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Abstract
The characterization of the functional significance of interindividual variation in brain morphometry is a core aim of
cognitive neuroscience. Prior research has focused on interindividual variation at the level of regional brain measures thus
overlooking the fact that each individual brain is a person-specific ensemble of interdependent regions. To expand this line
of inquiry we introduce the person-based similarity index (PBSI) for brain morphometry. The conceptual unit of the PBSI is
the individual person’s brain structural profile which considers all relevant morphometric measures as features of a single
vector. In 2 independent cohorts (total of 1756 healthy participants), we demonstrate the foundational validity of this
approach by affirming that the PBSI scores for subcortical volume and cortical thickness in healthy individuals differ
between men and women, are heritable, and robust to variation in neuroimaging parameters, sample composition, and
regional brain morphometry. Moreover, the PBSI scores correlate with age, body mass index, and fluid intelligence. Collectively,
these results suggest that the person-based measures of brain morphometry are biologically and functionally meaningful and
have the potential to advance the study of human variation in multivariate brain imaging phenotypes in healthy and clinical
populations.
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Introduction
A core aim of cognitive neuroscience is to identify the func-
tional significance of interindividual variation in brain organi-
zation in healthy and in clinical populations. Here, we focus
specifically on brain morphometry as assessed using magnetic

resonance imaging (MRI) as this is the most widely used neuroim-
aging method in research and clinical settings. The investigation
of interindividual variation in brain morphometry has adopted 2
main analytical methods, variable-based and person-based.
Variable-based approaches aim to identify similarities between
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simple or composite structural MRI features across individuals
(Song et al. 2013; Holmes et al. 2016; Seidlitz et al. 2018). Such
analyses have been instrumental in establishing links between
brain morphometric variation and age, sex, and cognition
(Hulshoff Pol et al. 2006; Deary et al. 2010; Kanai and Rees 2011;
Ruigrok et al. 2014) but have been criticized for fostering the
incorrect impression that the findings can be generalized to every
individual person (von Eye and Bogat 2006). Person-based analy-
ses aim to identify subgroups of individuals with multiple similar
brain morphometric features using a variety of clustering algo-
rithms. This approach has been most commonly used to identify
clusters of individuals at risk of adverse clinical outcomes
(Koutsouleris et al. 2009; Rocha-Rego et al. 2014; Rathore et al.
2017) but remain largely uninformative at the level of an individ-
ual person. The degree of homogeneity is defined at the level of
clusters but not individuals; in fact, the same individual may be
assigned to different clusters depending on the algorithm
(Gelbard et al. 2007). Therefore, the field is lacking a measure that
can be informative at the level of each individual person.

In this context, we propose the “person-based similarity
index” (PBSI) as a novel metric of similarity between the brain
structural profile of an individual study participant and that of
all other participants. We constructed a PBSI for subcortical vol-
ume (PBSI-SVol) and another for cortical thickness (PBSI-CThi)
as subcortical and cortical brain regions have partially distinct
genetic, developmental and environmental correlates (Miller
et al. 2016; Wen et al. 2016). Cortical morphometry can be
described in terms of thickness and surface area. These 2 mea-
sures are thought to reflect different biological processes; corti-
cal thickness has been linked to dendritic arborization and
pruning (Huttenlocher 1990) while surface area has been asso-
ciated with cortical gyrification (Lewitus et al. 2013).
Consequently, cortical thickness and surface area have distinct
genetic correlates (Panizzon et al. 2009) and developmental tra-
jectories (Raznahan et al. 2011; Wierenga et al. 2014). Here we
focus specifically on cortical thickness because of the prodi-
gious evidence linking cortical thickness to cognition in healthy
populations (Narr et al. 2007; Fjell et al. 2010; Karama et al.
2011) and in neuropsychiatric disorders (Thompson et al. 2007;
Boedhoe et al. 2018; Hibar et al. 2018; Van Erp et al. 2018; van
Rooij et al. 2018; Whelan et al. 2018).

The process of computing the PBSI begins by calculating the
interindividual correlation coefficient for each pair of
individual-specific imaging profiles yielding n−1 coefficients per
individual (where n is the group size) (Fig. 1a,b). These correla-
tions quantify the similarity of the imaging profile of each indi-
vidual to that of each of the other group members (Fig. 1b).
Averaging these correlation coefficients across all group mem-
bers yields a PBSI score, which provides a quantitative charac-
terization of the similarity of the participants’ imaging profiles
(Fig. 1c). High values indicate that the imaging profile of any
one group member accurately predicts the profiles of all other
members, whereas low values signify low consistency among
the imaging profiles of the group members. The subcortical vol-
ume and cortical thickness profiles were constructed as 2 sepa-
rate vectors by respectively concatenating measures of
subcortical volume and cortical thickness. To ascertain the
foundational validity of the PBSI scores we tested 3 predictions:
1) that the PBSI scores would be replicable and robust to varia-
tion in data acquisition and analyses parameters and to sample
composition; 2) that the PBSI scores would be independent to
variation in discrete brain regional measures; and 3) that the
PBSI would show evidence of heritability as inferred from prior
evidence that brain morphometry is influenced by genetic

factors (Blokland et al. 2012; McKay et al. 2014; Strike et al.
2018). To test these predictions, we computed multiple reliability
analyses on 2 independent cohorts of healthy individuals from

Figure 1. Pipeline for computing a person-based similarity index. (a) Creation of

a structural profile (P) using regional measures (R) (e.g., cortical thickness or

subcortical volumes) for each subject i. (b) Computation of Spearman’s correla-

tion between each pair of individual profiles. The n profiles (P) are first con-

verted to ranks (ρgi,… ρgn), cov(ρgi,ρgn): covariance of the rank variables (ρgi and
ρgn), σ: standard deviation of the rank variables. (c) For subject i, the person-

based similarity index (PBSI) is computed as the average of all pairwise correla-

tions between the subject i and all other subjects.
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the Human Connectome Project (HCP) (Van Essen et al. 2013) and
the Cambridge Center for Ageing and Neuroscience study
(CamCAN) (Shafto et al. 2014; Taylor et al. 2017). We further pre-
dicted that the PBSI will 1) differ between men and women since
sex is a major contributor to brain structural variation (Wierenga
et al. 2017; Ritchie et al. 2018); 2) be inversely associated with age
(Hedman et al. 2012; Miller et al. 2016) and body mass index (BMI),
a surrogate but informative marker of cardiometabolic health, as
both of these features are known to increase brain structural vari-
ation (Miller et al. 2016); and 3) be positively associated with mea-
sures of general intelligence in line with recent reports linking
intelligence to similarity in brain anatomical networks (Seidlitz
et al. 2018).

Materials and Methods
Samples

We used data from 1756 healthy adults derived from the
Human Connectome Project (www.humanconnectome.org)
(Van Essen et al. 2013) and the CamCAN repository (www.mrc-
cbu.cam.ac.uk/datasets/camcan) (Shafto et al. 2014; Taylor et al.
2017). The most recent release of HCP database comprised 1113
individuals (606 women), aged 22–37 years (mean [standard
deviation {std}] = 28.80 [3.70] years). The CamCAN sample com-
prised 643 individuals (328 women), aged 18–88 years (mean
[std] = 54.07 [18.54] years).

Neuroimaging Data Acquisition

In the HCP sample, the structural MRI (sMRI) data were
acquired on a 3 T Siemens Connectome-Skyra scanner using a
T1-weighted (T1w), 3D magnetization-prepared rapid gradient-
echo (MPRAGE) sequence with the following parameters: repeti-
tion time (TR)/time to echo (TE)/inversion time (TI) = 2400/2.14/
1000ms, voxel size = 0.7mm isotropic, flip angle = 8°, field of
view (FOV) = 224 × 224mm2, duration of acquisition: 7min 40 s.

In the CamCAN sample, the sMRI data were acquired on a
3 T Siemens TIM Trio scanner with a 32-channel head coil,
using a T1-weighted, 3D MPRAGE sequence with the following
parameters: TR/TE/TI = 2250/2.99/900ms, voxel size = 1mm
isotropic, flip angle = 9°, FOV = 256 × 240 × 192mm3, duration
of acquisition: 4min 32 s.

sMRI Data Processing and Quality Control

Parcellation and segmentation of the sMRI datasets of the HCP
and CamCAN participants was implemented in FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/). For the HCP sample, we
downloaded FreeSurfer 5.3.0 outputs that had been processed
and quality controlled using the latest HCP protocols (https://
www.humanconnectome.org/storage/app/media/documentation/
s1200/HCP_S1200_Release_Appendix_IV.pdf). For the CamCAN
sample, we analyzed T1w images using FreeSurfer 6.0. The
steps included removal of nonbrain tissue using a hybrid
watershed/surface deformation procedure (Segonne et al. 2004),
automated Talairach transformation, segmentation of the sub-
cortical white matter, and deep gray matter volumetric struc-
tures (Fischl et al. 2002, 2004) intensity normalization (Sled
et al. 1998), tessellation of the boundary between the gray and
white matter, automated topology correction (Fischl et al. 2001;
Segonne et al. 2007), and surface deformation following inten-
sity gradients to optimally place the gray/white matter bound-
aries and gray/cerebrospinal fluid borders at the location where
the greatest shift in intensity defines the transition to the other

tissue class. All participants’ data passed the quality control
protocols developed by the ENIGMA initiative (http://enigma.
ini.usc.edu/).

Extraction of Subcortical Volume and Cortical Thickness
Measures

Following FreeSurfer segmentation and parcellation based on
the Desikan atlas (Desikan et al. 2006), we obtained 64 cortical
thickness measures and 16 subcortical volume measures
(Supplemental Table S1) for each HCP and CamCAN study par-
ticipant. Prior to being entered into further analyses, subcorti-
cal volumes in the HCP and CamCAN samples were adjusted
for variation in intracranial volume (ICV) in each sample in
accordance to standard protocols (Pintzka et al. 2015) using the
following equation: = − β ∗ ( − )Vol Vol ICV ICVadj , where, Voladj
is the ICV-adjusted volume, Vol is the original uncorrected vol-
ume, β is the slope from the linear regression of Vol on ICV, ICV
is the ICV of a study participant and ICV is the mean ICV across
all participants in each study sample.

Computation of the PBSI Scores

Separately in the HCP and CamCAN samples, we computed a
PBSI score for subcortical volume (PBSI-SVol) and another for
cortical thickness (PBSI-CThi), using an identical 3-step proce-
dure (Fig. 1). First, we created the subcortical volume and corti-
cal thickness profile of each participant by concatenating the
corresponding Freesurfer derived morphometric measures
detailed in Supplemental Table S1 (Fig. 1a). Second, we calcu-
lated the interindividual Spearman’s correlation coefficient
between the subcortical volume or cortical thickness profile of
any given participant with the corresponding profiles of each of
all the other sample participants (Fig. 1b). Third, the n−1 inter-
individual correlation coefficients (n refers to the total number
of participants in each sample) for subcortical volume and cor-
tical thickness were averaged separately to yield one corre-
sponding PBSI score per participant (Fig. 1c). Higher scores (with
a maximum of 1) denote greater similarity between the subcor-
tical volumes or cortical thickness profiles of an individual par-
ticipant with those of the other participants in the same
sample. Outliers were defined as those having PBSI scores more
than 4 standard deviations from the sample mean; this
resulted in the removal of 5 participants in the HCP (mean [std]
age: 27.6 (3.4), 3 females) and 7 participants in the CamCAN
sample (mean [std] age: 71.9 [22.3], 1 female).

The matlab function used to compute the PBSI score is avail-
able at: https://www.mathworks.com/matlabcentral/fileexchange/
69 158-similarityscore.

Contribution of Regional Brain Measures to the PBSI

The contribution of the regional brain measures on the PBSI
scores was investigated using 2 approaches. The first one was a
bootstrap resampling approach. For the PBSI-CThi, we created
cortical thickness profiles by randomly grouping variables in
increments of 10 (i.e., from 10 to 60 regions selected) and we
then recalculated the PBSI for each individual, 100 times. For
the PBSI-SVol, we created profiles by randomly grouping half of
the variables (i.e., 8) and recalculated the PBSI for each individ-
ual, 100 times. The second analysis was a leave-one-out
approach that allowed us to quantify the contribution of each
regional brain measure to the PBSI scores. For the leave-one-
out analyses, the PBSI-SVol and PBSI-CThi scores of each
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Figure 2. Person-based similarity index for subcortical volume and cortical thickness in the HCP and CamCAN Samples. (a) Violin plots of the person-based similarity

index (PBSI) scores for subcortical volume and cortical thickness in the Human Connectome Project (HCP) and the Cambridge Center for Ageing and Neuroscience

(CamCAN) samples. P-values are based on Wilcoxon Tests. (b) Sex differences in PBSI scores in the HCP and CamCAN samples. Barplots depict the mean and 95% con-

fidence interval (CI) for men and women. P-values are based on Mann–Whitney U tests. (c) Association between age and PBSI scores in the HCP and CamCAN sample.

Dark areas represent 95% CI.
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participant were recalculated after leaving out one regional
brain measure at a time (Supplemental Table S4). The regional
contributions to the PBSI-CThi in early, middle, and late adult-
hood in the CamCAN sample are visualized in Supplemental
Figure S1.

Association Between PBSI Scores With Age and Sex

Sex differences in the PBSI-SVol and PBSI-CThi were assessed
separately in the HCP and CamCAN samples using Mann–
Whitney U tests. We employed curve estimation regression to
determine the association between PBSI scores and age. We
used Spearman’s correlation analyses to examine the associa-
tion between age and PBSI scores in 3 age brackets reflecting
early adulthood (age range: 18–39 years), middle adulthood (age
range: 40–59 years) and late adulthood (age range: 60–88 years).
Further we recomputed the PBSI scores within each age bracket
and compared them using Kruskal–Wallis tests. Both the HCP
and CamCAN samples contributed data to the early adulthood
age bracket while the 2 other age brackets included data from
the CamCAN sample only.

Heritability of the PBSI Score

Heritability estimates were calculated in the HCP sample only,
in which the relevant data were available, using Sequential
Oligogenic Linkage Analysis Routines (SOLAR) software
(Almasy and Blangero 1998). Heritability estimates range from 0
to 1 and indicate the degree of phenotypic variation is due to
genetic factors. Heritability was estimated by partitioning the
phenotypic covariance matrix into genetic and environmental
components as h2 = σ2G/(σ

2
G + σ2E), where σ2G represents addi-

tive genetic variance and s2E represents random environmental
effects. The covariance matrix, or Ω, is composed of an n × n
kinship matrix (R) and a n × n identity matrix (I) as follows: Ω =
Rσ2G + Iσ2E. The PBSI scores were standardized and then nor-
malized using an inverse Gaussian transform before being
entered into the heritability analysis. The normal distribution
of the data is a requirement for the SOLAR software in order to
compute an accurate heritability score (see Lynch and Walsh
1998; Blangero et al. 2013). The choice of applying an inverse
normalization transform over other options, is based on the
fact that this transform retains most of the original informa-
tion, and yet provide a new normally distributed dataset. The
rationale for this approach can be found at: https://brainder.
org/2011/07/13/inverse-normal-transformation-in-solar/. Age,
age2, sex, and their interactions (age × sex, age2 × sex) were
tested as covariates of interest by comparing the likelihood of a
model estimating the covariate effect to the likelihood of a
model where the covariate effect was constrained to zero.

Association Between PBSI Scores and Intelligence

Effects of age (in the HCP sample), age2 (in the CamCAN sam-
ple), and sex (both samples) were regressed out of the PBSI
scores prior to estimating their association with the fluid and
crystallized intelligence (defined in “nonimaging variables” sec-
tion of the Supplemental Table S1). Crystallized intelligence is
thought to represent knowledge and skills acquired through
learning (Horn and Cattell 1966). By contrast, fluid intelligence
is thought to reflect acquisition of new associations and novel,
adaptive problem solving (Horn and Cattell 1966). In the HCP
dataset, measures of crystallized and fluid intelligence were
derived from cognitive tests in the NIH Toolbox-Cognition

Battery (www.nihtoolbox.org) using previously published reli-
able and reproducible procedures (Akshoomoff et al. 2013;
Heaton et al. 2014). In the CamCAN sample, fluid intelligence
was measured with the Cattell Culture Fair Intelligence Test
(Cattell 1971) using established published protocols (Kievit et al.
2016). We assessed these associations using both linear
(Spearman’s correlation) and nonlinear (curve estimation
regression–quadratic association) methods.

Association Between PBSI Scores and Body Mass Index

In the HCP sample, we examined the association between BMI
and PBSI scores using both linear (Spearman’s correlation) and
nonlinear (curve estimation regression–quadratic association)
methods, in men and women separately.

Reliability Analyses

We examined the stability of the PBSI scores after adjusting the
cortical thickness measures for the average cortical thickness
and the subcortical volume measures for the average subcortical
volume (instead of ICV). Results are reported in the supplemen-
tary material. Parcellation schemes are known to affect results
(Arslan et al. 2018). Therefore, we extracted 148 cortical thick-
ness measures based on the Destrieux atlas (Fischl et al. 2004)
(https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation).
We recalculated PBSI-CThi scores and repeated all the analyses.
We also assessed test–retest reliability in the 45 HCP partici-
pants who had 2 scans with an average interval between scans
of 139.3 (std: 68.2) days. We computed the PBSI-SVol and PBSI-
CThi scores for each scan and calculated their intraclass correla-
tion coefficient (ICC). Lastly, we examined the stability of the
PBSI scores as a function of sample size. To this purpose, we
applied a bootstrap approach by randomly resampling 10–90%
from the original sample (in 10% increments) 1000 times. We
then recomputed the PBSI scores on each bootstrapped subset,
for subcortical volume and cortical thickness separately.

Results
The PBSI Across Samples

Both PBSI scores showed a replicable pattern of range and dis-
tribution in the HCP and CamCAN samples. Higher PBSI scores
denote greater similarity in subcortical and cortical profiles, the
maximum possible score for each PBSI score is 1 which denotes
the greatest possible similarity between an individual partici-
pant and all other participants in the same sample. Figure 2A
depicts the distribution of the PBSI-SVol and PBSI-CThi scores
in the HCP and CamCAN samples. In both HCP and CamCAN
samples, PBSI-SVol scores were higher than PBSI-CThi scores
(Wilcoxon tests, HCP: Z = 28.8, P = 4.10−182; CamCAN: Z = 21.7,
P = 8.10−105), indicating greater within-sample similarity for
subcortical compared with cortical profiles.

PBSI Scores Differ Between Men and Women

Compared with men, women had higher PBSI-SVol scores (HCP:
Z = 3.21, P = 0.001; CamCAN: Z = 3.66, P = 4.10−4) and lower
PBSI-CThi scores (HCP: Z = 4.92, P = 9.10−7; CamCAN: Z = 2.10,
P = 0.036) (Fig. 2b).

The PBSI Scores are Associated With Age

The relationship between age and PBSI-CThi was linear in the
HCP sample while all other age-PBSI relationships were
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quadratic, particularly in the CamCAN sample (R2 > 9%, P ≤
2.10−14) that includes data covering most of the adult lifespan
(18–88 years) (Fig. 2c). To further characterize the association
between the PBSI and age, we divided the samples into 3 age
brackets representing early (range: 18–39 years), middle (40–59
years), and late (60–88 years) adulthood (Supplemental Table S2).
The association between PBSI-CThi and age was not significant
in early and middle adulthood and became negative and signifi-
cant in late adulthood (CamCAN: Spearman’s ρ = −0.41, P =
3.10−12). The association between age and PBSI-SVol was positive
in early (HCP: Spearman’s ρ = 0.12, P = 4.10−5; CamCAN:
Spearman’s ρ = 0.22, P = 5.10−3) and middle adulthood (CamCAN:
Spearman’s ρ = 0.13, P = 0.06) but negative in late adulthood
(CamCAN: Spearman’s ρ = −0.28, P = 4.10−6). The same pattern
was identified when men and women were examined
separately.

The degree of regional contribution to the PBSI in early, mid-
dle, and late adulthood appeared to be confirmed by known
variation in age-associated regional changes in morphometry
(Raz et al. 1997, 2004; Allen et al. 2005; Pfefferbaum et al. 2013).
Specifically, across all age groups, the parahippocampal gyrus
and the caudal anterior cingulate cortex bilaterally emerged as
the most consistent contributors to the PBSI-CThi (Supplemental
Fig. S1) while the contributions of the precentral gyrus and medial
prefrontal regions increased with age. In contrast the contribu-
tion of the occipital regions decreased with age. The minimal
contribution of the visual cortex to age-associated changes in
PBSI-CThi is consistent previous studies which shown a weak
correlation between visual cortex morphometry and age (Raz
et al. 1997, 2004; Allen et al. 2005; Pfefferbaum et al. 2013) and
are further supported by findings in nonhuman primates which
suggest no age-related neuronal or volume loss in this region
(Peters et al. 1997).

The PBSI Scores are Heritable

After covarying for age and sex, heritability estimates remained
significant and of a similar magnitude for the PBSI-SVol
(h2=0.28, P = 7.10−6) and the PBSI-CThi (h2=0.29, P = 3.10−8)
scores (Supplemental Table S3).

The PBSI Scores are Robust to Variation in Regional
Brain Measures

Bootstrap resampling and leave-one-out analyses confirmed
that the PBSI scores in both samples were not dependent on
the number of the contributing regional brain measures (Fig. 3).
After each leave-one-out analysis, the recalculated scores
remained within one standard deviation of the original values
(Supplemental Table S4).

The PBSI-CThi Score is Associated With Fluid
Intelligence

The effects of age (in the HCP sample), age2 (in the CamCAN
sample), and sex (both samples) were regressed out of the PBSI
scores prior to estimating their association with the fluid and
crystallized intelligence (details in Supplemental Table S1). No
associations were found between both PBSIs and crystallized
intelligence (r < 0.07, P ≥ 0.06 uncorrected). By contrast, there
was a significant bell-shaped association between the PBSI-
CThi and fluid intelligence in both the HCP (r = 0.09, P = 0.044,
after Bonferroni correction) and CamCAN (r = 0.13, P = 0.01,
after Bonferroni correction) samples. Individuals with fluid

intelligence scores that were 1.5 std below or above the mean
had lower PBSI-CThi (Supplemental Fig. S2).

The PBSI-CThi Score is Negatively Associated With BMI
in Men

The BMI was available in the HCP sample only (mean [std] =
26.5 (5.2)). In men, BMI was negatively associated with PBSI for
cortical thickness (Spearman’s ρ=−0.12, P = 0.008) and subcorti-
cal volume (Spearman’s ρ=−0.09, P = 0.03) although the latter
did not survive correction for multiple comparisons. None of
these associations were significant in women (Spearman’s ρ <
−0.06, P > 0.1). The same pattern was identified after correcting
for age.

The PBSI Scores are Reliable

The PBSI-CThi findings presented above were reproducible
when the cortical parcellation was based on the Destrieux Atlas
(Fischl et al. 2004). The ICC for scan–rescan reliability was
markedly high for both PBSI-SVol (ICC = 0.92, 95% confidence
interval [CI] = 0.85–0.95, F44,44 = 12.90, P = 2.10−14) and PBSI-CThi
(ICC = 0.80, 95% CI = 0.63–0.89, F44,44 = 5.0, P = 2.10−7) based on
data from 45 HCP participants scanned twice with an average
interscan interval of 139 days (Supplemental Fig. S4). Finally,
the PBSI-SVol and PBSI-CThi scores were reproducible with
minimal variation when recalculated for random subsets of the
HCP and CamCAN samples that included 10–90% of each sam-
ple participants in 10% increments (Supplemental Fig. S5).

Discussion
We introduce the PBSI, a novel metric that quantifies variation
in brain structural profiles at the level of the individual person.
The conceptual unit of analysis in the PBSI is the individual
person’s brain structural profile (either cortical or subcortical)
which considers all relevant morphometric measures as fea-
tures of a single vector. The PBSI approach therefore recognizes
that each individual brain is a person-specific ensemble of
interdependent regions. This is a fundamental departure from
previous methods of assessing interindividual variation in
which the units of analysis are discrete brain features. We
demonstrated the foundational validity of this approach by
affirming that the PBSI scores for subcortical volume (PBSI-
SVol) and cortical thickness (PBSI-CThi) differ between men
and women, are heritable, replicable and robust to variation in
neuroimaging parameters (site, acquisition sequence, and ana-
lytical methods), sample composition, and regional brain mor-
phometry. Additionally, individual variation in PBSI scores
showed meaningful correlations with age, BMI and fluid
intelligence.

The PBSI Scores Were Heritable

Thus far, all available heritability estimates concern discrete
brain regions. Family-based heritability estimates range from
59% (pallidum) to 70% (hippocampus) for subcortical volumes
and from 35% (entorhinal cortex) to 64% (postcental gyrus) for
cortical thickness (McKay et al. 2014). A meta-analysis of twin
studies (Blokland et al. 2012), provided heritability estimates for
regional subcortical volumes (including the lateral ventricles)
ranging from 53.2% to 58.5% for the right and left hippocampus
to 78.4–81.6% for the left and right putamen. According to the
same study, heritability estimates for regional cortical thick-
ness ranged from 0.13% to 0.21% for the left and right insula to
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53.6–60.8% for the right and left superior frontal gyrus. Twin-
based heritability estimates of cortical thickness in the HCP
dataset range from nearly 0% for orbitofrontal regions to 64%
for the left superior frontal gyrus, left superior parietal cortex
and right postcentral gyrus (Strike et al. 2018). Collectively, the
evidence points to large variations in the heritability of discrete
brain structural features, the origins of which are not fully
understood (Strike et al. 2018). In general, this variation has
been found to be greater for cortical thickness than subcortical
volume (Blokland et al. 2012; McKay et al. 2014). The fact that
the PBSI-SVol and PBSI-CThi scores were also heritable sug-
gests that genetic factors operate at the level of aggregate neu-
roanatomic variation, and not just at the level of specific brain
regions. It should also be noted that while significant heritabil-
ity estimates indicate that a particular trait is influenced by
genetic factors in a specific population, they do not provide
insights into the number or types of genes involved. Nevertheless
our findings suggest the influence of “generalist genes,” that is
genes or genetic factors that influence neuroanatomic variation
across multiple rather than specific features of anatomy. Similar
arguments have been made about the genetic architecture of gen-
eral intelligence versus more specific domains of cognition
(Bearden and Glahn 2017).

PBSI Scores Differed Between Men and Women

Previous studies consistently show that men and women differ
in terms of their mean brain regional volumes or cortical thick-
ness (Ruigrok et al. 2014; Gur and Gur 2017). Few studies have
examined sex differences in brain structural variation (Lange
et al. 1997; Wierenga et al. 2017; Ritchie et al. 2018). Nonetheless
it appears that across the lifespan the regional variance in sub-
cortical volumes is lower in women than in men (Wierenga et al.
2017; Ritchie et al. 2018). The PBSI-SVol reflected this pattern as
it was significantly higher in women than in men indicating
greater similarity in subcortical profiles amongst women than
amongst men. Regional variance in cortical thickness shows
very subtle and largely nonsignificant sex differences (Wierenga

et al. 2017; Ritchie et al. 2018). However, PBSI-CThi score was sig-
nificantly lower in women than in men indicating less similarity
in cortical profiles amongst women than amongst men. From
these results we infer that the PBSI-CThi, which considers the
entire cortical profile rather than individual regions, appears
more sensitive to sex differences in cortical organization.

PBSI Scores and Age

To date all studies, both cross-sectional and longitudinal, that
have examined the association between age and brain struc-
ture have used a variable-based approach. Collectively, these
studies have shown that in healthy adults advancing age is
associated with smaller subcortical volumes and thinner corti-
ces (Fjell et al. 2010; Raz et al. 2010; Hedman et al. 2012; Dickie
et al. 2013; Pfefferbaum et al. 2013; Storsve et al. 2014).
Although the degree of age-related changes appears to vary sig-
nificantly between brain regions and studies it is generally
more pronounced after 60 years of age (Fjell et al. 2010; Raz
et al. 2010; Hedman et al. 2012; Dickie et al. 2013; Storsve et al.
2014). It has also been shown that the variance in the morpho-
metric measures across brain regions also increases with age
(Resnick et al. 2003; Kruggel 2006; Farrell et al. 2009; Raz et al.
2010; Dickie et al. 2013; Pfefferbaum et al. 2013). The PBSI scores
introduced here complement this field of research as we dem-
onstrate that brain structural profiles become more dissimilar
with age particularly after 60 years of age. The negative correla-
tions between age and PBSI in late adulthood suggest that the
cumulative effect of stochastic factors, biological or otherwise,
over the lifespan may act to magnify individual variation both
at variable and person-based measures of brain morphometry.

PBSI Scores and Fluid Intelligence

The relationship between brain structure and intelligence is
complex and is likely to be influenced by diverse factors rang-
ing from genetics to lifestyle choices and health maintenance
decisions (Deary et al. 2010; Miller et al. 2016; Moser et al. 2018).

Figure 3. The person-based similarity index (PBSI) scores are robust to variation in number of regional brain measures. (a) PBSI for subcortical volume. (b) PBSI for cor-

tical thickness. The boxplots shown are based on data from the Human Connectome Project; identical results were obtained in the Cambridge Center for Ageing and

Neuroscience sample.
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Variable-based analyses have found generally positive correla-
tions between intelligence and cortical thickness, especially in
the frontoparietal cortex and other multimodal association
areas (Raz et al. 2008; Deary et al. 2010). Importantly, a recent
study by Seidlitz et al. (2018) showed that higher fluid intelli-
gence in healthy adults was correlated with the degree of simi-
larity in their brain structural connectivity. These results
resonate in part with our findings as the overall association of
PBSI-CThi with fluid intelligence was positive. Of note, we
found that the PBSI-CThi scores were lower in those with fluid
intelligence scores that were either lower or higher than aver-
age. This indicates that even within the normal range of gen-
eral intellectual ability, individuals at both extremes of the
fluid intelligence distribution are more dissimilar in terms of
their cortical thickness profiles compared with those with aver-
age fluid intelligence. We infer that the PBSI-CThi captures
intelligence-related variation in cortical organization that is
aligned with prior evidence of differences in cortical thickness
and in the trajectories of cortical development between indivi-
duals with lower and higher intellectual ability (Shaw et al.
2006; Schnack et al. 2015; Navas-Sanchez et al. 2016).

The PBSI-CThi is Negatively Associated With BMI in Men

We focus on the BMI because it serves as a robust surrogate
marker of cardiometabolic health; BMI is correlated with meta-
bolic syndrome and insulin resistance (Esteghamati et al. 2008;
Ryan et al. 2008) and is a reliable predictor of morbidity and
mortality (Aune et al. 2016; Global et al. 2016). Higher BMI is
also associated with brain structural variation (Miller et al.
2016; Moser et al. 2018) particularly in cortical thickness mea-
sures of prefrontal and posterior regions including the posterior
cingulate, parietal, and occipital cortices (Willette and Kapogiannis
2015; Medic et al. 2016; Shaw et al. 2018). These findings are inde-
pendent of sex (Willette and Kapogiannis 2015; Medic et al. 2016;
Shaw et al. 2018). By contrast, we found that both PBSI-CThi and
PBSI-SVol were negatively associated with BMI in men but not in
women. Our findings suggest that the interaction between sex
and BMI influences brain morphometric profiles, rather than
individual variables. Of note, a recent study (Walhovd et al.
2014) noted that the inverse relationship between cortical thick-
ness and BMI in men (but not women) was linked to higher
serum cholesterol levels implicating sex difference in lipid meta-
bolism that require further examination in future studies
(Walhovd et al. 2014).

Methodological Considerations

We focused specifically on brain morphometry as assessed
using structural MRI as it was critical to introduce this novel
approach using imaging measures that are considered valid
and reliable. However, a PBSI can be computed using data from
any neuroimaging modality for multivariate phenotypes com-
prising more than 10 continuous variables. Computation of
PBSI scores from different modalities would be an important
addition to the work presented here. Although we examined
the association of PBSI with age, sex, BMI, and fluid intelligence
there are other behavioral and lifestyle variables that may be
relevant that were not included here because of pragmatic con-
siderations associated with availability. A particular strength of
this study is the demonstration of test–retest reliability of the
PBSI scores and the robustness of the PBSI approach to varia-
tion in neuroimaging parameters relating to acquisition and
analysis, sample composition and regional brain morphometry.

Implications for Future Studies

The current results provide a novel approach for defining brain
structural variation at the level of each individual person.
Increased heterogeneity is traditionally invoked to explain the
variable presentation of neuropsychiatric syndromes. The
examination of heterogeneity in schizophrenia provides a typi-
cal example where the PBSI could prove useful. A large body of
evidence has confirmed that brain morphometric alterations in
this disorder involve multiple brain regions but with significant
variability amongst patients (Gupta et al. 2015; van Erp et al.
2016, 2018). The PBSI is ideally suited to capture the brain imag-
ing profile of each patient because it is computed using all the
relevant regional values. The PBSI is a platform for identifying
patients whose profile significantly differs from that of other
patients thus enabling a detailed examination of the character-
istics that may drive disease heterogeneity. The PBSI can also
be used to quantify brain structural heterogeneity in a variety
of clinical conditions and provide a new approach for linking
brain structural variation to psychopathology, cognitive dys-
function, and cardiometabolic risk.
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