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Abstract

Background: Dramatic progress has recently been made in cryo-electron microscopy technologies, which now
make possible the reconstruction of a growing number of biomolecular structures to near-atomic resolution. However,
the need persists for fitting and refinement approaches that address those cases that require modeling assistance.

Methods: In this paper, we describe algorithms to optimize the performance of such medium-resolution refinement
methods. These algorithms aim to automatically optimize the parameters that define the density shape of the flexibly
fitted model, as well as the time-dependent damper cutoff distance. Atomic distance constraints can be prescribed
for cases where extra containment of parts of the structure is helpful, such as in regions where the density map is
poorly defined. Also, we propose a simple stopping criterion that estimates the probable onset of overfitting during
the simulation.

Results: The new set of algorithms produce more accurate fitting and refinement results, and yield a faster rate of
convergence of the trajectory toward the fitted conformation. The latter is also more reliable due to the overfitting
warning provided to the user.

Conclusions: The algorithms described here were implemented in the new Damped-Dynamics Flexible Fitting
simulation tool “DDforge” in the Situs package.
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Background
Over the last few years, experimental techniques for cryo-
electron microscopy (cryo-EM) have evolved dramati-
cally, making it possible for some structures to be solved at
near-atomic resolution (See e.g. refs. [1–4] for reviews.).
However, a significant number of structures still defy EM
reconstructions at that resolution level. Also, during a
typical cryo-EM workflow, resolution normally increases
over time, from a rather low value, as the quality and quan-
tity of the images improves. These considerations indicate
that there is still a need to be able to obtain atomic mod-
els from cryo-EMmaps havingmedium resolutions, in the
range of 5–10 Å.
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The original “Damped-Dynamics Flexible Fitting”
(DDFF) simulation engine [5], on which we base
our present development, predates the revolutionary
improvement in cryo-EM techniques, and was targeted
mainly to low-resolution EM maps. Several new flexible-
fitting approaches have been published since then, which
can be broadly grouped into a few types:

• Methods based on elastic network models [6–10].
• Methods based on molecular-dynamics simulations

[11–14].
• Methods based on graph-theoretic approaches to

determine correspondences between
secondary-structure elements [15–17].

• Others:
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– Force field heuristically defined in terms of the
“overlap” between the EM map and the model
[18];

– Monte-Carlo optimization of fragments
combined with all-atom refinement [19];

– Bayesian-based refinement [20].

Despite the undeniable successes of these methods, they
still suffer from one or more weaknesses, including: high
complexity (time and algorithmic), potentially insufficient
sampling of the conformational space, restrictions in the
degrees of freedom (DOFs) (such as using rigid domains),
requirement of significant user intervention, and even
unnaturalness of the resulting deformations.
DDFF attempts to address these issues by using an

idea quite different from those of the other proposals:
damped dynamics [5]. Damped dynamics operates in gen-
eralized coordinates (positional and internal coordinates)
and avoids harmonic potentials by using dampers (shock
absorbers) between pairs of atoms.
One of the key improvements proposed in the present

paper over the original DDFF is particularly beneficial
to the medium-resolution range (5 to 10 Å): the opti-
mization of parameters used in the computation of the
model-induced map. These parameters are the width of
the Gaussian kernel with which the atomic model is con-
volved, and the density threshold value to be used after
convolution. Together, the new methods yield an accurate
force field that attracts the atomic model to unoccupied
regions of the EM map.
A second new feature that is unique to the current

“DDforge” implementation described below is the ability
for the user to impose distance constraints between spec-
ified pairs of pseudo-atoms. We show an example of this
to help preserve the overall shape of β-sheets.
A third new feature is a streamlined scheme to con-

tinuously adjust the cutoff distance dcut between pseudo-
atoms to be connected by dampers. The new scheme is
the result of a rationale that yields an updated dcut at each
time step, in terms of the previous one and the ratio of the
previous and current RMS velocities. As a result, the con-
vergence rate of the DDforge trajectories is significantly
improved.
Lastly, we propose a simple mechanism to guard against

overfitting. This consists in estimating characteristic sat-
uration times of the overlap function via a continually
updated exponential regression.

Methods
Our force field relies on a simulated model-induced map
that is matched with the experimental EM map. After
a preliminary rigid-body fit, the force field is applied to
the damped dynamics of coarse-grained side chains to
guide the atomic model towards unoccupied regions of

the experimental target map [5]. The matching of the
model-induced map with the experimental map is there-
fore an important aspect in the accurate refinement of the
structure.

Optimization of parameters for the model-inducedmap
The original DDFF approach used a fixed standard devi-
ation σ of the Gaussian convolution kernel based on the
Situs convention: σ = R/(2

√
3) (section 4 in ref. [21]),

where R is the nominal resolution of an EMmap as deter-
mined by the experimentalists. This fixed σ convention
was reasonable for the interpretation of low-resolution
maps with the older Situs tools. However, for intermedi-
ate resolution maps using the new DDforge, we found it
beneficial to allow σ to be a free parameter that can be
optimized from an initial guess such as σ = R/(2

√
3). The

optimization of σ can be shown in some cases to provide
more accurate fitting results (Fig. 1), and it adds only one
additional free parameter, which is negligible compared to
the many conformational DOFs in the damped dynamics
model.
A second parameter which we optimize in the new

DDforge is the threshold T to be applied after Gaus-
sian kernel convolution. In the original DDFF engine, we
implemented two options to determine the threshold T :
(a) so that the volume within the isosurface of mean value
matches the corresponding volume in the EM map; or (b)
so that, after rescaling, the integral and maximum coin-
cide with the respective values for the EM map. In the
new approach, we merge these two alternatives into one.
In this way, by considering σ as an extra unknown, we can

Fig. 1 Comparison between fitting results obtained with DDFF (a) i.e.,
using σ = R/(2

√
3) and T determined by equating volumes at mean

values, with those obtained with DDforge (b) whereby σ and T are
simultaneously optimized by following a procedure depicted in Fig. 2
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have all three quantitiesmatch: volume, integral, andmax-
imum. Actually, the maximum density (which is sensitive
to outliers) was replaced by a more stable value: the 95%
quantile. Likewise, the mean value for the isosurface was
replaced by the threshold.
Figure 2 provides an overview of the density match-

ing and optimization steps. In summary, we have the
following system of equations in the new DDforge:

V2 = V1, (1)
aI2 = I1, (2)
aQ2 = Q1, (3)

where V denotes the volume, I the integral, andQ the 95%
quantile, subindex 1 corresponding to the EM map and
subindex 2 to the model-induced map. The quantities on

Fig. 2 Schematic depiction of the scheme used for finding the
optimal values of kernel width σ and threshold T. a EM map (after it
has been thresholded) from which its volume V1, integral I1, and 95%
quantile value Q1 are computed. bModel-induced map (before
thresholding), with the corresponding quantities V2, I2 and Q2, in
addition to the parameters σ and T. These parameters are
determined as those for which V, I and Q of both maps match, after
proper scaling between the two maps

the right side of the equations are computed directly from
the EM map. The scaling factor a is to be solved for as
well, along with σ and T. Note that a does not enter into
the first equation since the volume does not depend on the
scaling.
We solve these equations as follows. Let g denote the

model-induced map, computed as the convolution of the
atomic model with a Gaussian kernel of standard devia-
tion σ . This map, like the EM map, is defined on a set R
of N voxels. In what follows, we denote a generic voxel (or
its coordinates) by x. Then the integral I2 is given by

I2 =
∑

g(x)>T
(g(x) − T), (4)

so from Eq. 2 we obtain:

a
∑

g(x)>T
(g(x) − T) = I1. (5)

The volumes in Eq. 1 are conveniently expressed as
number of voxels. Thus,

V2 = #{x ∈ R | g(x) > T}. (6)

If we let ḡ denote the 1D array of N values of g sorted
in ascending order, i.e., ḡ1 ≤ ḡ2 ≤ · · · ≤ ḡN , then Eq. 6
implies that T = ḡN−V2 , which together with Eq. 1 gives:

T = ḡN−V1 . (7)

On the other hand, from Eqs. 3 and 5 we obtain:

D(σ ,T) ≡
∑

g(x)>T (g(x) − T)

Q2
− I1

Q1
= 0, (8)

where Q2 depends on σ and T, while g depends only
on σ . We now have two equations, 7 and 8, in the two
unknowns σ and T. The algorithm to solve them proceeds
iteratively between these two equations: for each value of
σ (starting, for instance, with σ0 = R/(2

√
3)), build the

model-induced map g, and compute T using Eq. 7. With
this T, go to Eq. 8 and make one Newton-Raphson step
on σ . With this updated σ , go back to Eq. 7 to get a new
value of T, and continue in this way till convergence. In
our examples, the number of iterations needed was very
small (5 or 6), and the compute time was about a second,
even for the largest structures that we considered.

Distance constraints
Constraints are given by general relations among the
generalized coordinates of the form:

fα(q1, . . . , qM) = 0 (α = 1, . . . ,K). (9)
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The way to insert these conditions into the equations of
motion is by taking their time derivative:

M∑

i=1

∂fα
∂qi

q̇i = 0 ∀α, (10)

whence the equations of motion become:

∑
i
(Bij + Vij)q̇i − ∑

α

∂ fα
∂qj hα = Q(m)

j ∀j
∑
i

∂ fα
∂qi q̇i = 0 ∀α

⎫
⎪⎬

⎪⎭
(11)

where the hα are Lagrange multipliers and Q(m)
j is the

force field in generalized coordinates.
In the particular case of distance constraints, the fα take

the form:

fα = 1
2

‖ra − rb‖2 , (12)

where a and b depend on α, ra and rb denoting the
positions of two specific atoms whose distance we want
to require to be constant throughout the trajectory. The
derivatives are:

∂fα
∂qi

=
〈
ra − rb,

∂ra
∂qi

− ∂rb
∂qi

〉
, (13)

where the derivatives ∂rk
∂qi constitute the entries of the so-

calledWilson’s matrix [22], and can be computed directly
from the geometry of the current conformation of the
model.

Scheme to optimize the dampers’ cutoff distance
This parameter dcut is the maximum distance between
atoms that will be connected by a damper. The rationale
for its optimization is based on the RMS velocity of the
structure, defined by

v2 = 1
A

A∑

i=1
‖ṙi‖2, (14)

where A is the number of pseudo-atoms in the structure.
The idea is to adjust dcut in such a way as to try to keep

v constant. As the trajectory progresses, this will make
dcut gradually decrease. This decrease is allowed until dcut
reaches max{7Å, 2σ } (which ensures a minimum of con-
nectivity to preserve the structural integrity of the model),
after which point it is kept constant, with the ensuing
decrease of v.
To keep v nearly constant as much as possible, we need

an estimate of the dependence of v on dcut. For this, we
can imagine a toy model involving a collective map force

F(m) and a collective dampers’ constant C (which depends
on dcut), so we have, roughly:

v ≈ F(m)

C (dcut)
. (15)

The number of connections of length up to dcut is of the
order of d3cut. They can be partitioned into those of length
between r and r + dr, for r ranging from to 0 to dcut, of
which the number is of the order of r2 dr. A damper of
length r has a strength ∼ 1/

√
r (Eq. 8 in ref. [5]). Therefore,

the aggregate strength of all dampers up to length
dcut will be:

C (dcut) ∼
∫ dcut

0

r2√
r
dr ∼ d5/2cut . (16)

When v decreases due to a decrease in F(m), we want to
decrease dcut to try to restore v to its former value. Thus,
if we have, for the previous and current time steps:

v(t − 1) = F(m)(t − 1)
dcut(t − 1)5/2

and v(t) = F(m)(t)
dcut(t)5/2

,

(17)

the goal is to get v(t+1) = v(t−1) assuming F(m) (t+1) =
F(m)(t). This gives

v(t − 1) = v(t + 1) = F(m)(t + 1)
dcut(t + 1)5/2

= F(m)(t)
dcut(t + 1)5/2

.

(18)

Hence, if we put

ρ = v(t)
v(t − 1)

, (19)

then

ρ = F(m)(t)
dcut(t)5/2

· dcut(t + 1)5/2

F(m)(t)
=

(
dcut(t + 1)
dcut(t)

)5/2
,

(20)

from where we get

dcut(t + 1) = dcut(t) · ρ2/5. (21)

This is the optimal way to update dcut based on the ratio
ρ of the current and previous velocities.

Stopping criterion
Overfitting is always a concern in flexible-fitting methods.
In general, it is difficult to give an objective criterion in
this regard. However, the fact that our method furnishes
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a whole trajectory of conformations—rather than a single
one—provides us with a way to determine a “safe” final
conformation. We do this by resorting to the plot of the
overlap evolution, shown in the figures for each of our
examples. The idea is that the start of the “saturation” of
the graph can be considered as a warning time, after which
any additional refinement is likely to lead to overfitting.
A concrete rule of thumb to estimate such a criti-

cal point in the trajectory is as follows. An exponential
function, of the form

y(t) = b − c exp(−kt) (22)

is least-squares fitted to the graph of the overlap function.
(Note that in this paper the variable t denotes the time step
number rather than a physical time.) This is a non-linear
exponential regression problem on b, c, k, which is solved
by first eliminating the linear parameters b and c from
the regression equations, and then numerically solving the
resulting non-linear equation for k. With these parame-
ters, we can define the warning time as the time step t1
such that the exponential function above reaches a frac-
tion α1 of the interval between y(0) = b−c and y(∞) = b.
This gives

t1 = 1
k
ln

1
1 − α1

. (23)

Since the trajectory is being obtained dynamically, the
above process needs to be performed at each time step,
using the points of the overlap function that have been
computed until the current step. Thus, as the simulation
proceeds, updated values of the regression parameters are
obtained, and so we need to carry on the simulation suf-
ficiently long, to be certain that we have enough points
to yield an accurate fit. Updated estimates of this stopping
time t2 are obtained in a manner similar to t1: by using a
value α2 instead of α1:

t2 = 1
k
ln

1
1 − α2

. (24)

The simulation then proceeds as long as the estimate
t2 is bigger than the current time step. When the point
is reached at which this condition is no longer satisfied,
the simulation is stopped and the current estimate of t1 is
defined as the warning time, after which point overfitting
is likely to begin. This process is described graphically in
Fig. 3 (which is the actual plot for the lactoferrin test case
considered below). Adequate values that worked well in
our examples are α1 = 0.9 and α2 = 0.99.

Side-chain optimization
DDforge includes an option to optimize the side-chain
conformations along the trajectory. This step can help

Fig. 3 Determination of the times for stopping the simulation and of
the possible onset of overfitting. The simulation proceeds until point
A, where the estimate of the stopping time (red curve) becomes equal
to the current time (blue line). At that point, the estimate of the onset
of overfitting is given by the orange curve (point B: warning time).
(This plot corresponds to the lactoferrin test case. See Fig. 4, where
the value t1 = 53 (warning time, see “Methods” Section) obtained
from this plot is indicated.)

to escape from wrong side-chain geometries that could
occur if they were simply evolved from their initial con-
formations, and it also compensates for the inaccuracy
introduced by the reduced-residue model. The side-chain
optimization (which in our examples was done for each
conformation written out to disk) is performed by the
SCWRL4 method [23], which uses an efficient tree-
decomposition algorithm that furnishes the best side-
chain conformations for each given backbone geometry
by minimizing a simplified atomic force field on a rotamer
library.

Results
We describe several simulated and experimental cases
with the main purpose of illustrating the advantage of the
new features introduced in the present work. Side-chain
optimization was used in all cases except thermosome,
since in this case the focus was on modeling the consider-
able large-scale deformations between the atomic model
and the EM map.

Validation test: lactoferrin
To demonstrate the level of accuracy achievable by
means of the new features described in the previ-
ous section, we consider the simulated case of lacto-
ferrin. This is an iron-binding protein that undergoes
a large conformational change of about 8Å RMSD
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where three rigid domains rotate about hinge axes.
Due to the piecewise-rigid motion, the system is a
standard for testing rigid-body modeling techniques
[24], but the highly localized flexibility—present only
in the hinge regions between rigid domains—creates
a formidable challenge for many flexible refinement
methods.
The simulated maps were generated from the apolacto-

ferrin structure [25, PDB code 1lfh], and the atomic
model that was fitted into those maps was the iron-bound
structure [26, PDB code 1lfg]. These structures have 691
residues. See Fig. 4a and b. This experiment consisted of
four cases:

• Simulated map to 7Å resolution;
• Simulated map to 15Å resolution;

each combined with:

• Atomic model fully flexible;
• Atomic model with helices and β-strands rigid.

In the fully flexible case, the number of free variables
was 1888, while the number was 1266 when keeping
helices and strands rigid.

Table 1 summarizes the results of this experiment and
compares them with those from other methods. We see
that, for all the DDforge cases, the RMSD of the final
conformation from the target is more than an order of
magnitude better than the resolution of the simulated
map. Moreover, since the rigid domains (when superim-
posed) exhibit RMSD values between only 0.42 and 0.65Å
[27], our flexible refinement accuracy of 0.58 and 0.65Å
(in the 7Å case) is actually at the level of the residual
discrepancy between the rigid domains. (The RMSDs for
DDforge are measured on all backbone atoms.)
Even though we are mostly interested in the 5–10 Å

resolution range, we wanted to compare the performance
of our method with the lactoferrin results reported in
ref. [28], with RMSDs of 1.89Å and 2.72Å reported for two
flexible fitting methods. The rigid-body Iterative Modu-
lar Fitting (IMF) method was found to surpass the flexible
methods, with an RMSD of 0.98Å. Volkmann [28] con-
cludes that 5Å resolution is needed for a flexible-fitting
approach (namely MDFF [12]) to yield better results than
IMF. We note from Table 1, however, that DDforge
matches the accuracy of IMF at 15Å resolution. One
should consider that IMF is a piecewise-rigid method
for which lactoferrin’s piecewise-rigid motion is obviously

Fig. 4 Fully flexible fitting of the closed (iron-bound) conformation of lactoferrin (PDB code 1lfg) into a simulated density map (yellow surface) at
7Å resolution. Shown in red is the open conformation (apolactoferrin, PDB code 1lfh), which was used to generate the map. a The closed
conformation is shown in blue. This was the starting conformation used for the fitting. b The final conformation of the trajectory is displayed in blue.
c Evolution of the overlap values along the trajectory. The indicated value of t1 = 53 is the warning time, where overfitting is likely to begin. At that
time, the overlap was 92.5% d Evolution of the backbone RMSD values along the trajectory. The RMSD was 1.1Å at the t1 time. The stopping time for
this case was t2 = 107
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Table 1 RMSDs, in Å, for the flexible fitting of lactoferrin by
various methods

DDforge

R fully flexible H+S rigid IMF CGS VQ

7 0.65 0.58 — — —

15 1.04 0.89 0.98 1.89a 2.72

R is the resolution, in Å, of the simulated maps. Each of these RMSD values is
between the fitted conformation and the target atomic structure used to create the
simulated map. The RMSDs for DDforge are measured on all the backbone atoms,
while those for the other methods are measured on the α-carbons only. H+S:
helices and β-strands; IMF: Iterative Modular Fitting [28]; CGS: Constrained
Geometric Simulations [40]; VQ: Vector Quantization without rigidity constraints [41]
aThis actually corresponds to a 14Å map

well suited by design. DDforge, by contrast, is a truly
flexible refinement that can handle longer-range deforma-
tions (see below), but it handles even the special case of
lactoferrin’s piecewise-rigid motion well.
The runtime for this case, on a desktop computer with

a 4 GHz Intel Core i7 processor and 32 GB of RAM, run-
ning on a single core, was about 9 min or 11 min, with
or without side-chain optimization, respectively. These
timings will vary depending on parameters used and on

the number of conformations saved (since the side-chain
optimization is performed for each saved conformation),
so they should be taken only as a guideline.
Figure 4c and d show the evolution of the overlap and

RMSD with respect to the target, for the all-flexible fitting
into the 7Å map: the overlap increases from 78% to 95%,
while the RMSD decreases from 8.1Å to 0.65Å. These
RMSD values are caused by rigid motions of domains and
by their internal flexible refinement.

Tests with experimental EMmaps
Thermosome
Thermosome is an archaeal chaperonin from T. aci-
dophilum. The asymmetric unit of the crystal structure
[29] is a dimer (PDB code 1a6d); we used the hexade-
cameric biological assembly with D4 symmetry as the
atomic model for fitting (Fig. 5). This structure has a total
of 8040 residues, making it the largest structure on which
we tested our method. The EMmap we used was a recon-
struction to 10Å resolution of the open conformation of
the hexadecamer [30] (EMDB code 1396).
For this case, we kept the helices and β-strands rigid,

with which the number of free variables was 12,664.

Fig. 5 Flexible fitting of the closed conformation of thermosome hexadecamer into an EM map of the open conformation (yellow surface) to 10Å
resolution. Helices and β-strands were kept rigid. a The closed conformation of thermosome is shown in blue. This was the starting conformation
used for the fitting. b The final conformation of the trajectory is displayed in blue. c Evolution of the overlap values along the trajectory. In this case,
the trajectory was ended much earlier than the stopping time, since the speed had a fast decay at the end of the time period displayed. Thus, the
trajectory did not reach the overfitting regime
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(A fully flexible model would have had 22,360 free vari-
ables.) The atomic structure was initially positioned by
eye in the EM map. Figure 5c shows the evolution of
the overlap with the EM map: it increases from 29% to
64%. A movie of this trajectory is available as Additional
file 1. The runtime for this case was about 5 h (with no
side-chain optimization).

Actin filament withMyBP-C bound
Immunoglobulin domains (Ig-domains) of myosin bind-
ing protein-C (MyBP-C) bind to fibrillary actin (F-actin)
in a highly polymorphic fashion [31]. To evaluate how
DDforge works on multiprotein complexes, we applied
it to a 3D reconstruction of one of the multiple modes
of binding of C0 and C1 Ig-domains of MyPB-C to F-
actin complexed with tropomyosin protein (Fig. 6). The
resolution of the map was determined, using the Fourier
Shell Correlation (FSC) criterion of 0.143, to be 11Å. The
initial atomic model—comprised of 10 actin monomers,
10 units of each C0 and C1 Ig-domains, and two pairs
of tropomyosin helices—was obtained by rigid body fit-
ting of the corresponding high-resolution structures (PDB
codes 2k1m, 2v6h and 4a7f) into the EM density map.
The total number of residues in this structure was 6284.

As with thermosome, helices and β-strands were kept
rigid, making the number of free variables 12,198. Also, for
this case distance constraints were imposed between adja-
cent endpoints of β-strands in the C0 and C1 domains,
to help preserve their structure. The total number of such
constraints was 280.
Figure 6c shows the evolution of the overlap along the

trajectory, going from 66% to 78%. A movie of this trajec-
tory is available as Additional file 2. The runtime for this
case was about 10 h, including the side-chain optimization
at each saved conformation.
Figure 1 compares the fitting results described above

(using the simultaneous optimization of kernel width σ

and density threshold T in DDforge) with those obtained
with the original DDFF which used σ = R/(2

√
3) and

equated only the volumes of both maps to determine T. (R
is the user-specified resolution of EMmap.) The improve-
ment of the fitting in the regions indicated by arrows is
noteworthy.

GroEL: stability test
GroEL is another ring-like chaperonin whose tetrade-
cameric crystal structure exhibits D7 symmetry (PDB
code 1xck). As target EM map we used the 6Å reso-
lution variant (EMDB code 1081). Since, for this case,
the atomic structure and the map are expected to rep-
resent the same conformation, the main purpose of this
test was to ascertain the stability of the DDFF approach:
the fitted conformation should have, at most, a small
deviation from the starting atomic structure due to any

Fig. 6 Flexible fitting of an atomic model comprised of F-actin,
tropomyosin and Ig-domains of MyBP-C (blue ribbons) into an EM
map (yellow surface) filtered to 11Å resolution. Helices and β-strands
were kept rigid. In addition, distance constraints were imposed
between adjacent endpoints of β-strands in the C0 and C1 domains.
a The initial atomic model, docked into the electron density map
using rigid body fitting, is shown in blue. b The resulting atomic
model (final conformation of the trajectory) yielded by DDforge. c
Evolution of the overlap values along the trajectory. The indicated
value of t1 = 53 is the warning time, where overfitting is likely to
begin. (Coincidentally, its value was equal to that for lactoferrin. See
Fig. 4.) The stopping time for this case was t2 = 106

residual small differences between the crystallographic
and ice-embedded EM specimens.
The total number of residues in the atomic structure

was 7336. As before, helices and β-strands were kept rigid,
with which the number of free variables was 9876. No dis-
tance constraints were imposed. The starting conforma-
tion was obtained by rigid-body fitting. The runtime for
this case was 11 h (including the side-chain optimization
step).
The final conformation of the trajectory was deter-

mined according to the stopping criterion described in
the “Methods” Section. That final conformation had a
Cα RMSD of 1.8Å relative to the starting conformation.
This is entirely consistent with previous results obtained
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by other methods [32], providing further support to the
suggestion that such an RMSD value corresponds mostly
to the intrinsic discrepancy between the structures, and
only marginally to any potential instability of the fitting
method.

Comparison with the original DDFF
Here we provide a brief comparison between results
obtained with the new DDforge and the original DDFF.
The refinement runs for the thermosome andGroEL cases
actually required the new DDforge approach whose
improved simulated maps (Fig. 2) enable the convergence
of ring-like structures. DDFF data was available, how-
ever, for comparing the lactoferrin and actin systems
mentioned above.
The original DDFF run on lactoferrin took 22 min, as

compared with 9.4 min of DDforge (both done on the
7Å map, without the side-chain optimization, and with
fully flexible backbone). This translates into a factor 2.34
speedup. The RMS deviation between the resulting con-
formations (at the same overlap level) was 0.74Å. It is also
interesting to compare the RMS deviations between each
of the resulting conformations (original and DDforge)
and the atomic structure used to make the simulated tar-
get map: the DDforge one was 0.65Å (as indicated in
Table 1), whereas the original one was 0.73Å. Naturally,
it only makes sense to pay attention to such small dif-
ferences when considering simulated cases such as this.
In real cases such as the actin complex, the difference is
much more significant (Fig. 1).
The actin timings were 9 h for DDforge versus 22 h

for DDFF (without performing the side-chain optimiza-
tion), which means a factor 2.4 speedup. The difference
in the resulting conformations is shown in Fig. 1; the
corresponding RMS deviation was 1.9Å.

Discussion
It may be useful to recall here that DDforge works
in generalized coordinates (internal coordinates—torsion
angles— and global position coordinates of each chain),
and thus preserves the covalent bond geometry of the
structure (except for the torsions). In addition, the side
chains can optionally be energy-minimized by means of
the SCWRL4 method. This is generally useful in all cases
(not only for high-resolution maps) mainly because it
helps to resolve possible “locks” in the trajectory, and
not only because we may want to look at the detailed
conformation of the side chains.
The use of dampers to maintain the overall assembly

of the molecule allows it to model arbitrarily large con-
formational changes in a natural way. A demonstration of
the sensibility of the deformations generated by DDforge
is provided by the lactoferrin test case above, for which
previous flexible-fitting approaches would degrade the

RMSD from the target conformation, relative to a rigid-
body fitting of subdomains. The fact that we can obtain
results comparable to the residual crystallographic dis-
crepancy suggests that DDforge can handle both rigid
and flexible refinement with high accuracy.
Another example of the ability of DDforge to handle

large conformational changes in a sensible way is the ther-
mosome. This structure has a high degree of symmetry
(imposed during the map reconstruction [30]), but this
symmetry was not utilized during our simulations: all the
chains were treated independently of one another, and no
distance constraints were imposed.
Regarding efficiency, a comparison of runtimes with

the original version of the code yielded a factor 2.3
speedup for the trajectory to reach the same overlap val-
ues. This can be attributed to the new scheme to update
the dampers’ cutoff distance along the trajectory. The run-
times for the new version of the code, reported earlier,
vary from a few minutes to 11 h, and depend not only
on the size of the structures, but also on their specific
geometries and parameters that affect the speed of the
trajectory. Thus, even though thermosome is the largest
system, it took less compute time than GroEL and the
actin complex. These timings are considerably less than
benchmarks reported for the NAMDmolecular dynamics
program used in MDFF [33]. A comparably sized F1-
ATPase system (92,224 atoms) at 100 ns simulation time
would take 14–100 days of compute time even on a much
more powerful 24-core machine, depending on its GPU
configuration.

Conclusions
We have developed a flexible refinement strategy termed
DDforge that is well suited to handle the larger, higher-
resolution maps that have become common in recent
years.
Significant new features in our implementation include

the simultaneous optimization of both the convolution
kernel width σ and the density threshold T, by equating
three quantities of the EM and synthetic maps: integral,
95% quantile, and volume; the ability for the user to define
distance constraints on the model, which are useful to
preserve shapes in regions where the density is not well
defined; a streamlined approach to update, at every time
step, the cutoff length of dampers, ensuring that the speed
of the trajectory is optimal and thereby shortening the
compute time; and a practical scheme to signal a point in
the trajectory where overfitting is likely to start.
The application of DDforge to the recent actin data

demonstrates the effect of optimizing the kernel width
and density threshold to generate appropriate model maps
at each step. Figure 1 contrasts the results obtained by
using the original approach (fixed σ ) with those using
the optimized values. As with thermosome, the helical
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symmetry of this complex was not imposed in our
calculations.
The stability of the DDforge approach was verified on

the GroEL test case. This used a 6Å resolution EM map,
and the drift from the initial to the final conformations
was of only 1.8Å RMSD, which previous results suggest
is mostly due to the intrinsic discrepancy between the
atomic model and the EM map [32].
We should point out that our approach can be applied

in other settings as well, such as transition pathways and
homology/loop modeling. These involve straightforward
modifications in the definition of the force field: instead of
being generated by a map, the forces are defined simply to
be proportional to the distance between each atom in the
origin structure and the corresponding atom in the target
structure.
The DDforge method will be made available in ver-

sion 3.0 of the Situs EM fitting and interpretation package
(http://situs.biomachina.org), where it fills a void for a
refinement tool applicable to medium-resolution maps
with discernible internal (secondary structure) features.
But DDforge does not attempt to deal with atomic-
resolution maps, for which other existing tools com-
ing from crystallography are undoubtedly more suitable.
Plans for future work include extending the new capability
of kernel-width optimization to allow for inhomogeneous
[34] and anisotropic [35, 36] resolution across the map,
and to allow for inhomogeneous convolution that charac-
terizes stability and disorder of particular side chains [37].
Likewise, we are envisioning possible ways to make our
approach immune to regions of density not accounted for
by the atomic model. Currently, these extra densities need
to be removed prior to the simulation.

Additional files

Additional file 1: Flexible fitting of thermosome. (MOV 9378 kb)

Additional file 2: Flexible fitting of actin filament with MyBP-C bound.
(MOV 5883 kb)
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