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Abstract

The objective of this study is to establish a framework for analyzing infrastructure dynamics

affecting the long-term steady state, and hence resilience in civil infrastructure systems. To

this end, a multi-agent simulation model was created to capture important phenomena affect-

ing the dynamics of coupled human-infrastructure systems and model the long-term perfor-

mance regimes of infrastructure. The proposed framework captures the following three

factors that shape the dynamics of coupled human-infrastructure systems: (i) engineered

physical infrastructure; (ii) human actors; and (iii) chronic and acute stressors. A complex

system approach was adopted to examine the long-term resilience of infrastructure based on

the understanding of performance regimes, as well as tipping points at which shifts in the per-

formance regime of infrastructure occur under the impact of external stressors and/or change

in internal dynamics. The application of the proposed framework is demonstrated in a case of

urban water distribution infrastructure using the data from a numerical case study network.

The developed multi-agent simulation model was then used in examining the system resil-

ience over a 100-year horizon under stressors such as population change and funding con-

straints. The results identified the effects of internal dynamics and external stressors on the

resilience landscape of infrastructure systems. Furthermore, the results also showed the

capability of the framework in capturing and simulating the underlying mechanisms affecting

human-infrastructure dynamics, as well as long-term regime shifts and tipping point behav-

iors. Therefore, the integrated framework proposed in this paper enables building complex

system-based theories for a more advanced understanding of civil infrastructure resilience.

Introduction

Globalization and large-scale urban development in the latter half of the 20th century have pre-

cipitated massive demographic shifts in regions across the world, a trend which is expected to
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continue in the near future. In a bid to cater to these burgeoning developments, the demand

for civil infrastructure has grown disproportionately to the supply that is currently made avail-

able by civic bodies. For instance, the American Society of Civil Engineers estimates that an

additional 3.6 trillion dollars are required, merely to keep up with the increasing rate of

demand for infrastructure [1].

An important factor affecting the demand-supply economics of civil infrastructure is the

longevity and utility of said infrastructure over a given period of time. External factors such as

inclement weather directly affect the performance of physical assets, a statement which is of

greater importance today than ever before owing to climate change. In fact, climate change is

expected to affect the performance of physical assets, both directly and indirectly [2] as evi-

denced by the following example. Climate change-induced increase in the number of freeze-

thaw cycles directly affects the physical condition of pavements. In addition to this, climate

change stimulates changes in the behavior of both users and administrative agencies responsible

for the upkeep of pavements, which in turn also affects their physical condition [3]. More gener-

ally, civil infrastructure systems such as those catering to transport, power grids, water supply

and sewage networks are exposed to various stressors which are broadly classified into two

major groups: acute and chronic stressors. Acute stressors are extreme events such as natural

and man-made disasters, whereas chronic stressors are gradual, low impact-high probability

phenomena which affect infrastructure over a period of time, such as climate change, popula-

tion growth and decline, and funding limitations, to name a few. Coupled with the aforemen-

tioned increase in demand and usage, the impact of these stressors poses a major challenge to

scientists and policy-makers concerned with the sustainability of civil infrastructure.

The ability of civil infrastructure to cope with the impact of these stressors is characterized

as resilience, which is an emerging topic in the field of infrastructure sustainability. Resilience,

in this context, is defined as the capacity of civil infrastructure to experience the impact

induced by various types of stressors, while retaining the function to provide services required

for the socio-economic development and safety of humans [4]. In essence, it serves to inform

scientists and policy-makers about ways to cope with the impact of stressors on infrastructure.

Considering the pivotal role played by civil infrastructure in sustainable socio-economic

development as well as in protecting communities, a better understanding of the long-term

transformation of infrastructure under external stressors is a critical step towards enhancing

the sustainability and resilience of the communities themselves. Over the last decade, literature

pertaining to infrastructure resilience [5–8] has centered on examining the physical attributes

and topological characteristics that affect the behavior of infrastructure systems under disrup-

tion, through the use of an engineering-based approach. The focus of engineering-based

approaches is to assess resilience in the presence of acute stressors, while chronic stressors

which change the long-term dynamics of infrastructure over a long-time horizon are not fully

considered. Engineering resilience approaches primarily focus on event-based analysis of resil-

ience considering system dynamics related to loss of function and short-term recovery of

infrastructure for a particular disruptive event. Dynamic behavior of infrastructure is governed

by three major factors including (i) physical assets; (ii) human actors; and (iii) chronic and

acute stressors, which affect its long-term transformation. The consequence of defining resil-

ience as the final equilibrium state which is a product of the infrastructure’s robustness and

resistance to acute stressors, is that the engineering-based approach ignores adaptive behavior

seen in its human actors (users, administrative agencies and policy-makers), which is dynamic

in nature. However, planning for long-term adaptation to evolving external stressors (e.g.,

climate change) must contend with potential changes in human decision-maker values and

attitudes about the effects of external stressors on hazards and tradeoffs among adaptation

options [9]. However, despite the growing literature in the areas of resilience, the characteristics

Urban infrastructure system resilience assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0207674 November 21, 2018 2 / 24

the views of the NSF. The open access publishing

fees for this article have been covered by the Texas

A&M University Open Access to Knowledge Fund

(OAKFund), supported by the University Libraries

and the Office of the Vice President for Research.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0207674


of long-term resilience in civil infrastructure systems are not specified and evaluated. In particu-

lar, in the context of chronic stressors (e.g., population change), understanding of long-term

resilience characteristics holds the key for robust adaptation planning. For example, perfor-

mance regime shift is one of the important characteristics of long-term resilience [10]. Evalua-

tion of performance regime shifts in infrastructure systems is very important for long-term

adaptation planning and investment decision-making; due to the significant physical and insti-

tutional inertia in infrastructure systems, undesirable performance regime shifts are very diffi-

cult to reverse [11]. A critical knowledge gap is examining what attributes and relationships in

stressor-human-infrastructure nexus would yield long-term resilience that will mitigate the

potential impacts of evolving external stressors under different scenarios [12]. Recent develop-

ments in the field of complex systems science have addressed some of these concerns [13,14].

Civil infrastructure systems can be considered as complex systems [5] composed of facilities

and assets associated with the physical infrastructure, the services they provide to a commu-

nity, people using these services and the organizations that manage the infrastructure [15].

The resilience of such systems is a function of their internal and external dynamics [13], and

their performance depends on the interplay between human actors and the physical assets.

Thus, developing a holistic framework for assessing resilience of civil infrastructure requires a

better understanding of human actors (users and administrative agencies) and their capacity

for adaptive decision-making. Going one step further, under the complex systems approach,

resilience of civil infrastructure itself needs to be redefined to account for its dynamic nature.

Consequently, resilience may be defined as the ability of a complex system to adapt and trans-

form internal feedback processes, to cope with chronic or “surprise” shocks, recover from

internal/external disturbances [4]. That is, the system does not attempt to maintain status quo

(equilibrium) through resistance and robustness, rather, the system evolves and improves with

non-stationary conditions, through flexibility, diversity and adaptability, which makes resil-

ience as an emergent property of complex systems [4]. An important feature of resilience is

that it enables recovery and robustness to unknown and uncertain events [16]. The fact that in

complex systems, threats are often impossible to foresee and quantify was one of the main

motivations to complement risk-based approaches with resilience analysis [16,17]. Although

the proposed approach in this study is not particular threat-diagnostic, it can be used in the

presence of “threats”. Essentially, the impact of a threat (i.e., acute stressor) on a system over

time would depend on the steady state performance of the system, which is governed by the

internal dynamics and chronic stressors.

A complex systems approach holds the key to addressing knowledge gaps in the develop-

ment of a holistic framework that is capable of conceptualizing and assessing the long-term

resilience of civil infrastructure. Under this approach, resilience of civil infrastructure is char-

acterized using three mechanisms: (i) external stressors; (ii) internal dynamics; and (iii) regime

shifts. [13] theorized that the resilience of complex systems can be described based on their

topology and dynamics. However, the understanding of dynamics that affect infrastructure

resilience is rather limited. To address this inadequacy, this paper proposes a framework to

capture important phenomena that affect the dynamics, model the long-term performance

regimes of infrastructure using a complex systems approach, and analyze the resilience of civil

infrastructure in a long-term horizon based on the performance regime shifts and tipping

points of external stressors. The components and application of the proposed framework are

presented in the context of urban water distribution infrastructure. To this end, a Multi-Agent

Simulation (MAS) model was developed to integrate the institutional agencies’ renewal deci-

sion-making processes with physical components in order to simulate the transformations,

capture the dynamics, and model the performance regimes of water distribution infrastructure

system under the impact of external stressors such as population change and funding

Urban infrastructure system resilience assessment
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fluctuations. Using the developed simulation model, various experiments were designed to

measure the long-term resilience based on the visual detection of regime shifts and identifica-

tion of the threshold values (i.e., tipping points) associated with infrastructure performance

regimes. That is to say, the long-term resilience of the water distribution infrastructure was

evaluated in the presence of stressors using the proposed framework. Accordingly, the effec-

tiveness of different renewal strategies was assessed in light of improving the resiliency of the

infrastructure for various scenarios.

Long-term resilience theoretical framework

This study utilized a complex system-theoretic approach for the civil infrastructure long-term

resilience investment. The literature related to ecological sciences has made significant

advancements in adopting a complex systems perspective for understanding the long-term

resilience in ecological systems. According to [18–20], resilience in complex ecological systems

can be defined based on their ability to cope with the changes in the surrounding environment.

In fact, complex systems frequently do not return to their prior state of performance following

the impact of stressors. Instead a new equilibrium state is attained, as seen in other fields such

as ecology and economics which inspired developments in the engineering resilience field

[18]. In the proposed study, grounded theories, measures, and methods related to resilience in

complex systems [10,13,18–22] were utilized to build a long-term resilience framework (Fig 1)

for civil infrastructure systems under external stressors. The resilience of civil infrastructure

system is contingent upon its transformation and adaptation to evolving conditions in the

social and environmental sphere [21]. Complex systems approach addresses this need by con-

sidering the ability of the system to reach a stable state after a certain threshold (critical or tip-

ping point) has been reached.

Long-term resilience landscape

Using a complex systems approach, the long-term resilience landscape of civil infrastructure

systems can be investigated based on stable states and regimes that determine the performance

behavior of the system [10]. Changes in internal dynamics and external disturbances can cause

shifts from the current stable state to a new stable state (better or worse) [10]. Accordingly,

long-term resilience is defined as the ability of an infrastructure system to maintain its perfor-

mance regime or transform to a better regime in response to internal and external distur-

bances. The performance regime of infrastructure system is the state related to the system’s

long-term performance in terms of the environmental, social, economic, functionality, and

vulnerability parameters, which is maintained by internal dynamics pertaining to stressors-

human-infrastructure interactions (Fig 1). The regime shifts occur when a change in the

stressor-human-infrastructure interaction triggers a different behavior in the performance of

infrastructure system [23,24]. The occurrence of regime shifts is specified based on the detec-

tion of steady state transitions in infrastructure system performance behavior [23,24]. Accord-

ingly, the system resilience is evaluated using two methods [20]: (i) examination of steady state

transitions in infrastructure behavior over time; and (ii) sensitivity analysis of infrastructure

cumulative performance with respect to input parameters (i.e., external stressors).

Based on the existing evidence related to resilience in complex systems [10,13,18–22] this

study, as shown in Fig 1, identified three important characteristics related to long-term resil-

ience of civil infrastructure systems: (i) external stressors, (ii) internal dynamics, and (ii) per-

formance regime shifts. The following sub-sections explain the three mechanisms which

characterize the resilience of complex infrastructure systems.

Urban infrastructure system resilience assessment
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External stressors. External stressors can be chronic or acute in nature. Chronic stressors

are gradual, low impact-high probability events that are caused by changes in the internal feed-

back processes and the external environment. Acute stressors are abrupt, high impact-low

probability events that are mainly caused by extreme events. Both chronic (e.g. accelerated ero-

sion due to climate change) and acute stressors (e.g. flooding) affect the dynamics of the infra-

structure and as a consequence, its resilience. For instance, climate change (chronic stressor) is

a major driver of changes in the socio-environmental conditions surrounding civil infrastruc-

ture [25,26]. Climate change impacts the sustainability and resilience of civil infrastructure in

Fig 1. Long-term infrastructure resilience framework using a complex systems approach.

https://doi.org/10.1371/journal.pone.0207674.g001
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various ways such as (i) changes in temperature and precipitation which affect the erosion of

the networks; (ii) population displacement which affects the demand on the networks; (iii)

changes in the priorities of agencies which affects allocation of resources; and (iv) increased fre-

quency and magnitude of extreme events (e.g. floods), leading to greater exposure of the net-

works to risks [27,28]. Hence, changes in decision and physical infrastructure attributes and

relationship would change the sensitivity of civil infrastructure system to external stressors. The

Threshold values of these attributes at which the sensitivity of infrastructure system to stressors

varies can be examined as tipping points. Tipping points occur in complex systems when “a

small smooth change made to the parameter values of a system causes a sudden qualitative or

topological change in its behavior”. The parameter value at which state transition occurs is

referred to as the tipping point or threshold point. Understanding tipping points is essential in

describing long-term resilience in complex systems. In the context of civil infrastructure system

resilience, regime shifts describe the extent to which the infrastructure system performance

regime is sensitive to changes in external stressors magnitudes (e.g., population growth rate).

On the other hand, tipping points, explain the critical values related to decision and physical

infrastructure attributes (e.g., funding level and network age) that drastically increase or

decrease the infrastructure system sensitivity to a certain scenario and stressor magnitude.

Internal dynamics. Civil infrastructure as a complex system is composed of various com-

ponents which are connected by a complex set of direct and indirect interactions and con-

trolled by not one micro-behavior, but by a host of drivers. The observable collective behavior

(overall performance) of civil infrastructure emerges from the underlying internal interactions

and feedback among the system’s components (internal dynamics), as well as through the

impact of external stressors. The internal dynamics of civil infrastructure are determined

based on the interaction between human actors (i.e. agencies and users) and physical net-

works. The dynamics of each component (i.e. human actors and physical networks) are deter-

mined by two factors: (i) interaction between the components, which is governed by dynamic

rules that impose the activity or decision on the human actors and distribute the condition

(performance) to the physical networks; and (ii) global fluctuations in the overall performance

of the infrastructure system [29]. Fig 2 depicts the internal dynamics of civil infrastructure

through the lens of a complex systems approach. This figure illustrates the couplings between

human activities and engineered infrastructure. On the human actor side, two distinct deci-

sion-making processes of institutional actors (i.e., infrastructure agencies) can affect the long-

term transformation of physical infrastructure. First, actor’s decisions on maintenance, reha-

bilitation, or reconstruction of assets (referred to as preservation decisions) [22] influence

transformation of physical infrastructure by affecting the degradation rates and renewal of

assets. Second, the adaptation decisions of actors affect the vulnerability of assets to external

stressors. As demonstrated in Fig 2, the decision-making processes of institutional actors affect

the expansion, maintenance, and rehabilitation of physical infrastructure. In making their

operational and strategic decisions, agencies adopt certain heuristics related to performance

(functionality) requirements. These decision-making heuristics are affected by the demand

and expectations of the users (consumer actors) as well as by the risks posed by external stress-

ors (acute and chronic stressors). In addition to the decision-making processes of agencies, the

functionality of infrastructure networks is affected by attributes (e.g. design, material and age)

of physical assets in the network, behavior of its users (e.g. demand) and physical deterioration

induced by aging of assets. These internal interactions between human actors and the physical

infrastructure, both of which in turn are influenced by external stressors, lead to a certain per-

formance regime for the infrastructure system as a whole. System and policy changes which

affect interactions between human actors and physical networks can lead to shifts in the per-

formance regime of the infrastructure. Hence, evaluation of such changes in the performance

Urban infrastructure system resilience assessment
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regime of infrastructure is a key aspect of resilience assessment from a complex systems

perspective.

Performance regime shifts. The performance regime of infrastructure is defined as the

steady state related to the system’s performance, which is maintained by internal dynamics

associated with the interactions between human actors and physical infrastructure affected by

different stressors. A regime is a characteristic behavior of a system which is maintained by

mutually reinforced processes or internal dynamics [23]. A change of regime (regime shift)

occurs when a change in an internal process (dynamics) or external disturbance triggers a

completely different system performance behavior [19]. Regime shifts are large, abrupt, persis-

tent changes in the performance behavior of a system [30]. The regime shifts occur at tipping

points (critical points), where an external stressor interrupts the steady state of the system per-

formance. Evaluation of performance regime shifts is critical for long-term decision-making.

Due to significant physical and institutional inertia that is prevalent in civil infrastructure,

undesirable performance regime shifts are very difficult to reverse. Identification and adoption

of the critical points would facilitate early detection of regime shifts, prior to their occurrence.

The occurrence of shifts in the performance regime of an infrastructure system can be detected

using different methods such as (i) plotting mean and standard deviation values of the system

performance parameters against socio-environmental parameters (e.g. population change,

temperature change, and level of funding); and (ii) using time-series data related to different

system performance measures in non-parametric methods. To this end, a visual investigation

of system performance parameter values under different scenarios can be conducted to iden-

tify the non-linear trends and long-term regime shifts.

In the next step of this study, a dynamic (time-dependent) multi-agent simulation model

was created and validated to capture and explain the complex dynamics of stressor-human-

infrastructure nexus. The elements of the multi-agent model are explained in the following

section.

Fig 2. Internal dynamics in complex system of civil infrastructure.

https://doi.org/10.1371/journal.pone.0207674.g002
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Multi-agent simulation model

Further to identifying different components of a complex system, capturing mechanisms that

dictate dynamic interactions between them is a necessary step towards assessing the long-term

resilience performance of the system as a whole. To this end, a Multi-Agent Simulation (MAS)

method was adopted in order to capture the coupled human-infrastructure dynamics. MAS

enables modeling complex and real-world systems through the adoption of influential con-

cepts such as adaptation, emergence, and self-organization [31]. This method is routinely

employed for analyzing problems which require distributed problem-solving capabilities in

the absence of a centralized solution [32]. In this method, agents of a complex system are struc-

tured such that they are independent entities which function concurrently in the presence of

specific relationships that govern the complex system. In MAS, an agent has several essential

characteristics: active–initiating actions, reactive–responding to external stimulus, and auton-

omy [33]. MAS has been shown as an effective simulation approach for analyzing complex

processes and interactions in civil infrastructure systems [22,34–36]. Many entities within an

infrastructure system (e.g., users, human-decision makers, and physical infrastructure) can be

viewed and modeled as an agent. Given that human actors and physical assets of an infrastruc-

ture system interact in unique ways at different levels, the MAS method enables capturing

such behaviors (i.e., internal dynamics, performance regime, and regime shifts) in a compre-

hensive framework to assess the long-term resilience of complex systems. Indeed, through

developing a MAS model of a water distribution network the proposed framework was tested

and used for long-term resilience assessment of this complex infrastructure system. The fol-

lowing section describes the conceptual framework of MAS created for capturing internal

dynamics and modeling the impact of external stressors on the performance regime of civil

infrastructure, in the context of an urban water distribution system.

Conceptual model for simulation

Water distribution infrastructure is a vital part of urban water supply systems, comprising of

expensive and often complex physical assets. When thought of as a complex system, it includes

physical pipeline networks delivering water to users, the municipality or private company as an

institution that manages the infrastructure and the organizations and individuals who consume

the water [37]. In water distribution networks, aging pipelines accelerate the effects produced

on the infrastructure by external stressors, leading to a faster decay in the performance of this

complex system as a whole. The three important drivers of dynamic interactions between agents

of a water distribution are shown in Fig 3 below. They include (i) physical degradation of the

infrastructure network and its components, which is a function of several factors such as aging,

erosion and environmental conditions (ii) renewal decision-making processes and adaptive

behavior of institutional actors [38] (iii) external stressors such as population change and fluctu-

ations in funding, which either exacerbate physical degradation of the system or affect the

response behavior/decision-making processes of its institutional actors.

Physical network degradation. The physical condition of an infrastructure asset denotes

its structural capacity and ability to withstand different types of stressors. On the other hand,

the functionality of infrastructure indicates its ability to serve its intended function at the

desired level of service. The approach to modeling the mechanisms of physical degradation

varies for different infrastructure (e.g., roadways vs. water systems) [39]. However, the model-

ing of infrastructure degradation essentially involves identifying indicators of physical and

functional conditions of an asset and then integrating them into a unified performance mea-

sure [40]. A unified performance measure quantifies the state of an infrastructure asset at any

given time based on variables such as design characteristics of the asset, asset’s age, ambient

Urban infrastructure system resilience assessment
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climate, and service load of the asset in that period [40]. Typical physical attributes of a water

distribution network are pipeline age, materials used, length of pipes, fluid pressure and flow

rate. The deterioration of physical assets in a network decreases the reliability of the infrastruc-

ture and affects the system as a whole in terms of maintenance and operation costs, rehabilita-

tion needs and exposure of actors in the system to risks. Therefore, a complex system model of

water distribution infrastructure needs to account for degradation and the effect that it has on

service life, condition states, future maintenance and rehabilitation expenses. The physical deg-

radation process of pipework is not clearly understood, with published literature citing several

factors such as age, material and network pressure as driving mechanisms, meaning, different

functions may be implemented to capture the process [41]. However, several deterioration

model studies have correlated age with condition thereby establishing that the process is age-

dependent [42].

From a system perspective, age-based deterioration can be used as a criterion to sort various

sections (lengths) of piping in the network into discrete age groups based on pre-defined age

ranges. As a consequence, aging sections would move from one age group to the next during

the process of deterioration. Thus, modeling degradation as a dynamic process would capture

long-term transformation effects in the network which would lend greater accuracy to the

assessment of the system’s resilience.

Renewal decision-making processes. In addition to physical network degradation,

human actors (users and administrative agencies) play an important role in the long-term

dynamics of water distribution infrastructure. For instance, expectation of and demands

placed by users determine the actual quantity of water supplied by the network, while munici-

palities and private institutions (administrative agencies) which manage the decision-making

processes related to renewal and restoration, affect the ability of the network to maintain the

required supply. Consider the following scenario which illustrates the interplay of human

Fig 3. Conceptual modeling framework for water distribution infrastructure systems.

https://doi.org/10.1371/journal.pone.0207674.g003
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behavior in the network. The demand placed on the network fluctuates with changes to the

user population. These fluctuations drive the price of water, which in turn affects the revenue

generated by administrative agencies. Since revenue drives renewal decision processes as well

as regular maintenance work, a direct consequence of this interplay is the degradation rate of

physical assets in the water distribution network.

In response to the various factors which affect the decision-making process, administrative

agencies often identify strategy targets to pursue when maintaining large infrastructure net-

works. A strategy target may be defined as that indicator of network performance (e.g. average

condition and break frequency) which is deemed acceptable by the administrative agency.

Thus, any strategy target is a combination of various factors in the behavior spectrum of its

human actors. The proposed model captures various behavioral factors affecting the decision-

making process such as capital and operational expenses, revenue, water price and capital

improvement funds, which are uniquely combined to create three heuristic renewal strategy

targets for the network: (i) controlling the average break frequency (ii) controlling average

condition of network and (iii) regular renewal based on age of pipes. When the agency adopts

a break-control strategy, the motive is to keep the frequency of breaks below a certain target

threshold. The annual pipe renewal process would be maintained until the desired average

annual break frequency over a five-year horizon is reached. If the target is average condition

control, the agency strives to maintain the condition of the network below the required thresh-

old through the renewal process. In either of these strategies, renewal costs exceeding the base

allotment are met through the activation of a surplus called the capital improvement fund.

This fund is allocated based on a 5-year budget from which 20% can be used annually towards

the renewal process if expected costs are exceeded. In the case of an age-based (regular)

renewal strategy, the agency performs maintenance work only on sections of the pipeline

which are older than 100 years (100 years is the average service life of water pipes as reported

by [43]). The capital improvement fund is unavailable when an age-based strategy target is

adopted. Therefore, when faced with a deficit, the agency performs renewal based on the

amount of available revenue.

It is apparent that renewal decision-making processes of the utility agency and other adap-

tive actions affect the dynamic variables of the infrastructure, resulting in different perfor-

mance regimes. Hence, a long-term resilience assessment of the water distribution

infrastructure system would be incomplete in their absence.

External stressors. The impact of stressors on civil infrastructure systems has been

highlighted in the previous sections. The impact of chronic stressors in particular, has greater

bearing when the long-term dynamics of a water distribution infrastructure are being investi-

gated. The proposed model framework considers the impact of population change and funding

fluctuations as external stressors. Accordingly, different levels of capital improvement fund

and various rates of population change are accounted for, to investigate its influence on the

dynamics of the infrastructure. Together, water demand fluctuations arising from population

change, and availability of funds for renewal, produce critical points which lead to shifts in per-

formance regimes of the water distribution network.

The following section presents the methodology and estimation procedures required to

parameterize the MAS model and develop its computational components for a numerical case

study of water distribution infrastructure system.

Computational simulation model

The MAS model in this study was created based on the conceptual logic and principals repre-

senting the real-world behaviors of an urban water distribution infrastructure system. The
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creation of a computation representation for all the input and output parameters of the con-

ceptual model entails constructing mathematical algorithms to match the conceptual logic rep-

resenting the behaviors of water distribution infrastructure. The computational representation

of the MAS model was developed in an object-oriented programming platform (i.e., AnyLogic

7). It integrates the institutional actors’ renewal decision-making processes with the physical

infrastructure performance in order to assess the long-term resilience behavior of water distri-

bution infrastructure system under different stressors (e.g., user population changes) and vari-

ous scenarios (e.g., renewal strategies). A numerical case of a water distribution network

composed of 180 miles of pipes with different materials and age categories was used to create

the computational simulation model that captures the dynamics of the system to examine its

resilience. The population in the service area of this case is 113,000 (60,000 households). This

MAS model of the water distribution infrastructure system includes three classes of agents:

water pipeline network, water users, and utility agency, each of which is simulated in the

model as an object (i.e., function, variable, or data structure that has memory in the computa-

tional model). Fig 4 depicts the Unified Modeling Language (UML) class diagram of the

computational MAS model and summarizes the information regarding the attributes and

functions implemented.

The relationships among agent classes and their attributes are based on the existing litera-

ture and empirical information. Fig 4 shows the attributes, functions, and relationships among

different agent classes. The following subsections represent the mathematical implementation

for the model agents and their attributes.

Pipeline network agent. The pipeline network agent includes different pipe classes with a

defined total length (in miles) divided into 5 condition (age) group states (i = 20,40,60,80,100).

For each group, which represents a certain condition level, there is a defined material (e.g., per-

centage of PVC and CIP type). Deterioration of pipes is modeled based on their age. As pipes

age, their condition group may change; every year, 5 percent of pipes in each condition group

(except condition group 100) moves to the next condition group. Another mechanism that

affects the transition of pipes into different condition group states is pipe renewal. Based on

the renewal decision-making outcomes of the agency agent (which is explained later), a certain

percentage of pipes is renewed and moves from condition group 100 to condition group 20,

annually. Fig 5 depicts the modeling deterioration mechanism of pipes in the model.

The aging of the pipes is also reflected in the changes in the percentage of materials for each

group. At the beginning of simulation, the model starts with a defined percentage of PVC and

Fig 4. Unified Modeling Language (UML) class diagram of the model.

https://doi.org/10.1371/journal.pone.0207674.g004
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CIP pipes for each group. As pipes age, these percentages change (because renewal is by PVC).

Based on the portion of pipe length in each condition group, the model computes the network

average condition (�C) using Eq 1 [43]:

�C ¼
P

iðli � iÞ
LN

ði ¼ 20; 40; 60; 80; 100Þ ð1Þ

where li and LN are the total length of pipes (mile) in condition group i and in the network,

respectively. The other attributes of the pipeline network agent include breakage, leakage, and

service reliability. Breakage is modeled using a stochastic process that determines the fre-

quency of pipe breaks during one year. The frequency of breaks for each mile of pipes is a

function of pipe’s material and age. The model uses a Poisson Process with a mean rate of

break (λ) (shown in Eq 2) to calculate the annual frequency of pipe breaks per each mile of

pipeline. In Eq 2, the Lambda (λ) represents the mean rate of break per mile per year [44]:

l ¼ N0:e
gði� 10Þ ð2Þ

where N0 is the initial number of breaks per mile per year in a new pipe, g is the growth rate

which is 0.07 for PVC and 0.078 for CIP pipes [45], and i is the pipe’s condition group. The

total number of breaks in the network per year (NB) would be sum of the breaks in each mile

of the entire network pipes. The annual water loss due to network breaks is calculated using Eq

3 [46]:

WLB ¼ 1440 � NB �
�F � d �

ffiffiffiffiffiffiffiffiffiffiffi
�P=70

q

ð3Þ

where, WLB is the annual water loss due to network breaks (gallon), NB is the total number of

annual breaks, �F is the network average flow rate (gallon per minute), d is the total duration of

disruption due to break (day), and �P is the network average pressure (psi). �F; �P, and d are

user-defined input parameters into the model.

Similarly, network leakage is determined as total water volume lost in the network, which is

a fraction of annual water demand. Leakage rate (LR), which is a unitless variable, depends on

network average condition (�C) and is calculated using Eq 4 [47]:

LR ¼ 0:00075 � e�Cð0:07PVCþ0:078CIPÞ ð4Þ

Fig 5. Modeling physical pipeline deterioration process.

https://doi.org/10.1371/journal.pone.0207674.g005
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where PVC and CIP are the fractions of pipeline network with each material type. Accordingly,

the annual water loss due to network leakage is determined by Eq 5:

WLL ¼ LR � D ð5Þ

where WLL and D denote the annual water loss due to network leakage (gallon) and the annual

water demand (gallon), respectively.

Considering the total water loss in the network due to both breakage and leakage, annual

water supply (S), which represents the delivered water to users (gallon per year), is calculated

using Eq 6:

S ¼ D � ðWLB þWLLÞ ð6Þ

In order to determine whether the supply of water transported by the pipes can meet the

given demand, a service reliability (SR) parameter is defined. This parameter represents the

extent to which the supplied water through the network met the demand. To determine SR, in

each year (t) the cumulative supply is divided by the cumulative demand and this gives the ser-

vice reliability until that year (SRt) based on Eq 7:

SRt ¼

Pt
j¼1
Sj

Pt
j¼1
Dj

ð7Þ

where Sj and Dj are delivered water and water demand (gallon) in year j, respectively.

Users agent. The agent of users represents population (P) and number of households (Nh)

consuming water from the given pipeline network, which determine the amount of water (gal-

lons) demanded from the network. In each year, water demand (Dt) is assumed to be the aver-

age indoor water demand (gallon/year) which is calculated using Eq 8 [48]:

Dt ¼ 87:4
Pt

Nh

� �0:69

� Nh � 365 ð8Þ

Population (Pt) is changed in each year based on the user-defined values of growth/decline

rate (r) and base population (P0). Population in each year (t) is computed based on Eq 9:

Pt ¼ P0 � e
t:r ð9Þ

Utility agency agent. The utility agency agent models the decision-making processes of

the agency. The renewal decision-making process is affected by revenue, operational and capi-

tal expenditures, and capital improvement fund. The initial water price (WP0) in the model is

user-defined ($/gallon). Water price (WPt) can hike annually over the simulation period with

a price hike rate (w) based on Eq 10. Accordingly, annual revenue (Revt) is determined based

on that year’s projected water demand (gallon/year) and water price ($/gallon) using Eq 11.

WPt ¼WP0 � ð1þ wÞt ð10Þ

Revt ¼ Dt �WPt ð11Þ

The annual operational expenditure (OpEx), which increases exponentially based on the

network average condition (�C), is determined using Eq 12 [47]:

OpEx ¼ UOpEx � LN � ½1þ ð1:4877eð0:0449�CÞÞ=100� ð12Þ
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where UOpEx is the unit cost (dollar per mile) for operating and maintaining the network

(which is $0.06 million per mile per year based on [43]).

The renewal rate depends on the availability of funding for the capital expenditures. The

available funding for the pipes renewal equals to the annual revenue minus the operational

expenditures. The required funding for capital expenditures of renewing pipes is determined

using Eq 13.

CapEx ¼ UCapEx � RL ð13Þ

where, UCapEx is the cost of rehabilitation of one mile of pipes with PVC ($1.2 million), and

RL is the length of pipes (mile) with age 100 or more (5% of pipes in condition group 100).

If the available funding for capital expenditures is less than the required capital expendi-

tures, the renewal length would be equal to the available funding divided by the unit cost of

rehabilitation.

For additional renewal and in order to keep the network performance in terms of break fre-

quency or average condition below the user-defined threshold (i.e., strategy target), the agency

would use a capital improvement fund (CIF) in addition to the annual revenues. The CIF
investment is made every five years, and thus the renewal due to CIF occurs over five years.

Hence, each year, up to twenty percent of CIF is invested for renewal. The annual CIF alloca-

tion would be utilized to implement more pipe renewals in the network after spending the rev-

enue as explained before (i.e., the excessive revenue wouldn’t be used to replenish CIF). In the

model, CIF ($ Million) is a user-defined input parameter. Fig 6 shows the action chart of

annual renewal process under the strategy of controlling network average condition. Based on

Fig 6. Action chart of renewal strategy for controlling network average condition.

https://doi.org/10.1371/journal.pone.0207674.g006
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this action chart, the model identifies to what extent (i.e., mile) the renewal process should be

conducted every year (as much as the CIF allows) in order for the network to reach the strategy

target (i.e., desired average condition). That is, similarly, for the strategy of break control, the

model determines to what extent the renewal process should be conducted in order for the net-

work to reach the desired number of breaks.

Verification and validation

Verification and validation techniques focus on verifying the data, rules, logic and computa-

tional algorithms [49]. They could be as simple as tracking variables at intermediate levels in

simulation and running the simulation with extreme values of constructs [50]. Typically,

attempts are made to replicate the outcomes seen in theory, failing which, systematic checks

are carried out to identify errors in the code. In this study, a gradual, systemic, and iterative

procedure was employed to conduct a thorough verification of the computational model. In

addition, the validation of the model was ensured through the use of grounded theories, logic

and equations utilized by previous studies in modeling the performance of water distribution

networks such as [42,51].

Various internal and external validation techniques (e.g., predictive and face validation)

were employed to verify the data, logic, and computational algorithms related to the simula-

tion model. First, the initial conditions and the ranges of the parameters were compared to the

existing empirical data to ensure the reliability of the parameters in the model [52]. For exam-

ple, the parameters related to the physical network, such as pipes’ age, length, and material,

were compared to the actual water distribution data related to another network (in Ontario,

Canada). Second, the behaviors of model entities (e.g., network average condition) were fol-

lowed so as to identify unusual model behaviors. Whenever an unusual behavior was observed,

the model logic was checked to ensure that the behavior was not due to unreasonable assump-

tions or imperfect logic. Third, extreme value analyses were performed, where the model was

run at different extreme conditions (for each component) to observe its response and verify its

functionality under these scenarios. Fourth, several random replications (more than one thou-

sand runs) of the model were compared to check for the consistency of the results [53]. Fifth,

predictive validation of the model was conducted. In predictive validation, the model is used

to predict the system’s behavior, and then the model’s forecast is compared with actual sys-

tem’s behavior obtained, for example, from data related to behaviors of an operational system

[54]. To conduct the predictive validation, the outputs related to each model specification

were compared to the existing data related to the water distribution networks in Fort Collins,

CO. For example, the simulated annual leakage and breakage rates of the network were com-

pared to the real values based on historical data. Accordingly, most of the observed errors per-

tained to incorrect implementation of the algorithm (the algorithm itself proved robust) in the

code and were rectified easily. Finally, a face validation was pursued by research team through

examining the simulated behaviors of the model (output results) to ensure that they are rea-

sonable for a real case. Following this, the quality of the model components was ensured for

completeness, coherence, consistency and correctness (4Cs) [38] based on the performance of

the model outputs.

Simulation experiments

After using different internal verification and external validation techniques to ensure the

model quality, the simulation model was used for building various experiments based on all

possible scenarios. Various simulation experiments were conducted through the change of

model input parameter values and logics in the computational model. The possible scenarios
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were established based on different combinations of the input variables (parameters) in the

model, shown in Table 1. The combinations of these scenarios reflect changes in population

growth rate, capital improvement fund level, water price hike, renewal strategy, and strategy

target. Since network break frequency is modeled as a stochastic Poisson process, one thou-

sand runs of Monte-Carlo experiments were conducted to determine the mean value of the

model output parameters (e.g., service reliability) under each specific scenario.

Two sets of simulation experiments were conducted to evaluate the long-term resilience of

the water distribution infrastructure system. First, the impacts of decision and physical infra-

structure attributes were examined in order to explore the significant attributes and their criti-

cal threshold value that could lead to the occurrence of tipping point behaviors. To this end,

time-series results related to the network average condition were visualized to investigate the

existence of non-linear increase or decline trends in the simulated long-term performance

measure. Accordingly, the threshold values related to decision and infrastructure attributes

(e.g., level of capital improvement funding and desired network average condition), at which

the steady state of infrastructure performance is disrupted were examined as tipping points.

The results related to regime shifts and tipping points were used to evaluate the long-term

resilience of the case study network under different adaptation strategy scenarios (i.e., funding

allocation and renewal strategies). Second, the impacts of population changes and funding

fluctuations on the network performance parameters and its ultimate effects on network ser-

vice reliability over the analysis period (i.e., 100 years) were investigated. To this end, the mean

values of the infrastructure service reliability were plotted against different values of popula-

tion change rate and capital improvement funding level to visually examine the occurrence of

shifts in the service reliability performance of the infrastructure system. Accordingly, the

occurrence of regime shifts and tipping points were detected and used to analyze the sensitivity

of long-term infrastructure system performance to external stressors.

Results

The MAS model of water distribution infrastructure system was used to extract, animate and

visualize the long-term regimes of different performance and condition measures in the case

study water distribution network. For instance, the simulation model was run for a scenario

of 1% population growth, 4% water price hike, and regular renewal strategy. Fig 7 shows a

screenshot of the graphical output dashboard of the simulation model under this scenario. As

can be seen in Fig 7, this dashboard displays the 100-year regimes of the network average con-

dition (age), the network leakage, the network annual breaks, and the system service reliability.

Also, age-material distribution of the pipes of the network in each year is observable in this

dashboard.

Table 1. Model input variables.

Input Variable Variable Value(s)

Base Population 113,000

Number of Households 60,000

Population Change Rate (%) -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2

Pipeline Renewal Strategy 1. Regular Renewal

2. Controlling Network Average Condition at 40, 45, and 50

3. Controlling Average Break Frequency at 20, and 25

Initial Water Price ($/gallon) 0.005

Water Price Hike Rate (%) 0, 4, 8

Capital Improvement Fund ($ Million) 0, 10, 15, 20, 25, 30

https://doi.org/10.1371/journal.pone.0207674.t001
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These visualized long-term performance regimes of the water distribution infrastructure

are utilized to detect the occurrence of regime shifts, visually (as discussed before, a visual

investigation of system performance parameter values under different scenarios could be used

to identify long-term performance regime shifts); and accordingly, the long-term resilience of

the system is evaluated. Thanks to the analysis results, two sets of theoretical constructs related

to complex systems approach to infrastructure resilience were examined: (i) the performance

regime of infrastructure is shaped by its internal dynamics; and (ii) the effective performance

of infrastructure is sensitive to external chronic stressors.

Internal dynamics and performance regime

The simulation model was used to examine how infrastructure dynamics shape performance

regimes. To this end, the effect of renewal strategies (as an element affecting infrastructure

dynamics) on the performance regime of the network was evaluated. Two renewal strategies

(i.e., condition and break control) were considered. For each renewal strategy, different

required performance targets and capital improvement funding levels were assessed. In total,

25 scenarios were simulated, where each scenario represents a unique state of infrastructure

dynamics in the case study. In this analysis, resilience is determined based on detection of

regime shifts in the stable state of performance in the system. Different performance measures

could be used for assessing possible regime shifts. In this set of analysis, the network average

condition was selected among the network performance measures for two reasons: first, the

network average condition collectively represents the physical state of the pipes in the network;

second, most of the network performance measures such as leakage, breakage, and service reli-

ability, either directly or indirectly, are affected by the network average condition. Accord-

ingly, resilience of the system is analyzed based on regime shifts in the long-term average

condition of the network.

Fig 8 shows network average conditions plotted over a 100-year horizon under 1% popula-

tion growth rate for all the scenarios. In Fig 8, each column represents a certain renewal strat-

egy and each row represents a certain level of capital improvement fund (CIF). As can see in

Fig 8, the state of infrastructure dynamics in each scenario leads to a certain regime in the per-

formance of the network. For example, under scenarios A1-A4, the behavior (regime) of the

Fig 7. Simulation model output dashboard: Visualized long-term performance regimes.

https://doi.org/10.1371/journal.pone.0207674.g007
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network performance follows a similar trend; however, under scenario A5, the dynamics of

the system changes (because of change in renewal strategy target), and hence the infrastructure

performance changes.

This change in the performance regime of infrastructure is a significant phenomenon and

can be characterized as a critical point or tipping point. Critical or tipping points represent val-

ues related to the internal dynamics of infrastructure or external stressor, in which a small

change in the parameter value leads to a significant change in the performance of infrastruc-

ture. For example, Fig 8 shows that under a fix capital improvement funding (e.g., $20 Mil-

lion), a change in the renewal strategy from condition control to break control will lead to a

shift in the performance regime of the network (compare scenarios C1-C3 with C4-C5).

Under each renewal strategy, there is a certain value of capital improvement funding that leads

the infrastructure system to a resilient behavior (i.e., the network meets the desired target with

a stable regime). This value, accordingly, is specified as a tipping or critical point. For instance,

under the renewal strategies of controlling average condition at 40, 45, and 50, any capital

improvement funding below $25 million, $20 million, and $15 million, respectively, wouldn’t

lead the system to a resilient behavior (compare D1 with C1, C2 with B2, and B3 with A3).

These results show that internal dynamics shape the performance regime of infrastructure and

how the changes in these internal dynamics affect the long-term performance regimes and

cause the regime shifts.

Fig 8. Modeling regimes of network average condition under various scenarios.

https://doi.org/10.1371/journal.pone.0207674.g008
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Impact of chronic stressors

The simulation model was also used to examine the impact of external chronic stressors on the

performance regime of the case study infrastructure. To this end, the effect of population

changes and funding fluctuations were considered. Various scenarios of population change

rates and levels of capital improvement fund were defined; and then for each scenario, one

thousand runs of Monte-Carlo experiments were implemented to determine the mean value

of the water distribution infrastructure’s service reliability. The service reliablity indicator

measures how reliable the network is in successfully delivering the demanded water to users.

Figs 9 and 10 show the long-term service reliability of the network over 100 years (i.e., t = 100

in Eq 7) under the defined scenarios. Fig 9 shows that, under regular renewal strategy, without

any changes in the water price, the service reliability of system drops significantly when the

system faces a decline in the population of the service area. However, if the water price grows

4% or greater annually, the sensitivity of the network performance to population change

decreases. Based on the results, implementing a plan of 4% water price hike annually, will lead

this water distribution infrastructure system to a resilient behavior against the population

decline over the 100-year horizon. However, a 4% annual price hike might be greater than the

inflation rate or the average rate of household income increase, which makes the implementa-

tion of this plan impossible [55].

Since for two other renewal strategies the extent of renewal processes prominently depends

on the capital improvement fund, the impact of this external stressor (funding fluctuations) on

the system effective performance was examined under different renewal scenarios. Fig 10

shows the sensitivity of five different scenarios of renewal strategy to the level of capital

improvement fund. It is seen that, renewal scenario of 3 and 4 have a roughly steady-state

trend within different levels of the capital improvement fund. However, for three other

renewal scenarios, there are two different phases over the trend of service reliability, which

indicates a critical point for capital funding level. Critical point means the threshold level of

Fig 9. Impact of population change (chronic stressor) on system service reliability.

https://doi.org/10.1371/journal.pone.0207674.g009
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funding, around which the service reliability of system significantly changes from the previous

phase. As shown in Fig 10, for the renewal scenarios 1 and 2, $20 Million and $15 Million are

the critical points of capital improvement fund, respectively. Hence, it seems for the case study

water distribution network, if strategically implemented, renewing the pipes at a rate to keep

the network average condition at 40 will lead the infrastructure system towards a more resil-

ient behavior over the long-term horizon. These example results show the sensitivity of infra-

structure system performance to external stressors and to what extent they affect the effective

performance indicator of infrastructure system.

Concluding remarks

This study was conducted with the objective of capturing internal dynamic behaviors which

influence the long-term resilience of civil infrastructure systems in the presence of external

stressors. The proposed framework characterizes the object of study (a water distribution net-

work) as a complex system and offers a multi-agent simulation (MAS) model to quantify its

components, dynamic processes, and external stressors acting on it. The output of the model

depicts the performance regime of the system over an extended horizon which enables the

detection of regime shifts to evaluate the long-term resilience.

Different performance regimes were observed in response to changes in the renewal deci-

sion-making process of the administrative agency, which is an expected outcome owing to the

fact that availability of funding is a function of revenue, which in turn depends on the demand

generated by the user population. The model also identified tipping points in the performance

regime when specific renewal strategy targets were adopted by the administrative agency. For

instance, when a renewal strategy of average condition controlling at 45 was adopted in con-

junction with a capital improvement fund of $15 Million, the infrastructure satisfied the target

by exhibiting long-term performance. Any decrease to the fund however, caused a regime shift

if the agency continued to maintain the same strategy target. These results show that the per-

formance regime of an infrastructure system is shaped by its internal dynamics, which rein-

forces the premise that changes in internal dynamics would lead to regime shifts in long-term

Fig 10. Impact of funding fluctuations on system service reliability.

https://doi.org/10.1371/journal.pone.0207674.g010
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behavior of the system. The model also adequately captured the long-term response of infra-

structure when subjected to external stressors. For instance, a positive correlation between

decline in user population and the long-term service reliability of the infrastructure was

observed. The model showed that a price hike of 4% annually would maintain the service reli-

ability of the case study water distribution infrastructure system in a stable state, despite

changes to its user population.

Contribution and significance

The contributions of this study are threefold: theoretical, computational, and practical contri-

butions. From theoretical perspective, this study proposed a complex system-based framework

for infrastructure resilience assessment through a better understanding of internal dynamics

and tipping point behaviors. Accordingly, it proves that (i) the performance regimes of infra-

structure are shaped by their internal dynamics and (ii) chronic stressors affect the effective

performance of infrastructure system. In terms of computational contribution, this study

developed a MAS model of a water distribution network that adequately captures and quanti-

fies the dynamic behaviors and performance regimes of the infrastructure system in the pres-

ence of external stressors. Practically speaking, through the quantifying the impacts of external

stressors, internal dynamics and performance regime shifts, researchers can predict the resil-

ience of civil infrastructure systems with greater accuracy. This in turn would help decision-

makers formulate policies (e.g., renewal strategy) that enhance the sustainability and resilience

of these systems.

Future studies

The simulation model presented in this study doesn’t include all the dynamic mechanisms

affecting the long-term resilience of a coupled human-infrastructure system. Depending on

the objective of a study, additional dynamics can be captured and modeled using the proposed

framework. For example, in the analysis shown in this paper, the influence of user behaviors

was not within the study objectives. Hence, in this model, the influence of consumer actors

was modeled exogenously with a prescribed rate of population growth and water demand.

Future studies can examine the dynamics of consumer behaviors in evaluating the long-term

resilience of infrastructure systems by evaluating individual consumer’s response to water

price [55] and other incentives (such as rebate) [36].
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