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Abstract

Background

Sleep disordered breathing manifested as sleep apnea (SA) is prevalent in the general pop-

ulation, and while it is associated with increased morbidity and mortality risk in some patient

populations, it remains under-diagnosed. The objective of this study was to assess the accu-

racy of respiration-rate (RR) and tidal-volume (TV) estimation algorithms, from body-surface

ECG signals, using a smartphone based ambulatory respiration monitoring system

(cvrPhone).

Methods

Twelve lead ECG signals were collected using the cvrPhone from anesthetized and

mechanically ventilated swine (n = 9). During ECG data acquisition, the mechanical ventila-

tor tidal-volume (TV) was varied from 250 to 0 to 750 to 0 to 500 to 0 to 750 ml at respiratory

rates (RR) of 6 and 14 breaths/min, respectively, and the RR and TV values were estimated

from the ECG signals using custom algorithms.

Results

TV estimations from any two different TV settings showed statistically significant difference

(p < 0.01) regardless of the RR. RRs were estimated to be 6.1±1.1 and 14.0±0.2 breaths/

min at 6 and 14 breaths/min, respectively (when 250, 500 and 750 ml TV settings were com-

bined). During apnea, the estimated TV and RR values were 11.7±54.9 ml and 0.0±3.5

breaths/min, which were significantly different (p<0.05) than TV and RR values during non-

apnea breathing. In addition, the time delay from the apnea onset to the first apnea detection

was 8.6±6.7 and 7.0±3.2 seconds for TV and RR respectively.
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Conclusions

We have demonstrated that apnea can reliably be detected using ECG-derived RR and TV

algorithms. These results support the concept that our algorithms can be utilized to detect

SA in conjunction with ECG monitoring.

Introduction

Respiration rate (RR) and tidal volume (TV) monitoring are an essential component of patient

care in emergency rooms, intensive care units and they are employed during mechanical venti-

lation of patients with acute lung injury, acute respiratory distress syndrome, etc. [1], [2]. RR

and/or TV can be measured using a number of different methods, such as spirometer [3], Pitot

tube [4], respiratory inductance plethysmography [5], impedance plethysmography [6], and

computed tomography [7]. In the clinical setting, specialized hardware employing these stan-

dard techniques provide efficient measurement of RR and TV, in ambulatory setting their

bulkiness often makes patient monitoring of these parameters, impractical.

Recent advances in hardware technology and software processing algorithms have enabled

the development of much smaller, light-weight, and reliable systems for ambulatory cardiore-

spiratory monitoring [8]. These systems can now include standalone wearable and implantable

sensor devices [9] that can be integrated with an application (app) [10], [11] for acquisition,

processing, and monitoring of the data. For ECG monitoring, for example, the ZioPatch car-

diac monitor is a device that utilizes a single-lead adhesive chest patch for continuous long-

term ECG monitoring. A clinical study, showed that ZioPatch was more effective in detecting

arrhythmias than the traditional Holter monitor [9]. Another wearable device called the CoVa

necklace can monitor the heart rate, heart rate variability, thoracic fluid index, and respiration

rate [12]. AliveCor’s Kardia Mobile (KM) is an ECG event recorder that uses a smartphone

app for ambulatory monitoring. A study that compared KM to an external loop recorder

(ELR) for clinical diagnosis, found that the KM had the potential to provide a better diagnosis

of cardiac events, such as increased heart rate or atrial fibrillation, than the ELR (100% vs.

72.7%) [10]. Apple Inc. has also incorporated ECG monitoring functionality in its iWatch

devices. These devices have been reported to have a good sensitivity (87%) and specificity

(97%) when detecting silent atrial fibrillation [11]. Non-invasive techniques targeting ambula-

tory monitoring of RR and TV have also been developed that have resulted in portable devices

incorporated into garments [13], [14], [15]. Although these systems incorporate algorithms

that are optimized to record and interpret ECG signals, it is desirable to develop advanced sig-

nal processing methods that can utilize these cardiac signals to measure and analyze other

physiological parameters.

In the studies detailed here, we tested a novel method that extracts RR and TV information

in real-time from ECG data, based on the observation that repetitious inflation and deflation

of the lungs causes oscillations in the heart position, the electrode locations, and the thoracic

impedance. Accordingly, we have hypothesized that respiratory signals may be obtained by

measuring fluctuations in the mean cardiac electrical axis [1], [2], [16]. Previously, we devel-

oped novel algorithms that extract a respiratory signal from ECG signals using the root-mean-

squared amplitude of the QRS complex on a beat-by-beat basis, and thereby permit the estima-

tion of the RR [1] and TV [2]. We have also developed a novel smartphone based ambulatory

cardiac and respiratory monitoring system and developed applications (apps) to estimate the

RR and TV [17]. In this study, we tested the hypothesis that 12-lead ECG signals processed by
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a novel mobile cvrPhone system could detect apnea using a mechanically ventilated animal

model.

Methods

Animal preparation and data recording

The animal studies were approved by the institutional review board and the Subcommittee on

Research Animal Care at the Massachusetts General Hospital. All experiments were performed

in accordance with relevant guidelines and regulations.

Nine male Yorkshire swine were anesthetized and instrumented in the Animal Electrophysiol-

ogy Laboratory at Massachusetts General Hospital, as previously described [1], [2]. Anesthesia

was induced with Telazol (4.4 mg/kg) IM. Each animal was intubated and placed on a mechanical

ventilator and anesthesia was maintained with Isoflurane (1.5–2.5%) and 2% O2. Paralytics were

used to control spontaneous of the thoracic cavity during apnea. The system incorporated a vol-

ume-controlled, time-cycled ventilator (Ohmeda-GE, Madison, WI) and a capnograph (Surgivet

V9004, Smiths Medical, Dublin, OH), which was used to confirm the RR delivered by the ventila-

tor throughout the respiratory interventions. The capnograph monitor has an accuracy of ±1

breath/min. Electrodes were placed at the standard 12-lead ECG placement locations.

Studies were performed while the animal was in a supine position and the RR was set at 6

or 14 breaths/min and the TV was changed from 250 to 0 to 750 to 0 to 500 to 0 to 750 ml, for

2 min at each level. During the apnea period the ventilator was suspended for 30 sec; this

period of time was chosen to replicate the duration of a typical apneic event. ECG signals were

recorded using the cvrPhone (Fig 1) as previously reported [17]. The analog signals were digi-

tized at 500 Hz and 16 bit resolution (~0.38 μV). The Wilson Central Terminal (WCT, (RA

+LA+LL)/3) was used as the reference voltage for the precordial leads.

ECG-processing algorithms

A software-based QRS detection algorithm was applied, to a predetermined lead, to obtain prelim-

inary R-wave annotations. The preliminary QRS detections were refined, and abnormal beats,

e.g., premature ventricular complexes and aberrantly conducted beats, were identified using a

template-matching QRS alignment algorithm [1], [2]. Briefly, for each new beat an 80 ms window

centered at the peak of the QRS complex was formed from the preliminary beat detection, and an

isoelectric PR segment was automatically subtracted as a zero amplitude reference point (by esti-

mating the mean voltage in a 10 ms window preceding the start of each QRS complex). A median

QRS template was generated from all normal QRS complexes across the previous 31 beats and the

beat was aligned to the QRS template using cross-correlation. Cross-correlation was repeated

twice for each new QRS complex to ensure proper QRS alignment. A beat was considered abnor-

mal if its correlation coefficient was less than a threshold value of 0.90, or if the preceding R-to-R

interval was at least 10% shorter than the mean RR interval of the previous 7 beats.

An overall description of the algorithms to estimate the RR and TV are presented in Fig 1B.

To extract the respiration-induced periodic modulation of the ECG signals, we estimated, on a

beat-by-beat basis, the root mean square (RMS) value of the ECG signal in a 100 ms window

centered at the peak of the QRS complex. The derived RMS envelope exhibited periodic oscil-

lation [1], [2], [17].

Respiration-rate estimation algorithm

Then, the respirophasic signal for lead pairs was calculated as the RMS signal ratio on a beat-

by-beat basis. Specifically, each lead pair combination consisted of a test lead (the numerator),
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and a reference lead (the denominator). For each ECG lead pair combination we calculated

the respirophasic signal as the 32 beat length RMS signal ratio on a beat-by-beat basis. Thereaf-

ter, we estimated the power spectrum of the RMS ratio data using a 512-length Fourier trans-

form to improve the frequency-domain resolution. The dominant power spectral peak

between 0.03 and 0.3 cycles/beat was detected, and the signal-to-noise ratio (SNR) was calcu-

lated, as the spectral peak power divided by the mean of the power spectrum from 0 to 0.5

cycles/beat, expressed in decibels:

SNR ¼ 10log
10

signal
noise

� �

We calculated SNR values for every combination of lead pairs, and selected the pair with

highest SNR for RR estimation across all 144 permutations. The selected peak frequency in

cycles/beat was converted to breaths per minute by scaling the frequency by the average heart-

rate (HR) across the 32 beat window. If there were more than 10% abnormal beats in the 32

beat window, then the corresponding RR was linearly interpolated. A frequency in the Fast

Fourier Transform spectrum that is smaller than 0.03 cycles per heart beat was considered to

be an apnea event, and zero was assigned to the corresponding RR estimation.

Tidal-volume estimation algorithm

The TV was estimated using the peak-to-peak amplitude of the respiratory RMS signal, as we

detailed previously [2]. To account for cases of high RR and low HR, which could effect the

accuracy of the peak-to-peak estimation of the RMS signal, we used cubic spline interpolation

to double the number of the RMS signal samples. Subsequently, the peak-to-peak amplitude of

the respiratory envelope was normalized to the mean value to obtain the percent modulation

(PM): 100× (max envelope–min envelope)/(max envelope + min envelope)/2. [2]

Then, we found the median PM from all leads in a running 10 seconds window, and applied

a regression equation (TV = 45.65 × PM -51.15) on the median PM to estimate the corre-

sponding TV [2]. When the estimated TV is negative, the value is set to zero.

Statistics

Our results are presented as median ± standard deviation of normally distributed variables,

unless otherwise noted. The Wilcoxon rank sum test was used to compare two related samples.

A statistically significant change is manifested by a p< 0.05. Statistical analysis was performed

using MATLAB (MathWorks Inc, Natick, MA).

Results

The RR and TV estimation depends on the HR (the HR corresponds to the sampling rates for

the TV and RR estimation algorithms). In this study, the HR was 114±11 beats per minute.

Fig 1. (A) The Smart-Phone based ECG acquisition system, cvrPhone. Flow-diagram of the 12-lead ECG signals from

the torso to Smart-Phone. Ten electrodes are placed on the torso for the recording of 8 ECG leads (Leads I and II and

six precordial leads) and the real-time display of selected three ECG signals on the smartphone screen. (Modified from

[17] under a CC BY license, with permission from the authors, original copyright 2017). (B) Lay-out of the algorithms

to estimate the RR and TV. (C) Estimation of the tidal-volume (TV) at 250 to 0 to 750 to 0 to 500 to 0 to 750 ml

(marked by the red lines), at RR of 6 breaths/min (upper panel) and 14 breaths/min (lower panel) set by adjusting the

mechanical ventilator and using the value indicated by the capnogragh monitor as the gold standard.

https://doi.org/10.1371/journal.pone.0217217.g001
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Apnea detection using tidal-volume

To assess the ability of our TV estimation algorithm to detect apnea, short respiratory pauses

were induced in anesthetized pigs using a mechanical ventilator. The respiratory pause dura-

tion was chosen to replicate clinically relevant periods of apnea. Each transition in the respira-

tory rate was confirmed by reading the target TV on the mechanical ventilator display. Fig 1C

shows examples of the time-dependent trace of TV estimation values at RR of 6 breaths/min

(upper panel) and 14 breaths/min (lower panel). Each red line of Fig 1C represents the time

when the target TV setting was displayed at the mechanical ventilator. The target setting was

maintained for 30 seconds during apnea episodes and for 2 minutes during every other TV set-

ting episodes. Each circle in Fig 1C represents the timing of the positive peak and the estimated

TV.

Fig 2A shows TV estimations at the indicated mechanical ventilation rates (9 animals at 6

breaths/min RR and from 8 animals at 14 breaths/min RR). Again, the red dashed lines indi-

cate the TV settings of the ventilator. For every pair of adjacent TV settings, there is a differ-

ence between the two groups of estimated TV values (p<0.05). Estimated TV values during

apnea are distinguished from adjacent non-apnea settings. There was no difference in the esti-

mated TV errors between any two apneic events or between the two 750 ml settings (Fig 2B).

On the other hand, the TV estimation error was between 0 and 250 ml (p = 0.34, p = 0.23 &

p = 0.29 at 6 breaths/min, and p<0.05, p = 0.66 & p<0.05 at 14 breaths/min), 250 and 500 ml

(p = 0.54 at 6 breaths/min, and p<0.05 at 14 breaths/min), and 500 and 750 ml (p = 0.15 &

p = 0.62 at 6 breaths/min, and p<0.05 & p = 0.16 at 14 breaths/min).

Fig 3A shows TV estimations arranged in the order of increasing true TV values from 0 to

750 ml. The median estimated TV values are 20, 249, 506, and 774 ml at 6 breaths/min RR,

and 7, 328, 522, and 720 ml at 14 breaths/min RR at 0, 250, 500 and 750 ml respectively. All

pairs of adjacent TVs are significantly different, with 0 vs 250 ml (p<0.001), 250 vs 500 ml

(p<0.001) and 500 vs 750 ml (p<0.001) for 6 breaths/min and 0 vs 250 ml (p<0.001), 250 vs

500 ml (p<0.001) and 500 vs 750 ml (p<0.001) for 14 breaths/min. Linear regression between

the estimated and true TV showed an R of 0.7877 (p<0.0001) at 6 breaths/min and 0.8233

(p<0.0001) at 14 breaths/min. In Fig 3B, we determined that the TV estimation errors increase

with incremental TV values, and the magnitude of these errors at 6 breaths/min is larger

(p = 0.61, 0.89 & 0.07 at 250, 500 & 750 ml, respectively) than the errors at 14 breaths/min dur-

ing non-apnea events.

Apnea detection using respiration-rate

The estimated RR values are displayed in Fig 4A. The median and standard deviation of the

estimated RR values were 0±4.6, 6.0±2.1, 6.0±0.6 and 6.1±0.4 breaths/min at the 6 breaths/min

RR settings, and 0±1.2, 14.0±0.2, 14.0±0.1 and 14.0±0.1 breaths/min at the 14 breaths/min RR

settings, at TV of 0, 250, 500 and 750 ml, respectively. The RR distributions (Fig 4A) between

0, 250, 500 and 750 ml (either at 6 or 14 breaths/min) were significantly different (p<0.001).

Among all estimated RR values, 97% exhibited errors of less than 1 breath/min. There was sta-

tistical difference in the estimated RR error distributions (Fig 4B) between any two 6 breath/

min (p<0.001, p<0.001, p = 0.112) or 14 breaths/min (p<0.05, p<0.05, and p<0.001), for any

two TV settings. Overall, these results demonstrate very robust and accurate RR estimations.

The TV and RR values estimated from the 51 episodes of apnea were 11.7±54.9 ml and 0

±3.5 breaths/min, which were significantly smaller than other non-apneic periods. During

these apnea periods, the time the RR estimation algorithm needed to detect apnea was 7.0±3.2

s. When we used 73 ml as the threshold for apnea detection, the time the TV algorithm needed

to detect apnea was 8.6 ± 6.7 sec.
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Estimation of the respiratory rate from body surface signals

To determine the relationship of the number of ECG leads on the accuracy of the RR estima-

tion, we estimated the RR by obtaining for each 32 beat sequence the ratio of any two body sur-

face leads that provided an estimated error of less than 1 breath/min. In Table 1 we show the

percent of RR estimations across all animals that resulted in an error of less than 1 breath/min

for the different pairs of leads. In Table 1 we show the pair of leads percent of RR estimations

across all animals that resulted in error of less than 1 breath/min. Pairing of ECGIII with V3

was the most commonly selected coupling, accounting for 91% of all estimations, while paring

V3 with III and V2 with V5 and V2 with V1, resulted in 98.3% of the RR estimates to exhibit

an error less than 1 breadth/min.

To further evaluate this method in accurately estimating the TV from a minimum number

of ECG leads, we estimated the TV by obtaining the lead(s) that exhibited a percent error

smaller than the error limit (105 ml, median error) in at least one lead. We observe that, at

Fig 2. Tidal volume estimations (A) and the estimation errors (B), in the order of the tidal volume setting. The tidal volume setting of the mechanical ventilator was

changed from 250 to 0 to 750 to 0 to 500 to 0 to 750 ml, as marked by the red thick lines on (A). The respiration rate was 6 breaths/min for the upper two panels and 14

breaths/min for the lower two panels. There were 9 records from 9 animals in case of 6 breaths/min, and 8 records from 8 animals in case of 14 breaths/min. Each bar

plot represents 90, 75, 50, 25 & 10% of all estimated values (A) or of all estimation errors (B). There was difference in the estimated TV errors between any two apneic

events or between the two 750 ml settings. On the other hand, the TV estimation error was between 0 and 250 ml (p = 0.34, p = 0.23 & p = 0.29 at 6 breaths/min, and

p<0.05, p = 0.66 & p<0.05 at 14 breaths/min), 250 and 500 ml (p = 0.54 at 6 breaths/min, and p<0.05 at 14 breaths/min), and 500 and 750 ml (p = 0.15 & p = 0.62 at 6

breaths/min, and p<0.05 & p = 0.16 at 14 breaths/min).

https://doi.org/10.1371/journal.pone.0217217.g002
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least in swine, all 12 leads are required to achieve a TV estimate less than 105 ml, 75% of the

time.

Discussion

The presence of SA has a significant negative impact on prognosis across many disease states

but despite the availability of effective treatment, SA remains substantially underdiagnosed,

and as a result, undertreated. To decrease the barrier to SA evaluation, we have developed a

smartphone-based cardio-respiratory monitoring system, namely cvrPhone, that monitors RR

and TV [17]. In this study, we tested the performance of the RR/TV estimation algorithms of

the cvrPhone in diagnosing apnea. The results support that our algorithms can first, estimate

the RR with an accuracy of 1 breath/min using only 2 ECG leads, ~91% of the time; second,

estimate the TV with an accuracy of less than 105 ml using all 12 ECG leads, ~75% of the time;

and third, detect apnea within ~7–8 seconds.

Fig 3. Tidal volume (TV) estimations (A) and TV estimation errors (B), in the order of increasing TV. The tidal volume setting of the mechanical ventilator was

changed from 250 to 0 to 750 to 0 to 500 to 0 to 750 ml during tests, and rearranged in the order of increasing TV in the plots. The TV setting values are marked by the

red thick lines on the left panels. The respiration rate was 6 breaths/min for the upper two panels and 14 breaths/min for the lower two panels. There were 9 records

from 9 animals in case of 6 breaths/min, and 8 records from 8 animals in case of 14 breaths/min. Each bar plot represents 90, 75, 50, 25 & 10% of all estimated values (A)

or estimation errors (B). All pairs of adjacent TVs in (A) are different with 0 vs 250 ml (p<0.001), 250 vs 500 ml (p<0.001) and 500 vs 750 ml (p<0.001) for 6 breaths/

min and 0 vs 250 ml (p< = 0.001), 250 vs 500 ml (p<0.001) and 500 vs 750 ml (p<0.001) for 14 breaths/min. In (B), the TV estimation errors increase with incremental

TV values, and the magnitude of these errors at 6 breaths/min is larger (p = 0.61, p = 0.89 & p = 0.07 at 250, 500 & 750 ml, respectively) than the errors at 14 breaths/min

during non-apnea events.

https://doi.org/10.1371/journal.pone.0217217.g003
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Inductive plethysmography (an inductive plethysmography sensor-band that consists of

sinusoidal electrical wires and is excited by low amplitude, high frequency alternating current)

and impedance pneumography (employing low amplitude, high frequency alternating current

between two torso surface electrodes) are typical non-invasive methods of respiration moni-

toring in the sleep laboratory [18], [19]. These techniques evaluate respiration characteristics

by measuring expansion and contraction of the rib cage (impedance pneumography) or both

of the rib cage and abdomen. Recently, this methodology has been employed in smart

Fig 4. Respiratory rate (RR) estimations (A) and the associated estimation errors (B). The respiration rate was set to 6 or 14 breaths/min as marked by the thick red

lines on (A). There were 9 records from 9 animals in case of 6 breaths/min, and 8 records from 8 animals in case of 14 breaths/min. In (A), the RR distributions between

0, 250, 500 and 750 ml (either at 6 or 14 breaths/min) were significantly different (p<0.001). There was statistical difference in the estimated RR distributions between

any two 6 breaths/min (p<0.001, p<0.001, p = 0.112) or 14 breaths/min (p<0.056, p<0.05, and p<0.001), for any two TV settings. Each bar plot represents 90, 75, 50,

25 & 10% of all estimated values (A) or estimation errors (B).

https://doi.org/10.1371/journal.pone.0217217.g004

Table 1. Percent (% of errors smaller than the error limit at least one pair among the multiple pairs) of estimated

respiration rates whose errors are smaller than 1 breath/min.

Number of Pairs Numerator & Denominator Percent

1 (V3,III) 91.1

2 (V3,III) (V2,V5) 96.6

3 (V3,III) (V2,V5) (V2,V1) 98.3

https://doi.org/10.1371/journal.pone.0217217.t001
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garments, such as the LifeShirt (Vivometrics) and Hexoskin (Carre Technologies Inc), for the

ambulatory monitoring of respiration. The validity and reliability of these wearable vests has

been tested in diverse ambulatory conditions, including daily living activities, light to maximal

excise, and patients with respiratory diseases [14, 15, 20–22]. In general, these studies showed

acceptable validity and reliability for RR monitoring, but lower validity and reliability for TV

and minute ventilation. Recently, researchers have constructed ambulatory impedance pneu-

mography devices for quantitative monitoring of respiratory characteristics [13], and devel-

oped algorithms to remove motion artifact in impedance pneumography signals [23]. Further

efforts have been made to develop new methods to estimate the RR from ECG and photo-

plethysmogram signals [24, 25]. However, the reported RR errors of these methods can be as

high as 8–10%, while the TV could not be estimated. Wearable and smartphone based technol-

ogies have also been developed for non-invasive and continuous cardiac ambulatory monitor-

ing using devices such as chest patches, necklaces, and smartwatches [9], [10], [12], [9].

In our study, during apnea imposed by a mechanical ventilator, the estimated TV and RR

values were 11.7±54.9 ml and 0.0±3.5 breaths/min, which were significantly smaller than TV

and RR estimation values during non-apnea settings. TV estimation values were statistically

significantly different at different TV settings, and similarly were the RR estimations at differ-

ent RR settings. These results suggest that our TV/RR estimation algorithms can be applied for

SA detection, including Cheyne-Stokes respiration (CSR), whose breathing pattern is charac-

terized by gradual increase and decrease of TV with periods of sleep apnea. The severity of

sleep apnea is assessed by the apnea hypopnea index (AHI): the number of apneas and hypop-

neas per hour of sleep. The apnea/hypopnea in the index is defined as a cessation/reduction of

breathing for 10 sec or more. In this study, the time our TV and RR algorithms needed to

detect apnea was 8.6 ± 6.7 and 7.0±3.2 seconds, respectively. Our algorithms could be applied

to estimate AHI from ECG signals. However, the apnea detection time requires further short-

ening to accurately measure AHI.

A potential limitation of this study, stems from the fact that the mean HR of the swine was

~100 bpm, while patients that suffer from sleep apnea tend to be bradycardic. High HRs facili-

tate the accurate estimation of the TV and RR during rapid changes of these signals. However,

we have found that use of 16 beats to estimate the TV and RR are essentially no-different from

the 32-beat, ones (data not shown). This finding permits that the TV and RR are estimated

with the same accuracy during rapid changes in either the RR or TV, at HRs approximately

half of those reported in this study, which would be close to those observed in patients with

sleep apnea.

In conclusion, our ECG-derived respiration algorithms provide statistically meaningful TV

estimations and accurate and precise RR estimations. In addition, both TV & RR estimation

algorithms demonstrate reliable detection of apnea. These results suggest that our algorithms

can be applied for SA detection in conjunction with ECG monitoring of ambulatory patients.
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