiological role of DyP-type peroxidases is not
limited to removal of H2O2 inside of cells, hinting at other critical physiological functions.
In particular, MtDyP and DyP from B. adusta seem to have a similar physiological role:
defending against counterattacks from the host. Moreover, EfeB and DtpA play important
roles in oxidizing Fe2+ and Cu+, respectively, taking part in the life cycle of their organisms.
Compared with other peroxidases reported to date, DyP-type peroxidase have unique
features that put them in a class of their own, arguably one that is more advanced than that
of ubiquitous peroxidases. With future studies, the universe of DyP-type peroxidase will
be unveiled, revealing itself to be widespread and deep like the cosmos.
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