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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating

citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent

strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus

cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains

a mystery. In this review, we focus on the recent progress in genomic research on the patho-

gen, the interaction of host and CLas, and the influence of CLas infection on the transcripts,

proteins, and metabolism of the host. We have also focused on the identification of candi-

date genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the

end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity,

defense regulators, and genetic improvement for HLB tolerance/resistance in the future.

Introduction

Citrus is one of the most important fruit crops cultivated in at least 114 countries around the

world [1]. Citrus is usually prone to suffer from various diseases due to the lack of diversity

caused by asexual reproduction and propagation [2]. Huanglongbing (HLB) is the most devas-

tating citrus disease worldwide. Most commercial citrus cultivars are susceptible to HLB [3]

with varying degrees of symptoms [4–6]. HLB has been reported in most citrus producing

areas, such as Africa (e.g., Ethiopia and Reunion Island), the Americas (e.g., United States,

Mexico, Brazil, and Cuba), Oceania [7], and Asia (e.g., China, India, and Pakistan) [8], except

for the Mediterranean region and Australia [7]. HLB causes billion-dollar annual losses to the

citrus industry [3,9–12]. In China, HLB was first discovered in Chaoshan, Guangdong Prov-

ince [8]. In the USA, HLB was first reported in Florida in 2005 [13]. By 2018, most mature cit-

rus trees have been infected with the HLB pathogen in Florida, causing approximately 75%

reduction in citrus production compared with that in 2005 [14]. In Brazil, approximately 1

million citrus trees were removed within several months since HLB was first reported in São

Paulo in 2004 [15]. China, Brazil, the US, and many other citrus-growing countries have

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010071 December 9, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hu B, Rao MJ, Deng X, Pandey SS,

Hendrich C, Ding F, et al. (2021) Molecular

signatures between citrus and Candidatus

Liberibacter asiaticus. PLoS Pathog 17(12):

e1010071. https://doi.org/10.1371/journal.

ppat.1010071

Editor: Christoph Dehio, University of Basel,

SWITZERLAND

Published: December 9, 2021

Copyright: © 2021 Hu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Funding: This project was supported by the

Science and Technology Major Project of Guangxi

(Gui Ke AA18118046) Q.X., the National Key

Research and Development Program of China

(2018YFD1000100) Q.X., the National Natural

Science Foundation of China (31872052 and

31925034) and the Fundamental Research Funds

for the Central Universities Q.X. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-4911-9451
https://orcid.org/0000-0003-1786-9696
https://doi.org/10.1371/journal.ppat.1010071
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010071&domain=pdf&date_stamp=2021-12-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010071&domain=pdf&date_stamp=2021-12-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010071&domain=pdf&date_stamp=2021-12-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010071&domain=pdf&date_stamp=2021-12-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010071&domain=pdf&date_stamp=2021-12-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010071&domain=pdf&date_stamp=2021-12-09
https://doi.org/10.1371/journal.ppat.1010071
https://doi.org/10.1371/journal.ppat.1010071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


invested large amounts of research funding and organized cooperative research among scien-

tists in the fields of citrus, pathology, and entomology to prevent and control this epidemic dis-

ease. The combined efforts from global scientists and other stakeholders have made people

aware of the severity of the disease. The scientific community is exploring wild germplasms or

citrus relative species to improve the HLB resistance and tolerance of citrus cultivars.

Structural and functional genomics studies advance our understanding of the HLB patho-

system. Here, we reviewed the recent studies of CLas pathogen and the host plant. We have

briefly described the genomes of Ca. Liberibacter and explained how the bacterium induces

pathogenicity, multiplication, and influence on host genetic activities. We also deliberated the

host genetic, transcript, and proteomic changes in response to the bacterium. Moreover, we

have proposed some potential steps to minimize the CLas pathogenicity and the promising

areas for host genetic improvements and future opportunities to improve citrus tolerance for

HLB disease.

1. Symptoms and disease cycle of HLB

HLB is mainly associated with CLas, Candidatus Liberibacter africanus (CLaf), and Candidatus
Liberibacter americanus (CLam) [3], among which CLas is the most predominant pathogen in

most citrus-producing regions and has certain degrees of tolerance to heat, while CLaf and

CLam are heat sensitive [16]. CLaf is mainly distributed in Africa, and CLam was only reported

in Brazil [17]. The insect, psyllid (Diaphorina citri), is the most influential vector to transmit

the disease (Fig 1).

Due to the long latency period of HLB, the Ca. Liberibacter–infected citrus trees do not

show visible symptoms at the initial stage of infection. Moreover, the latency period is usually

several months long [3,11,18–21] but varies depending on citrus variety, tree age, health status,

and the environmental factors [9], which gives rise to asymptomatic infections to cause the

widespread of the disease. Citrus plants infected by Ca. Liberibacter usually display symptoms

of stunted growth, root decay, thinner canopy, yellow shoot, blotchy mottle leaves, upright and

Fig 1. Disease cycle of citrus HLB. CLas has a wide range of hosts, and almost all citrus varieties and relatives can be

infected. CLas is transmitted by ACPs. All citrus species can be the host of ACP [27,28]. After latent period (months),

the citrus trees show mild to severe HLB symptoms [20]. ACPAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and2:Pleaseverifythatallentriesarecorrect:, Asian citrus psyllid; HLB, Huanglongbing.

https://doi.org/10.1371/journal.ppat.1010071.g001
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small leaves, early flowering, and an overall tree decline [3,22–26]. Infected fruits are often

small and lopsided with uneven coloration [12]. Some mandarin varieties produce “red nose

fruit” or “red shoulder fruit” due to the orange-red color in the fruit shoulder while cyan and

dull color in other parts of the fruit. The disease cycle of HLB is represented in Fig 1.

2. Transient culture of Ca. Liberibacter

Ca. Liberibacter associated with HLB have not been cultured in artificial media [3,11]. The

uncultivable characteristic of the pathogen in vitro heavily hampers mechanistic studies of

pathogenicity. Hence, tremendous efforts have been made in the culture of Ca. Liberibacter.

CLas and actinobacteria (Propionibacterium acnes) was reported to coculture in artificial

media [29]. In vitro, CLas and P. acnes can survive multiple passages together. However, CLas

is unable to grow when cultured independently [29]. This suggests that P. acnes might facilitate

CLas growth. CLas can live for several weeks in vitro with the addition of commercial grape-

fruit juice to the medium; and it is noteworthy that some microbes (including CLas and other

bacteria) can be found in grapefruit seeds [30]. In addition, CLas was reported to be able to

grow for several months inside the biofilms formed by other bacteria [30]. CLas from Hamlin

sweet orange extract was cultured and maintained over 2 years along with microbiota inside a

membrane biofilm reactor supplemented with specific nutrients composition [31]. The 2 spe-

cies CLas and CLam were reported to grow on Liber A medium [32]. Recently, the CLas strain

Ishi-1 with phages [33] was cocultured with phloem-associated microbiota in vitro. The

growth of Ishi-1 was determined based on the identification of CLas population and increase

of CLas DNA amounts; however, there has been no direct evidence to support the phenome-

non of Ishi-1 growth [34]. CLso and CLas were able to be maintained in vivo in hairy root

explants for 28 and 120 days, respectively [35]. Similarly, the leaf discs with supplemented glu-

cose show an increase in CLas titer [36]. Thus, these studies suggested that other endogenous

microbes may facilitate CLas growth and colonization in citrus.

Liberibacter crescens (Lcr), a Liberibacter species newly identified from defoliated Babaco

mountain papaya (L. crescens strain BT-1), can be cultured, but its pathogenic activity has not

been reported so far [37]. A comparison of the Lcr genome with that of other Liberibacter spe-

cies showed that Lcr possesses more genes encoding thiamine and essential amino acids [37],

which might explain why Lcr is culturable whereas other Liberibacter species are not. Genomic

comparisons between CLas and Lcr revealed important information about the missed genes in

CLas genome that prohibit the growth of CLas in artificial media, which may not be easily

solved by adjustments of the compositions of media [38]. All pathogenic and unculturable Lib-

eribacter species have no functional glyoxalase pathway, but this pathway is present in Lcr,

which prevents both prokaryotes and eukaryotes from proteome glycation and methylglyoxal-

induced carbonyl stress [39]. When infecting either plants or psyllids, due to the lack of the

gloA gene in the genome, CLas can circumvent a toxic buildup of cellular methylglyoxal pool

by preventing sugar uptake and glycolysis [39]. Therefore, addition of specific methylglyoxal-

binding compounds to the culture medium [40] or transferring gloA gene from Lcr to CLas

has been suggested to be a possible way to culture CLas in axenic media [38]. In addition,

homologous genes of LpxXL and AcpXL, encoding a very long chain fatty acid (VLCFA)-mod-

ified lipid A, are present in Lcr (WP_015273388.1 and WP_015273393.1) but absent in all

pathogenic and unculturable Liberibacter species [37]. Mutation of the Lcr lpxL gene was lethal

[41], suggesting that the VLCFA-modified lipid A is essential for the axenic growth of patho-

genic Liberibacter species.

The mutualistic relationship between CLas and other bacteria suggests that CLas may

obtain essential nutrients and/or some active substances from other bacteria for its own
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growth [38]. The differences in genome between CLas and Lcr likely determine why Lcr is cul-

turable in artificial media while CLas is not. It remains to be determined whether it is possible

to make CLas culturable or to make Lcr pathogenic to investigate the HLB pathosystem.

3. Genomes of Candidatus Liberibacter species

Ca. Liberibacter is a phloem-colonizing gram-negative bacterium [3,16] belonging to the Rhi-

zobiaceae family of α-Proteobacteria [16]. The genetic diversity analysis of CLas on genes,

such as the β-operon gene loci, omp gene [42,43], and 16S rRNA [44,45] indicated the rapid

speciation occurred for Liberibacter species. Genome sequencing has been accomplished for 6

Liberibacter species, including CLas, CLaf, CLam, Ca. Liberibacter solanacearum (CLso), Lcr,

and Ca. Liberibacter europaeus (CLeu). These genomes range from 1.15 to 1.52 Mb in size

with low GC contents from 31.1% to 36.6%. The phylogenetic analysis of 36 Liberibacter spe-

cies and 8 Rhizobiale species suggested that they first evolved from a common ancestor into

nonpathogenic Lcr, followed by the evolution to pathogenic Ca. Liberibacter [46]. The genome

sequence of CLas suggests that it is an early-branching member of the Rhizobiaceae family

[47]. A comparative genomic analysis has revealed that the regulatory network of CLas is

rather simple, with only 11 transcription factors in the entire transcriptome [47]. Some geno-

mic features of Ca. Liberibacter species are summarized in Table 1 and S1 Table.

CLso comprises 6 haplotypes, including haplotype A-E [48,49] and U [50]. Haplotype A

and B are capable of causing diseases in solanaceous plants such as the Zebra chip disease of

potato, and haplotype C, D, and E are associated with diseases of apiaceous plants [51]. The

CLso haplotype U was found in the psyllid Trioza urticaeAU : Pleasenotethatthegenera“Trioza”and“Urtica”havebeenexpandedforspecies“urticae”and“dioica:”Pleaseconfirmthatthesearecorrect:and its host plant Urtica dioica, and

called “U” after Urtica [50]. Ca. L. brunswickensis (CLbr) was first identified in the Australian

eggplant psyllid (Acizzia solanicola), and its genomic sequence remains not publicly available

Table 1. The genomic features of sequenced Ca. Liberibacter species.

Species Strain BioProject Area Level Size (Mb) GC (%) Gene Pseudo-gene Reference

CLas

A4

gxpsy

psy62

JXGC

Ishi-1

AHCA1

JRPAMB1

CoFLP

TaiYZ2

PRJNA239529

PRJNA158395

PRJNA29835

PRJNA376787

PRJDB1752

PRJNA470611

PRJNA544530

PRJNA638026

PRJNA552755

Guangdong, China

Guangxi, China

Florida, USA

California, USA

Ishigaki (Island), Japan

California, USA

Florida, USA

La Guajira, Colombia

Thailand

Complete

Complete

Complete

Complete

Complete

Chromosome

Complete

Complete

Complete

1.23025

1.26824

1.22733

1.22516

1.19085

1.23375

1.23717

1.23164

1.23062

36.4

36.6

36.5

36.4

36.3

36.6

36.4

36.5

36.4

1125

1159

1120

1113

1076

1107

1113

1104

1104

28

28

37

24

23

39

21

27

23

[53]

[54]

[47]

[55]

[56]

[57]

[58]

[59]

[46]

CLso CLso-ZC1

LsoNZ1

FIN114

HenneA

RSTM

FIN111

ISR100

R1

PRJNA39273

PRJNA243548

PRJNA312061

PRJNA259360

PRJNA298929

PRJNA312579

PRJNA427973

PRJNA251993

Texas, USA

Northland, New Zealand

south-west Finland

Texas, USA

California, USA

south-west Finland

Israel

California, USA

Complete

Contig

Contig

Contig

Contig

Contig

Contig

Contig

1.25828

1.31242

1.24512

1.21136

1.28679

1.2024

1.30369

1.20426

35.2

35.3

35.2

34.9

35.1

34.9

35

35.3

1145

1203

1132

1102

1181

1091

1210

1111

68

53

59

158

63

45

65

112

[60]

[61]

[51]

[61]

[62]

[51]

[63]

[64]

CLam PW_SP

Sao Paulo

PRJNA185961

PRJNA181147

São Paulo State, Brazil

São Paulo State, Brazil

Contig

Complete

1.1952

1.17607

31.1

31.1

1007

1028

26

26

[65]

[66]

CLaf PTSAPSY PRJNA185151 South Africa Complete 1.19 34.5 981 54 [67]

CLeu ASNZ1 PRJNA243548 Canterbury, New Zealand Contig 1.33 33.5 1179 35 [68]

Lcr BT-0

BT-1

PRJNA269727

PRJNA171392

Puerto Rico

Puerto Rico

Complete

Complete

1.52212

1.50466

35.4

35.4

1376

1359

17

65

[37]

[37]

The genomes of CLbr and CLso haplotype U are not available when this review is written.

https://doi.org/10.1371/journal.ppat.1010071.t001
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[52]. The publication of more genome sequences of Liberibacter species will promote more

robust analyses. These genome sequences will enable the genomic comparison among various

Liberibacter species, which can facilitate a better understanding of the lifestyle of Ca. Liberi-

bacter species and the interactions between CLas and citrus plants.

4. Genes affecting CLas growth and pathogenicity

The understanding of pathogenicity of HLB bacteria has advanced much with the availability

of Ca. Liberibacter genomes and rapid development of comparative genomics and functional

genomics. We summarized advances in nutritional metabolism, prophage, and secretion sys-

tems below.

4.1. Metabolic genes

Metabolic model reconstruction analysis of 6 CLas strains indicated that most of the common

essential genes are involved in purine and pyrimidine metabolism, pantothenate and CoA bio-

synthesis, fatty acid metabolism, and gluconeogenesis [69]. CLas has the ability to metabolize

sugars such as glucose, fructose, and xylulose but not mannose, galactose, rhamnose, or cellu-

lose [47]. The concentrations of fructose and glucose are very low in the phloem sap [70,71];

therefore, consumption of fructose by CLas during infection may initiate a shift in the host

metabolite distribution [47]. Metabolomic studies have suggested broad changes in sugar con-

centrations in CLas-infected tissues including depletions of glucose and fructose in the leaves

and symptomatic fruits of multiple citrus varieties (at 8 months post inoculation) [72–74].

However, in some of these studies, sugar levels changed significantly at different time points

during infection [72,73]. Dissecting changes directly caused by CLas sugar consumption versus

effects of the overall disruption of host biology would require further study. CLas disrupts the

host cellular metabolic functions by importing multiple metabolites from host for its growth

and development that leads to severe disease symptoms.

The reduced genome size of CLas indicates that the pathogen heavily depends on the host

nutrition [10]. The presence of large number of transporter proteins in CLas might play a criti-

cal role in providing CLas with necessary nutrients and cause a metabolic imbalance in citrus

[10]. CLas contains 14 ABC transporter-related proteins that help the bacterium import

metabolites (amino acid and phosphates) and enzyme cofactors (choline, thiamine, iron, man-

ganese, and zinc) from host [75] and resist organic solvent, lipid-like drugs and heavy metal;

maintain the composition of the outer membrane; and secrete virulence factors [10]. The

phosphatidylcholine (PC) (synthesized by Phospholipid N-methyltransferase and phosphati-

dylcholine) is associated with the fluidity, permeability, and potential of bacterial membranes

[76], and the proteins for the 2 pathways of PC biosynthesis can be found in Lcr
(WP_015272535.1 and WP_015272978.1, respectively), while CLas lacks the ability to synthe-

size PC. However, CLas encodes a predicted ABC transporter system for choline (CLIBA-
SIA_01125) and a phosphatidylcholine synthase (CLIBASIA_02325) [75], suggesting that it is

capable of utilizing extracellular choline.

4.2. Secretion-related genes

CLas lacks type III and type IV secretion systems and some related enzymes involved in extra-

cellular living [47]. The genes related to cell motility such as those encoding flagellin and type

IV pili account for as much as 4.5% of the CLas genome [47]. All the genes associated with

type I secretion system required for both toxin effector secretion and multidrug efflux are pres-

ent in the CLas genome [47]. The Sec pathway is involved in the translocation of proteins from

the cytoplasm into the periplasmic space [77,78]. Interestingly, a complete Sec pathway and
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type I section system are encoded by CLas [47]. The type I secretion pathways have 2 primary

functions. The first one is defensive, protecting the bacterium against toxic environmental

chemicals, involving multidrug efflux, antibiotics produced by other bacteria, and guarding

against the phytoalexins produced by hosts [47]. Multidrug efflux has been demonstrated as an

important mechanism for bacterial survival in members of the following genera Xanthomonas,
Erwinia, Bradyrhizobium, Agrobacterium, and Rhizobium [79]. The second one is offensive,

allowing the secretion of a number of offensive effectors and degradative enzymes, some of

which are involved in plant or animal pathogenicity and others are antibiotics [47]. Offensive

effectors and enzymes known to be secreted via the type I system include a relatively large

number of protein toxins, including RTX hemolysins and bacteriocins and a limited number

of hydrolases (esterases, proteases, glucanases, phosphatases, and nucleases) [80,81]. The type I

secretion systems in gram-negative bacteria are typically composed of 3 protein components,

TolC, which traverses both the outer membrane and periplasm, and 2 others, membrane

fusion protein, MFP, and ATP-binding cassette, ABC, which are localized in the inner mem-

brane [81,82]. Generally, the phytopathogenic bacteria possess multiple copies of TolC; how-

ever, CLas genome possesses only 1 copy of TolC [47]. Similarly, the Xylella genome also

possesses 1 copy of TolC [79]. Knockout of TolC gene makes Xylella totally nonpathogenic and

highly sensitive to phytoalexins [79], raising the possibility of a gene-engineered or chemical

approach to target the single TolC gene of CLas.

4.3. Prophage

Three complete and 1 remnant (Type 4) prophages have been found in CLas genomes, includ-

ing Type 1 (SC1), Type 2 (SC2) [83,84], Type 3 (P-JXGC-3) [55], and Type 4 [46]. SC1 encodes

a putative holin and endolysin [83] that is localized outside the predicted prophage region,

showing the potential for lytic and lysogenic change. SC2 encodes putative adhesin and peroxi-

dase genes, which may be involved in lysogenic conversion [84]. The variants of SC1 and SC2,

named P-PA19-1 and P-PA19-2, respectively, were found in CLas strain PA19 from Pakistan

[85]. The results of expression (SC1_gp100, SC1_gp025, SC1_gp110, and SC1_gp095) and

transformation with the fusion of the holin promoter region and a uidA reporter in Lcr have

suggested that the activation of CLas prophage may reduce the host plant range and culturabil-

ity of CLas [83]. The lytic burst of CLas in living phloem cells might trigger the death of the

phloem cells [10], which seems to explain the phenomenon that no CLas is observed in

infected citrus leaf midribs during the advanced stages of HLB [4]. A study has revealed that

small Wolbachia protein may play a role as the repressor of CLas prophages, but the lytic cycle

was still found in citrus psyllid [86]. Type 3 prophage of CLas has been identified to be incapa-

ble of reproduction via lytic cycle [55]. Type 3 prophage of CLas has 50% unique genes com-

pared with SC1 and SC2 prophages and carries a restriction–modification system, which was

speculated to play a role against Type 1 prophage/phage invasion [55]. Type 4 prophages have

been found in CLas, CLam, CLaf, and CLeu, and they differ in Las isolates with the presence or

absence of other phages [33,46]. CLam genome has 2 prophages, SP1 and SP2, whereas CLaf

genome has only one [46,66]. CLeu and CLso both harbor 2 prophages [46]. In addition, 2

homologous genes lasAI and lasAII (previously named as hyvI and hyvII) were discovered in

CLas Psy62 genome, which might trigger high levels of genetic variability in plant immune

response [87]. The prophage region in CLas genome psy62 encodes a putative protein (123

amino acids) named as CLasP235, and overexpression of CLasP235 in Carrizo (Citrus sinensis
× Poncirus trifoliata) was reported to result in HLB-like symptoms and chlorosis. In addition,

grapefruit and lemon chlorotic leaves infected by CLas also showed high expression of the

CLasP235 gene [88].
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5. The interaction between CLas and host plant

5.1. PTI and ETI

Pathogen-associated molecular patterns (PAMPs) are found in or associated with disease-

causing microorganisms, which mainly include bacterial DNA, lipoteichoic acids in the cell

wall, and lipopolysaccharides [89–91]. The plant innate immunity system is core for the inter-

action between microbes and plant hosts [90]. This system constitutes at least 2 layers. PAMPAU : PleaseconfirmthattheeditstothesentencePAMP � triggeredimmunityðPTIÞisthefirstlayerofthe:::didnotaltertheintendedthoughtofthesentence:-

triggered immunity (PTI) is one of the first layer of the immunity that can recognize PAMPs

and activate defense signaling or gene expression, which reinforces the physical barriers

against the pathogen attack, such as callose reinforcing the cell wall at sites of infection, and

production of reactive oxygen species [90–92]. The second layer is effector-triggered immunity

(ETI). ETI commonly deploys disease resistance (R) proteins for effective counteraction

against effectors [90]. PTI is mediated by pattern recognition receptors (PRRs) that recognize

PAMPs, whereas ETI is mediated by resistance (R) proteins that recognize pathogen effectors

[90,91]. Additionally, in citrus HLB disease, the role of ETI and PTI immunity systems is not

well defined. The flagellin-encoding gene flaA (CLIBASIA_02090) [93], which was identified

as a PAMP in CLas, may play a crucial role in triggering host plant resistance to the infection

of CLas [89]. Type IV pili can induce inflammatory responses in animal hosts and cell death in

nonhost plant upon infection by pathogenic bacteria, respectively [94,95]. Ca. Liberibacter

spp. also encode the complete set of genes required for Tad type IV pili synthesis and assembly

[96]. The in planta expression of type IV pili and their interaction with host plants need further

investigation. Few PAMPs in CLas have been reported, and the mechanism of CLas pathogen-

esis remains elusive.

5.2. Virulence factors of CLas

Investigation of the effectors and finding or identification of some binding proteins in citrus

may provide an alternative and more sustainable way to block the invasion of CLas. Pathogen

recognition by the plant immune system leads to defense responses that are often accompanied

by a form of regulated cell death known as the hypersensitive response (HR) [97]. HR can be

uncoupled from local defense responses at the site of infection, and its role in immunity may

activate systemic responses in distal parts of the organism [97]. A large-scale screen of the viru-

lence factors of CLas using Tobacco mosaic virus (TMV) and Nicotiana benthamiana reveals

that CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could trigger

cell death, and symptoms of stunting are observed in the plants expressing CLIBASIA_00470
and CLIBASIA_04025 [98]. Callose deposition is an important plant multifaceted defense

mechanism (controlled by distinct signaling pathways) that acts to reinforce plant cell wall at

the site of pathogen attack [99]. The mature protein of CLIBASIA_00460 (m460) is localized in

multiple cellular compartments including nucleus at 25˚C, but nuclear accumulation of m460

is dramatically decreased at 32˚C [100]. NLS-m460, containing the SV40 nuclear localization

sequence (NLS) at the N-terminus to promote nuclear import of m460, triggers chlorosis and

necrosis in the local leaves and severe necrosis in the systemic leaves in N. benthamiana [100].

The overexpression of CLIBASIA_03875 [101] and CLIBASIA_04405 [102] mature protein

via a Potato virus X (PVX)-based expression vector in N. benthamiana suppressed pro-

grammed cell death (PCD) and H2O2 accumulation triggered by the proapoptotic mouse pro-

tein BAX and the Phytophthora infestans elicitin INF1 and contributed to the symptoms of

dwarfing, leaf deformation, and mosaics. Simultaneously, CLIBASIA_03875 was the first PCD

suppressor identified from CLas [101]. Approximately 27 nonclassically secreted proteins

(ncSecPs) were identified from CLas genome, using the SecretomeP program coupled with an
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Escherichia coli alkaline phosphatase assay [103]. Among which, 10 of these were dramatically

more highly expressed in citrus than in psyllid and particularly suppressed HR-based cell

death and H2O2 accumulation in N. benthamiana [103].

5.3. Interaction of CLas and citrus

CLas5315mp (mature protein), which is encoded by CLIBASIA_05315, is localized in the chlo-

roplast and induces cell death in N. benthamiana and callose deposition in plant cells [104].

CLasΔ5315 with the removal of the chloroplast transit peptide from the CLas5315mp induces

excessive starch accumulation in N. benthamiana [105]. Additionally, CLIBASIA_05315 might

be the most promising gene that can be used as a marker for early detection of HLB, as it is

expressed in asymptomatic tissues [106]. In a separate study, the effector Sec-delivered effector

1 (SDE1) encoded by CLIBASIA_05315 directly interacts with papain-like cysteine proteases

(PLCPs) and inhibits protease activity [107]. Meanwhile, SDE1 interacts with DDX3 and

down-regulates the expression of DDX3 in HLB-affected yellowing and mottled leaves of cit-

rus, causing HLB typical chlorosis symptoms [108], which, however, was not observed by

Clark and colleagues [107]. Severe yellowing and senescence signatures were observed in the

mature leaves of SDE1-expressing Arabidopsis thaliana lines [109]. Moreover, SDE1-expres-

sing Duncan grapefruit exhibited hypersusceptibility to CLas [109]. The expression of PR

genes (PR1, PR3, and PR5) and PTI marker genes (FRK1, GST1, and WRKY22) was signifi-

cantly down-regulated after XccAw inoculation in the SDE15-transgenic compared to that in

the nontransgenic Duncan grapefruit [110]. SDE15 interacts with citrus protein CsACD2

(accelerated cell death 2), which encodes a chlorophyll catabolite reductase that represses PCD

in plants [111]. The virulence factor SDE15 might be a broad-spectrum suppressor of plant

immunity, which suppresses the HR induced by Xanthomonas citri subsp. citri (Xcc) in the

transgenic Duncan grapefruit of SDE15. SDE15 also suppresses the HR triggered by the

AvrBsT (Xanthomonas vesicatoria effector protein) in N. benthamiana [110].

6. Host responses to CLas infection

Different responses are associated with different citrus germplasms when infected by CLas,

including pathogen titers, the severity degree of symptoms, and the time of symptom appears

[6]. Generally, citrus germplasm is considered as HLB tolerant when the pathogen is detectable

but with low titers and the plant exhibits no or slight symptoms, which do not affect normal

development. Susceptible species usually have high pathogen titers and typical disease symp-

toms [5,6]. The rapid advancement of genomic approaches facilitated the understanding of

how Ca. Liberibacter infection affects transcriptome [112–120], proteome [121,122], and

metabolome [123–125] in host plant.

6.1. Transcriptional change

Plants species possess a different set of genes that respond to a variety of abiotic and biotic

stresses and provide local or systemic defense responses against pathogens [126]. These

defense genes usually belong to transcriptional factors, pathogenesis-related (PR), protease

inhibitors (PIs) gene families, and some are related to secondary metabolites to produce anti-

microbial compounds [127–129]. The salicylic acid (SAAU : Pleasenotethatsalicylicacidhasbeenaddedasthefulldefinitionof SAatitsfirstmentioninthesentenceThesalicylicacidðSAÞbiosynthesisandinductionofdifferentdefense:::Pleaseconfirmthatthisiscorrect:) biosynthesis and induction of differ-

ent defense responses (WRKY, PR, and PI) vary from species to species, and it also depends on

the type and intensity of pathogen [130,131]. Interestingly, several transcriptomic studies on

HLB-infected citrus revealed that citrus species express multiple genes that belong to WRKY
(WRKY33, WRKY40, WRKY41, WRKY46, and WRKY70), PR, and secondary metabolic cate-

gories in response to CLas invasion [132–134]. Induced expression of PR1 gene is a marker for
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SA-mediated defense signaling pathway [135]. Additionally, an increased level of jasmonic

acid and SA was observed after CLas infection [136]. Analysis of biotic response-associated

DEGs from asymptomatic and symptomatic stages of the relatively tolerant Mexican lime (Cit-
rus aurantifolia) suggests the role of secondary metabolism, cell wall, signaling, transcription

factors, and redox reactions in HLB tolerance [137]. The wide-range gene expression analyses

of C. sinensis, Citrus sunki, P. trifoliata, and contrasting hybrids representing susceptible, toler-

ant, and resistant varieties against HLB suggest that the down-regulation of gibberellin synthe-

sis, induction of cell wall strengthening, and enhanced expression of WRKY transcription

factors are associated with tolerance against CLas infection [138,139]. The changes in gene

expression related to photosynthesis, carbohydrate metabolism, glucose transportation, and

starch synthesis/degradation are presumed to lead to starch accumulation after CLas infection

[140–142]. In addition, those genes associated with cell defense and cell wall were also differen-

tially expressed after CLas infection [23,120,143]. Some regulators on transcriptional or post-

transcriptional levels were also targeted. WRKY40, NAC domain, and MYB15 may play

important roles in regulating carbohydrate metabolism and defense response in citrus–CLas

interactions [132]. miR399 is induced by the infection of CLas [132], which responds to phos-

phorus starvation in other plant species [144]. The phosphorus content of CLas-infected citrus

was 35% lower than that of the healthy control. Application of phosphorus oxyanion solutions

to HLB-infected citrus was reported to alleviate the symptom severity and improve fruit pro-

duction [144], indicating that HLB may result in phosphorus deficiency. Some HLB-respon-

sive miRNAs, such as csi-miR167, are associated with potassium (K) transport. In addition, K-

deficient citrus plants are more prone to CLas invasion than those plants with abundant K sup-

ply [132,144].

The developmental stages of the leaves of host plants are crucial for the CLas pathosystem

[21,145–148]. Young leaves at advanced developmental stages display enhanced constitutive

expression of immunity-related genes, which may provide additional tolerance to bacterial

infections [149]. Host responses against CLas infections vary in different tissues of same plants.

TheAU : PleaseconfirmthattheeditstothesentenceThevirulence; stressresponse; andantimicrobialsecondarymetabolites � associatedgenes:::didnotaltertheintendedthoughtofthesentence:virulence, stress response, and antimicrobial secondary metabolites-associated genes show

enhanced expression in midrib tissues from the leaves compared to the fruit piths in HLB-pos-

itive Citrus reticulata Blanco “Shatangju” [150]. Similarly, the temporal host response may

vary in citrus against CLas infestation. The signaling, defense, transcription factors, hormone,

and photosynthesis pathways are differentially expressed even at day 1, and DEG bursts occur

for genes related to secondary metabolites, defense, photosynthesis, and glycolytic and ATP

biosynthetic pathways at 5-day post-ACP-mediated CLas inoculation [151].

6.2. Protein change

A wide range of alterations were observed at the proteomic level such as suppression of heat

shock proteins and metabolism- and photosynthesis-related proteins, which may facilitate

CLas invasion. Down-regulation of some key proteins such as photosynthesis- and metabo-

lism-related proteins and photosystem II reaction PSB28 protein [152] may cause chlorosis

and host environments favorable for HLB progression. Eventually, pathways involved in the

photosystem I and II light reactions are suppressed throughout the CLas infection process

[113]. Symptomatic fruit of Valencia sweet orange exhibit less accumulation of proteins

involved in amino acid biosynthesis, glycolysis, and tricarboxylic acid (TCA) cycle [153].

Phloem proteome analysis of Washington navel orange, an HLB-susceptible sweet orange vari-

ety, shows decreased expression of proteins of plant metabolism and translation but enhanced

expression of defense-related proteins, including proteases, PIs, and peroxidases [154]. Several

proteins involved in photosynthesis are less accumulated and are proposed to be responsible
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for the reduction of Ca, Mg, Fe, Zn, Mn, and Cu contents in infected grapefruit leaves [155–

157], which may explain the nutrient deficiency of HLB-infected trees. In contrast, the proteins

involved in cell wall modification are more accumulated in HLB tolerant citrus species

[151,152], such as expansin β-3.1, pectinesterase, CESA8, and expansin8 [152]. Mexican lime

expressing β-defensin 2 and/or lysozyme showed lower bacterial titers and less severe HLB-

like symptoms as well as increased photosynthesis compared with the control trees [158]. In

the young leaves of citrus, CSLG2, UGE5, expansin4, RGP2, and glycoside hydrolase family 28

proteins are more accumulated by CLas. However, in tolerant citrus germplasms, thylakoid

luminal 20 kDa protein, chlorophyll binding, oxygen-evolving complex-related, and 2 ferre-

doxin-related proteins are suppressed [152]. The proteins associated with the detoxification of

oxidative stress (nitrilases and glutathione S-transferases) and cell wall and PR proteins are

activated, demonstrating their potential to boost HLB tolerance in citrus [121,122].

6.3. Metabolite changes

A large number of primary and secondary metabolites are involved in maintaining the normal

functions and immune response of plants [159]. CLas unbalance the primary metabolism of

HLB susceptible varieties, and the host fails to activate its secondary defense system, whereas

in HLB-tolerant varieties, the primary metabolism is balanced, which can coordinate with

other defense pathways to respond to CLas invasion [160]. Generally, the tolerant varieties

have high levels of flavonoids (such as flavonols and flavones) with strong antibacterial proper-

ties and amino acid precursors to defensive phenolic compounds (phenylalanine, tryptophan,

and tyrosine), whereas susceptible varieties lack these compounds [124]. Probably, high con-

centrations of flavonoids [161,162] and volatile compounds in the tolerant varieties may con-

tribute to their tolerance against Ca. Liberibacter [124]. Curiously, some fatty acids associated

with defense were strongly depleted in infected sweet orange leaves [163]. Whether these fatty

acids are depleted due to host defense responses or are offensively destroyed by CLas is

unclear, as does the role of these fatty acids in HLB progression. Modification of the metabolic

pathways for higher contents of antibacterial metabolites will be an alternative strategy to

enhance HLB tolerance of the susceptible citrus germplasm.

7. Improvements for HLB tolerance

Different approaches have been investigated with the aim to improve citrus tolerance against

HLB. A synthetic, high-throughput screening system is performed to identify compounds that

inhibit activity of CLas transcription activators LdtR, RpoH, and VisNR [164]. Among 120,000

compounds screened from this system, 5 compounds are validated to have inhibitory effects

on one or several of the CLas transcriptional activators [164]. A study also showed that natu-

rally occurring flavonoids had inhibitory effects on YbeY activity in CLas [165]. The in silico

and experimental analysis of genes overexpressed during CLas infection reveals that 8 enzymes

including DTMP kinase, inorganic diphosphatase, coproporphyrinogen oxidase, protopor-

phyrinogen oxidase, phosphoglycerate mutase, dihydroorotic acid, ribonucleoside-diphos-

phate reductase (UDP) (glutaredoxin), and glutaredoxin reductase’s inhibition could reduce

CLas pathogenicity, thus providing potential genetic targets in the CLas strains [69].

Given the importance of Sec translocon and its substrates, inhibition of the Sec secretion

system by antimicrobial agents with suitable targets such as SecA can suppress the progression

of HLB [166]. A recent study identified a stable antimicrobial peptide (SAMP) from Microci-
trus that can inhibit CLas infection, which effectively reduced disease symptoms in HLB-posi-

tive trees but also induced innate immunity [167]. Appropriate application of antimicrobial
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agents against CLas may be an alternative approach to boost HLB tolerance by activating the

expression of some proteins involved in radical ion detoxification [151].

Genetic and genomic studies focused on HLB tolerance species also provided candidate

genes for disease resistance improvement. P. trifoliata and its hybrids, US-942 (C. reticulata
“Sunki” × P. trifoliata) [169] and US-897 (C. reticulata × P. trifoliata) [169,170], are identified

as tolerance germplasm [6]. QTL analysis conducted on HLB-tolerant Poncirus, and its inter-

generic F1 population with sweet orange resulted in 3 repeatable QTL clusters (linkage groups

LG-t6, LG-t8, and LG-t9). Most of detected QTLs could explain 18% to 30% of phenotypic var-

iance [171]. The comparative analysis of small RNA profiles and target gene expression

between an HLB-tolerant citrus hybrid (P. trifoliata × C. reticulata) and a susceptible citrus

variety identified a panel of candidate defense regulators for plant immune responses against

HLB, such as the positive regulator BRCA1-associated protein and the negative regulator vas-

cular-associated death protein [172]. CLas infection and D. citri infestation noticeably increase

endogenous melatonin levels in citrus leaves and up-regulate the expression of its biosynthetic

genes (CsTDC, CsT5H, CsSNAT, CsASMT, and CsCOMT) [173]. Importantly, melatonin sup-

plementation enhances the endogenous contents of the stress-associated phytohormones

(salicylates, auxins, trans-jasmonic acid, and abscisic acid) and the transcript levels of their bio-

synthetic genes and diminishes the CLas titer in the infected leaves, which suggests that mela-

tonin might play an antibacterial role against CLas [173]. SA may play a role in citrus defense

against CLas, as it is commonly found to be increased in infected tissue [112,113], and artifi-

cially increasing SA levels can increase tolerance to HLB [114,115]. Perhaps because of this

important defensive role, CLas encodes a salicylic hydrolase (SahA) presumably to break down

host SA [10,116]. Based on the summarization of this review, the responses of molecular path-

ways of HLB-tolerant and HLB-susceptible citrus species to CLas infection are proposed in

Fig 2.

Genome editing such as CRISPR-Cas technologies can be used for genetic manipulation,

which provides an unprecedented opportunity to improve HLB tolerance [7]. Additionally,

multiple genes can be edited by means of multiplex CRISPR with one single insertion [125].

Therefore, editing and improvement of defense regulators, genes encoding antibacterial com-

pounds, or genes essential for the interaction between CLas and host species may constitute

good strategies to enhance HLB tolerance [124]. For example, the citrus PLCPs genes could be

used for such purpose. PLCPs, which encode immune-related cysteine proteases, were

reported to be targeted and inhibited by CLas. Hence, it is necessary to characterize citrus

PLCPs gene function in citrus. Moreover, identification of HLB-susceptible genes may also

be useful. To date, 9 genomes of citrus have been published and are publicly available

(http://citrus.hzau.edu.cn/; https://phytozome-next.jgi.doe.gov/), which include varieties with

different degrees of tolerance to HLB disease. Besides, public availability of HLB-tolerant and

HLB-sensitive citrus germplasm will facilitate the mining of the susceptible genes to be edited

with the latest genome engineering tools.

8. Future prospects

Currently, HLB management strategy involves psyllid control, removal of HLB-diseased trees,

and replantation with HLB-free trees for citrus-producing regions with low HLB incidence

(Region-wide comprehensive implementation of rouging infected trees, tree replacement, and

insecticide applications successfully controls citrus HLB). The strategy has positive conse-

quences in controlling of HLB spreading; however, breeding of HLB-resistant or highly toler-

ant cultivars is a fundamental way to solve this devastating disease. Researchers from all over

the world have made tremendous efforts to study the HLB pathosystem, and great progress
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has been made in the exploration of HLB-tolerant genetic resources, the pathogenic mecha-

nism of CLas, and the behavior of psyllid. In the next 5 to 10 years, gene mining, especially for

the pathogenic effectors and host interaction genes, will become a hot spot of research, and

further understanding of the resistant/tolerant and susceptible mechanism against HLB will

facilitate the development of genetic techniques to improve HLB resistance. Breakthroughs

may be expected to be made from the following aspects.

First, the pathogenicity of CLas, CLam, and CLaf needs to be further dissected; the effector

and their target proteins should be clearly pinpointed. Genome sequencing, comparison, and

functional analysis will gain new knowledge on the pathogenicity and in vitro culture. Syn-

thetic biology including different chimeric genomes will be innovative approaches to speed up

the advance in this area.

Second, genes involved in the early interaction between Ca. Liberibacter and host should be

clarified. Most of the current molecular data are from weeks or even months after infection.

There has been rather limited evidence from the immediate effect (e.g., hours after infection or

within 1 day) on citrus plants caused by CLas infection. Some progress has been made in early

detection of the damage caused by HLB [106,174–177]. Identification of the early damage

caused by HLB infection is pivotal for the elucidation of its pathogenic mechanism.

Fig 2. Sketch of the hypothetical pathway of HLB-tolerant and HLB-susceptible citrus species in response to CLas. In HLB-tolerant citrus

species, first, CLas invasion causes cell signaling, which enhances the secondary metabolic genes [160] to biosynthesize antimicrobial compounds

such as volatiles, fatty acids, amino acids, and some antibacterial compounds such as flavonol, flavone, and flavanone [124]; second, CLas may secrete

PAMPs and pathogen virulence factors into the phloem to interfere with various targets [7] such as genes, proteins, and metabolites. In HLB-tolerant

citrus, the MAPK [133] activates the downstream defense-related genes such as WRKY genes to trigger the PR reaction and strongly induce SA-

mediated defense response [168], and the expression of DIR1 genes, NPR4, SA-related genes will be induced to contribute to the high HLB tolerance

[143]. In HLB-susceptible citrus species, first, CLas infection affects the photosynthesis and primary metabolism, decreases starch degradation

enzymes, increases the expression of starch biosynthetic genes (such as GBSS1 and glgC), and induces PP2 gene, which triggers starch and callose

accumulation and causes phloem plugging [118]. Disruption of primary metabolism causes delayed or reduced biosynthesis of secondary metabolites

(antibacterial compounds such as flavonols), and susceptible citrus shows severe symptoms; second, the CLas secretes virulence factor proteins such

as a functional enzyme SahA into citrus plant, destroying the host’s SA and its derivatives to suppress the host defense [116]. In addition, SDEs move

into cells via the Sec-dependent secretion system; SDEs such as SDE1 interact with receptor protein PLCP and suppress its activity, which weakens the

citrus plant defense response [107]. Moreover, the SDE15 interacts with citrus protein CsACD2 and suppresses the plant immunity and promotes

CLas multiplication [110]. In this way, the CLas protein disrupts the normal metabolism and defense system of host cells by modifying the host

cellular machinery to manipulate pathogenicity and to make the host environment favorable for CLas survival and progression. ACP, Asian citrus

psyllid; HLB, Huanglongbing; MAPK, mitogen-activated protein kinase; PAMP, pathogen-associated molecular pattern; PLCP, papain-like cysteine

protease; PR, pathogen-related; SA, salicylic acid; SahA, salicylate hydroxylase; SDE, Sec-delivered effector.

https://doi.org/10.1371/journal.ppat.1010071.g002
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Third, the population of Ca. Liberibacter may comprise benign strains with potential bio-

logical controlling effects against virulent strains. Thus, a global and continuous monitoring of

the Ca. Liberibacter population and their virulence will be of significant data in this area.

Fourth, it is promising to enhance tolerance in commercial citrus by using HLB-tolerant

wild citrus by precising selection with molecular breeding. Citrus relatives (Murraya panicu-
lata and Atalantia buxifolia) and wild citrus (Citrus latipes or Poncirus trifoliata) are highly tol-

erant to HLB. Multiomics methods can be utilized to analyze the molecular basis of HLB

tolerance and then identify the key candidate genes for HLB tolerance.

Last, metabolic improvement and optimization may be an alternative way to increase HLB

tolerance. Significant changes were observed in metabolic pathways after the infection of HLB

bacteria. The key metabolites or regulators can be screened with metabolomics, and their anti-

bacterial effects should be experimentally confirmed.
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Santos-Cervantes ME, et al. Gene expression profile of Mexican lime (Citrus aurantifolia) trees in

response to huanglongbing disease caused by Candidatus liberibacter asiaticus. Microorganisms.

2020; 8:528. https://doi.org/10.3390/microorganisms8040528 PMID: 32272632

138. Curtolo M, de Souza PI, Boava LP, Takita MA, Granato LM, Galdeano DM, et al. Wide-ranging tran-

scriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals

HLB tolerance mechanisms. Sci Rep. 2020; 10:1–14. https://doi.org/10.1038/s41598-019-56847-4

PMID: 31913322

139. Albrecht U, Bowman KD. Gene expression in Citrus sinensis (L.) Osbeck following infection with the

bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci.

2008; 175:291–306.

140. Fan J, Chen C, Brlansky RH, Gmitter FG, Li ZG. Changes in carbohydrate metabolism in Citrus sinen-

sis infected with “Candidatus Liberibacter asiaticus.” Plant Pathol 2010; 59:1037–1043.

141. Xu M, Li Y, Zheng Z, Dai Z, Tao Y, Deng X. Transcriptional analyses of mandarins seriously infected

by ‘Candidatus Liberibacter asiaticus.’ PLoS ONE. 2015; 10:e0133652. https://doi.org/10.1371/

journal.pone.0133652 PMID: 26196297

142. Chin EL, Ramsey JS, Mishchuk DO, Saha S, Foster E, Chavez JD, et al. Longitudinal transcriptomic,

proteomic, and metabolomic analyses of Citrus sinensis (L.) Osbeck graft-inoculated with ‘Candidatus

Liberibacter asiaticus.’ J Proteome Res 2019; 19(2):719–732.

143. Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, et al. Gene regulatory networks elu-

cidating huanglongbing disease mechanisms. PLoS ONE. 2013; 8:e74256. https://doi.org/10.1371/

journal.pone.0074256 PMID: 24086326

144. Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, et al. Small RNA profiling reveals

phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing dis-

ease. Mol Plant. 2013; 6:301–10. https://doi.org/10.1093/mp/sst002 PMID: 23292880
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