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Abstract: This paper presents applications of control system theory in biomedical engineering. These 
methodologies are used in engineering sciences to obtain a mathematical model of systems, but system 
identification as scientific methodology is rarely used in biomedical engineering. The paper presents 
exemplarily control theory and system identification as methods for obtaining a mathematical model of the 
spread SARS-CoV-2 virus. The models obtained in the course of this are data-driven and strongly data-
dependent. The available dataset allowed us to consider a model of a pandemic spread in the context of 
both the number of tested individuals and the number of infected individuals and with a resultant model 
that is nonlinear.  We also considered a mathematical model for the dependence between the number of 
confirmed infected individuals and the number of deaths caused by the disease. The resulting model is 
linear given with the transfer function corresponding to the second-order differential equation. The 
mathematical models developed were additionally analyzed in accordance with controllability and 
observability. 
Keywords: biomedical engineering, system identification, mathematical model, covid-19 

1. INTRODUCTION 

This paper presents a novel approach of the application of 
control system theory and system identification in biomedical 
engineering and medical sciences. Control system theory is 
commonly used today in advanced medical devices. This 
research presents possibilities of application system 
identification methodology to develop mathematical models 
for different biomedical systems types such as the spread of a 
virus. The models presented here are dynamic, and physical 
and mathematical laws can be used to develop these models 
whenever possible. However, if it is impossible to develop a 
mathematical model using known formulas, we can use the 
methodology from control system theory – system 
identification. In this paper, the control theory and system 
identification knowledge was applied to develop a spread 
model for SARS-CoV-2.  

This research considers the mathematical model of the spread   
SARS-CoV-2. In December 2019, China reported a cluster of 
cases of pneumonia in Wuhan, Hubei Province. The 
responsible pathogen is a novel coronavirus named severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 
first case in Europe of confirmed infection, coronavirus 
disease 2019 (COVID-19), was diagnosed on January 24th, 
2020. This novel coronavirus and disease were unknown 
before the outbreak began in Wuhan, China, in December 
2019, World Health Organization.  

The system identification is based on observed and/or 
measured system data, Ljung (2002). The system is defined 
with input and output vectors, but also, in exceptional cases, 

control systems can be single input and single output systems, 
also called SISO systems. Physical systems are mostly 
nonlinear, Dorf et al. (2010). The linearization of some 
nonlinear models in engineering and biology thus satisfies the 
criteria for analysis. For example, a heart model based on the 

cardiac output curve is usually nonlinear, linearisation 

simplified this system of cardiac output regulation, Khoo 

(2018).  
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System identification aims are to develop a mathematical 
system model from measured input and output data, 
Schoukens et al. (2012). The key elements in the system 
identification cycle are experiment design, experiment, data 
pre-processing, model structure choice, fit model to data, and 
model validation. A general algorithm of system identification 
with the key elements is shown in Figure 1, Verhaegen et al. 
(2007). In addition, continuous-time differential equations can 
describe physical models in general.  

Nowadays, system identification has been simplified by using 
state-of-the-art modern software tools in MATLAB. In 
general, system identification in MATLAB includes system 
identification approach, model structures and properties, time 
and frequency domain measured data, importing and 
processing data, representing data, filtering data, black box 
modeling linear and nonlinear models, identifying process 
models, etc., Ljung et al. (2014).  

2. SYSTEM MODELING 

This paper presents a system identification application for 
bioengineering and medical purposes. All models under 
consideration are based on available data. In the first example, 
we consider developing a mathematical model of the spread 
caused by SARS-CoV-2. Most epidemiological models are 
based on the rate of changes in susceptible, infected, and 
recovered individuals, also known as SIR models. Classical 
epidemiological models are fundamentals for understanding, 
predicting, and planning control strategies for an epidemic, 
Giordano et al. (2020).  

The SIR model is given by Eq. (1) 

𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 𝑁𝑁 (1) 

where S(t) is the number of susceptible individuals, I(t) is the 
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rate 𝛾𝛾 >= 0 (or in other words, the duration of infection D = 
1/ν). 

The SIR model, Equation 2, shown in Figure 2, and all 
variations describe the spread of a virus as a set of first-order 
differential equations. However, analyzing time responses of 
output functions, we can assume that we will obtain a better 
mathematical model of the spread by using a higher-order 
differential equation to describe the dynamic behavior of the 
spread.  

S I R

 
Figure 2. SIR model 

The system identification approach is quite different, and the 
main reason for this is that in all variations of SIR models, 
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A general system identification algorithm and cycle was 
modified. In this consideration, available official public data 
were used. We then applied the following steps in control 
system theory: data pre-processing, fitting the data model, 
model validation and model analysis. Models that consist of a 
limited number of inputs and outputs are called black-box 
models, Brooker et al. (2012). An illustrated black-box model 
is shown in Figure 3. Note that a problem of system 
identification is when input and output variables are known, 
and the system is unknown. The three fundamental problems 
in physiological control system analysis are prediction, 
diagnosis, and identification, Khoo et al. (2018).  The focus of 
interest for black-box models is on their input and output 
characteristics, Ljung (2002). 
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Figure 4. Hammerstein model (a); Wiener model (b); Hammerstein 
- Wiener model (c). 
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System identification aims are to develop a mathematical 
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(2007). In addition, continuous-time differential equations can 
describe physical models in general.  
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state-of-the-art modern software tools in MATLAB. In 
general, system identification in MATLAB includes system 
identification approach, model structures and properties, time 
and frequency domain measured data, importing and 
processing data, representing data, filtering data, black box 
modeling linear and nonlinear models, identifying process 
models, etc., Ljung et al. (2014).  
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Figure 4. Hammerstein model (a); Wiener model (b); Hammerstein 
- Wiener model (c). 

The spread model was estimated as a transfer function, state-
space, process, and nonlinear model. After detailed analysis, 
we adopted a nonlinear model, namely a nonlinear 
Hammerstein – Wiener model, for mathematical description of 
the pandemic spread. 

The Hammerstein – Wiener model is block-structured and 
represents a combination of the Hammerstein model and the 
Wiener model. The Hammerstein model is based on a static 
single-valued nonlinear element and a linear dynamic element 
in series, Giri et al. (2002). The Wiener model is the reverse of 
the Hammerstein model. A linear element occurs before a 
static nonlinear characteristic, Ljung (2002).  

Thus, a model with a static nonlinearity at the input is a 
Hammerstein model, and a model with static output is termed 
a Wiener model. The combination of both, the Hammerstein 
model and Wiener model is a Hammerstein-Wiener model, 
Figure 5, Aryani et al. (2014).  

The spread model obtained for the SARS-CoV-2 model is 
developed as such a Hammerstein – Wiener model. The input 
is the number of tested individuals daily, and the output is the 
number of infected individuals, Figure 5.  

For this purpose, we used official, public data from the 
European Union Open Data Portal and European Centre for 
Disease Prevention and Control to define the input and output 
functions. The website of the European Centre for Disease 
Prevention and Control (2021) provides various COVID-19 
data sets including: vaccination data with data on Covid-19 
vaccination in the EU/EEA, daily data with the daily number 
of new reported COVID-19 cases and deaths by the EU/EEA 
countries, weekly data on SARS-CoV-1 variants in the 
EU/EEA, data on 14-day notification rate of new COVID-19 
cases and deaths, data on the daily subnational 14-day 
notification rate of new COVID-19 cases, the weekly 
subnational 14-day notification rate of new COVID-19 cases, 
the hospital and ICU admission rates and current occupancy 
for COVID-19, data on testing for COVID-19 by week and 
country, the country response measures to COVID-19, the 14-
day age-specific notification rate of new COVID-19 cases, as 
well as data for the maps in support of the Council 
Recommendation on a coordinated approach to the restriction 
of free movement in response to the COVID-19 pandemic in 
the EU/EEA and archived data, including historical data (until 
December 14th 2020) on the daily number of new reported 
COVID-19 cases and deaths worldwide.  

In this work, we have chosen  Serbia as a sample country. Let 
us assume that number of tests made is an input function of a 
system, and the number of new cases per day is an output 
function. The dataset was available from the first registered 
case in Serbia, from March 6th, 2020. Those vectors are 
defined in the time domain, and the sampling time is one day, 
Figure 5. The final value used for the input and output dataset 
was the last update on December 7th, 2021.   

 

 
Figure 5. Input vector and output vector, a spread model. 

In our consideration, we did not pre-process data before model 
estimation. As a result, the estimated model compared with 
measured data is shown in Figure 6.  

 
Figure 6. Estimated spread model of SARS-CoV-2 in Serbia. 

Since we already defined input and output vectors in 
MATLAB Workspace, the vectors were loaded in the System 
Identification App in MATLAB in the time domain. Loaded 
data can be pre-processed, especially if the disturbance of the 
data is noticeable.  Finally, the estimated model configuration 
is specified as a single input single output model with input 
nonlinearity, piecewise linear with ten breakpoints and output 
nonlinearity, piecewise linear with ten breakpoints, and linear 
block has two zeros three poles. The results show that the 
model fits the operational data up to 87% if we ignore the error 
evident in the real-time output data. The simulated model 
parameters are given in Table 1, Table 2 and Eq. (3). 
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Input nonlinearity is defined with ten breakpoints, Table 1, 

Table 1. Input nonlinearity breakpoints 

Breakpoints x y 

1. -2498.8 13487.2 

2. -1028.3 350.8 

3. 6118.1 491.1 

4. 9858.0 1374.9 

5. 13339.4 6103.9 

6. 16699.9 5374.6 

7. 17577.9 12368.9 

8. 18234.2 7721.9 

9. 24653.0 11799.3 

10. 26608.7 21556.6 

The linear block is defined as a discrete-time OE model,  

𝑦𝑦(𝑡𝑡) = [𝐵𝐵(𝑧𝑧)/𝐹𝐹(𝑧𝑧) ]𝑢𝑢(𝑡𝑡) + 𝑒𝑒(𝑡𝑡) 

𝐵𝐵(𝑧𝑧) = 𝑧𝑧^(−1) − 0.9754𝑧𝑧^(−2) 

𝐹𝐹(𝑧𝑧) = 1 − 1.151𝑧𝑧^(−1) − 0.3892𝑧𝑧^(−2) +
0.5493𝑧𝑧^(−3)   (3) 

Output nonlinearity is defined with ten breakpoints, Table 2, 

Table 2. Output nonlinearity breakpoints 

Breakpoints x y 

1. -17007.5 162963.9 

2. -4789.7 64840.7 

3. 1.7 -64.8 

4. 2200.7 351.4 

5. 2202.0 333.3 

6. 28355.2 6781.2 

7. 42035.6 6760.2 

8. 42814.0 -58946.4 

9. 43307.1 -89261.7 

10. 46205.3 5702.9 

 

Furthermore, the transient response and pole-zero map of the 
model obtained show that the model is stable. Following this 
conclusion, the considerations of observability and 
controllability considerations can be made. In previous 
months, the pandemic model was stabilized by imposing 
restrictions of various constraints, and we can interpret that 
pandemic can be controlled in an open-loop with proportion 
action, Figure 7.  
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Figure 7. Open-loop control of the spread SARS-CoV-2.  

This method applies to data sets in countries where we can 
assume that the number of tested individuals is the number of 
infected or susceptible individuals and represents the input 
function. However, many countries have started mass testing 
in 2021, and therefore data-driven models become more 
complicated if incomplete datasets are analyzed.  

We have also tried to estimate models for other countries, but 
it is no longer possible to obtain the model in those countries 
that have introduced massive testing and are working 
according to the available data sets. This is because the models 
are highly data-driven and data-dependent. Estimating a model 
is very difficult when the data are not consistent, mainly 
because this means that we have only used a subset of the key 
elements in the algorithm for system identification.      

The system identification algorithm can be used to obtain and 
develop a mathematical model that correlates the number of 
deaths and new confirmed cases of infected persons with the 
novel coronavirus. The input vector is new confirmed cases of 
infected persons daily, and the output vector is the number of 
deaths daily, Figure 8.  

 
Figure 8. Input vector and output vector, mortality.  

We used available data from the Institute for Public Health – 
Reports, Coronavirus Serbia and Our World in Data, Statistics, 
and Research, Coronavirus data on the daily notification rate 
of new COVID-19 cases and deaths to identify the 
mathematical relationship. For this analysis, the daily number 
for Serbia was available from March 6th, 2020, to December 
15th, 2021. Several models were considered, but after detailed 
analysis, we decided to use the linear third-order time-
invariant model. The model is described with a transfer 
function, shown in Figure 9. The transfer function G(s) by 
definition is the ratio of the Laplace transformed output to the 
Laplace transformed input when all initial conditions are zero, 
Ogata (2009). 
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Figure 9. Transfer function model - new confirmed cases vs the 

number of deaths. 

The model after estimation is given by the transfer function in 
the continuous-time domain,  

𝐺𝐺(𝑠𝑠) = 0.0005097 s +  1.573e − 05
𝑠𝑠2 +  0.07792 s +  0.001727             (4) 

The estimated transfer function G(s) model has two poles and 
one zero at zero initial conditions, and fits the data up to 86% 
for the data for Serbia. The model developed was also tested 
for additional countries, the percentage of fitting data, 
however, was not satisfactory. As expected,  this initial model 
cannot be generalized due to regional differences in the spread 
of the pandemic and needs to be adapted for each country or 
region. 

With these input and output vectors defined, a correlation was 
made with the classical SIR model by determining the 
dynamics of pandemic spread and the number of recovered or 
deceased people, Figure 10. Correlation is based on results 
given in Table 1, Table 2, Equation 3, and Equation 4.  

New infected MortalityNew tested

 
Figure 10. Correlation model to SIR model.  

 An important feature of the model developed for estimating 
mortality based on the number of confirmed cases is that it is 
linear and described by the transfer function, and it 
corresponds to a second-order differential equation. The model 
enforced stability, and controllability and observability of the 
model can be considered for further analysis.  

6. CONCLUSIONS 

The system identification methodology can be used to obtain 
and develop mathematical models in biomedical sciences.  We 
presented the possibilities of applying methods from systems 
and control theory for epidemiological questions. The 
developed models provide a detailed mathematical description 
of the dynamic behavior since the differential equations are of 

second, third, or higher than in classic epidemiological models 
with first-order differential equations. Estimated models are 
digital and prepared to further analysis and simulation in 
MATLAB and Simulink.  

Data availability is the main problem in the control system 
theory approach and system identification. The widely used 
models are data-driven, and if the data is not consistent, it is 
almost impossible to obtain a reliable model.  

The model of the spread of the SARS-CoV-2 was determined 
as a black-box model which was classified as the Hammerstein 
–Wiener model. The major drawback of black-box modeling 
is that the parameters of these estimated models have no 
physical meaning in terms of equivalence to the process 
parameters, Zhang P. (2010). Nevertheless, other system 
characteristics can be observed, such as overshoot, peak 
response, steady-state, rise time and settling time.  

The novel coronavirus mortality model is lower order than the 
spread model, and is described as a linear model with transfer 
function and ordinary differential equation.  

Note that the estimated models do not include vaccination 
data, but in future research, depending on available data, these 
types of data could also be included in the model estimation 
and validation.  

The estimated models developed in this work can be used to 
predict or develop control strategies of the pandemic and 
simulate different spread scenarios.  
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