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ABSTRACT: Light addressable potentiometric sensors (LAPS) are a competitive tool for
unmarked biochemical imaging, especially imaging on microscale. It is essential to optimize
the imaging speed and spatial resolution of LAPS since the imaging targets of LAPS, such as
cell, microfluidic channel, etc., require LAPS to image at the micrometer level, and a fast
enough imaging speed is a prerequisite for the dynamic process involved in biochemical
imaging. In this study, we discuss the improvement of LAPS in terms of imaging speed and
spatial resolution. The development of LAPS in imaging speed and spatial resolution is
demonstrated by the latest applications of biochemistry monitoring and imaging on the
microscale.

1. INTRODUCTION
A variety of analytical tools are designed for biochemical
detection, such as fluorescence imaging, microelectrode array,
plasmonic-based electrochemical impedance microscopy (P-
EIM), ion-sensitive field-effect transistor (ISFET) array, field-
effect-addressable potentiometric sensor (FAPS), light-ad-
dressable potentiometric sensors (LAPS), etc. Fluorescence
imaging, which distinguishes the analytes from the environ-
ment through adding the label reagent, has been widely used
for biochemical imaging. However, the label reagents will
influence the cellular activities or chemical compositions and
introduce some irrelevant factors during the experiment.
Moreover, the label reagents usually have phototoxicity and
photobleaching impacts, which make it hard to meet the
increasing demand for environmentally friendly character-
istics.1 As the development of biochemistry continues, label-
free technology has become required for detection.
Microelectrode array, as a sort of label-free technology, is

widely used for detecting the activities of neurons and
cardiomyocytes. Increasing microelectrode density is a
practical strategy to handle the problem of high electrode
impedance and promotes spatial resolution to the subcellular
level. Nevertheless, this method has its limitations. The plasma
membranes of cells cannot expend to the narrow spaces among
the pillars of extracellular microelectrodes.2 In another case of
intracellular microelectrode, its impedance property is

excellent, but the intracellular configuration will be influenced
at the same time.3

To obtain more abundant details about biochemical analysis,
the detection mode has evolved from overall detection to
imaging. Plasmonic-based electrochemical impedance imaging
(P-EIM) is another type of label-free technology with high
sensitivity to the change of surface charge and can be applied
to detect the action potential of a neuron,4 monitor DNA
charge regulations,5 measure the binding kinetics of a small
molecule on a protein.6 ISFET,7 as a field-effect semiconductor
sensor, can be applied for studying various reaction
mechanisms, such as enzymatic reactions, DNA pairing, etc.,
by modifying different sensitive membranes. On the ISFET
array, FAPS is proposed later. FAPS integrates sensitive units
and employs the crossing back-gate electrodes as an addressing
method.8,9 However, the test sites of ISFET array or FAPS are
fixed after fabrication, and the increase of sites density will be
followed by the lift of manufacturing cost and signal processing
complexity because the spatial resolution of FABS relies on its
site density.
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LAPS is an electrochemical sensor with a simple stacked
structure based on the potential measurement principle. The
working mechanism of LAPS can be analyzed by the
semiconductor field-effect principle10 and photoelectric effect
of semiconductors.11 Applying a suitable bias between the
reference electrode and output electrode will cause a depletion
region appearing inside the semiconductor. AC modulated
illumination light irradiation on the semiconductor layer of the
LAPS leads to photogenerated current inside the semi-
conductor. Illumination with alternating-modulation applied
to the substrate will force the generated photocurrent that
appears in the semiconductor of LAPS. The mechanism of the
generated photocurrent has been analyzed in detail.12 The
simple circuit model of LAPS is shown in Figure 1a, where the
relationship between the generated photocurrent Iṗ and the
external output I ̇ is13

= ·
+

I I
C

C Cp
i

i d (1)

The capacitance of the depletion region Cd is affected by the
thickness of the depletion region. Ci is the capacitance of
insulation. Therefore, the amplitude of the external current I ̇
can reflect the concentration of the measured substance. As
shown in Figure 1b, the change of the concentration will cause
a lateral shift in the bias voltage−current (V−I) curve.
Assuming the bias voltage remains constant, the concentration
change is reflected as the increase or decrease of the amplitude
of external current I.̇ The potential between the electrolyte and
the insulating layer is called the electrolyte/insulated gate
interfacial potential, which can be related to the concentration
of the measured substance through the Nernst equation. The

concentration of the measured substance can be directly
related to the interface potential, such as the relationship
between the H+ ion concentration and the interface potential
between electrolyte/silicon nitride. In some cases, the
concentration of the measured substance indirectly affects
the interface potential, such as LAPS used for detecting DNA,
where the binding of DNA to the target changes the pH value
of the solution and influences the interface potential. Because
photocarriers are generated only at the point of illumination,
LAPS can provide flexible local measurements, where the
measurement position and range are determined by illumina-
tion. As shown in Figure 1c, chemical images are obtained by
scanning an entire substrate under a fixed bias voltage. The
color of each position in the chemical image represents the
photocurrent magnitude at the corresponding position of the
sensor plate. Chemical images can illuminate the distribution
of the concentration for the measured substance in space
intuitively.
To some extent, LAPS retains several merits of potential

sensors (ISFET, EIS capacitor, etc.), such as high measure-
ment speed, high sensitivity, a wide range of applications, etc.
Therefore, LAPS has good universality in the field of analysis
science. In the past 30 years, LAPS has been applied in
multiple aspects, such as disease diagnosis,14,15 microbiol-
ogy,16−18 research of cell activity,19−22 food safety,23,24

pharmaceutical,25,26 etc. A lot of application systems have
been derived based on LAPS, such as electronic tongue,27,28

integrated detection system,29,30 etc.
Compared with the biochemical imaging technologies

mentioned before, LAPS has the same advantage of free-label
property with P-EIM, FAPS, and its addressing method of

Figure 1. (a) Structure and (b) principle of concentration measurement and (c) chemical imaging.

Table 1. Characteristics of Label-Free Biochemical Imaging Technology

Technology Illumination Back-electrode Detection target Ref

P-EIM Polarized light No Action potential of neuron, DNA charge regulations, binding kinetics of small molecule on
protein

4, 6

FAPS No Electrode
array

Detection target of ISFET, such as various ions, macromolecules, activity of cells, etc. 8, 9

LAPS AC light beam or lighting
array

Single
electrode

Various ions, macromolecules, activity of cells, shape of single cell, bacterial colony,
enzymatic reaction, etc.

14, 30
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illumination has much more flexibility. The technical details of
LAPS and other label-free imaging technologies are summar-
ized in Table 1.
Researchers have paid attention to LAPS since it was first

proposed31 because of its outstanding advantages for
biochemical detection: the flexibility measurement mechanism
based on light addressing and label-free detection method. So
far, a large number of applications based on LAPS have been
developed.32−43 The application modes of LAPS can be
roughly divided into three types. The first is overall
measurement of various biological or chemical samples such
as DNA,32 enzymes,33,34 diabetes markers,14,35 cancer
markers,15,20 ATP,36 bacteria,16,18 etc. The second type is to
use multiple sensitive membranes to regionalize the surface
modification of the sensor surface to achieve simultaneous
monitoring of multiple substances on the same sensor, such as
electron receptors,37,38 cell metabolism monitoring,39,40

extracellular acidification monitoring,41 light-addressable
DNA chips,42 etc. The third type is to combine the addressing
moving light source to carry out two-dimensional imaging on
the sensor surface at the microscale, such as LAPS imaging
system (measuring pH,43 urea,34 etc.), scanning photoinduced
impedance microscopy (SPIM),44−46 photoelectrochemical
imaging system (PEIS),47,48 scanning electrochemical photo-
metric sensor (SEPS),49 and light-addressable square wave
voltammetry (LASWV) used for monitoring enzymatic
reaction,50 etc.
In order to gain a deeper understanding of the microworld,

two-dimensional imaging systems based on LAPS suitable for
microscale observations are developing constantly. Imaging
speed and spatial resolution of LAPS determine the ability of a
two-dimensional imaging system based on LAPS. In many
cases, the process of chemical reactions or response of
microorganisms is fast and requires the imaging speed to
keep up with it. On the other hand, in order to understand the
surface distribution of the detection target accurately, the
imaging system based on LAPS needs to provide a high-
resolution image. The development trend for imaging systems
based on LAPS is high-speed and microscale imaging.
Therefore, designing an imaging system that supports both

high-speed and high-resolution imaging is still a research
hotspot in the field of LAPS due to practical needs.
Here, we less discuss other fields, such as sensitivity,

linearity, and so on. As shown in Figure 2, we have mainly
reviewed the application of LAPS in the field of biochemical
imaging in this work, which focuses on technology improve-
ments relative on imaging speed and spatial resolution for
LAPS. First, the progress of rapid imaging technologies applied
in LAPS imaging systems, including the application of LAPS
rapid imaging in the field of biochemistry and the achieve-
ments obtained in LAPS imaging speed, is reviewed. LAPS
imaging speed optimization of LAPS mainly includes the
optimization of LAPS imaging systems with a single light
source and lighting array. Then, the imaging applications of
high-resolution LAPS, such as cell imaging, microbial imaging,
and enzymatic reaction observation, are introduced. Detailed
introductions about methods for improving LAPS imaging
resolution, such as substrate optimization and active
suppression of carrier diffusion, are given. Finally, a simple
summary about the development of microscale-biochemistry
imaging based on LAPS is given. The future developments of
LAPS imaging systems are predicted.

2. RAPID IMAGING TECHNOLOGY OF LAPS
2.1. Improvement of Imaging Speed. It can be assumed

that the number of pixels in the chemical image obtained by
LAPS is nx × ny, where nx and ny are the numbers of pixels per
row and column, respectively. Therefore, the total sampling
time of chemical images Ttotal can be described as

=T  T
n n

ntotal measure
x y

measure (2)

Tmeasure represents the time between the start of the
measurement process and the finish of light beam movement.
nmeasure represents the number of pixels processed during a
measurement process.
It can be simply assumed that Tmeasure is the time of a

measurement process, which is influenced by many factors
such as illumination frequency, measurement mode (constant

Figure 2. An overview of main topic about LAPS for biochemical imaging on microscale.
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bias mode, voltage tracking mode), movement speed of the
light source, etc. Compared with the voltage tracking mode,
LAPS working on the constant bias mode needs fewer
sampling points in the V−I curve, which leads to smaller
Tmeasure. A traditional imaging system based on LAPS scans the
substrate for imaging with a single light source, which obtains
the pixel one by one.51−58 The system with a single light
source only obtains pixel data per measurement process
(nmeasure = 1). In recent years, imaging systems employing light
arrays have been proposed to provide rapid imaging.59−63 The
lighting array can simultaneously emit multiple light beams,
where the light intensity of each light beam is modulated with
specific frequencies. Because fast Fourier transform (FFT)
technology can help extract components with different
frequencies from photocurrent, pixels with the number of
light beams can be obtained in a measurement process (nmeasure
= the number of light beams).

2.1.1. Optimization of LAPS Imaging System with Single
Light Source. At the early stage of imaging systems based on
LAPS, a mechanical platform was used to move the light
source. The power source of the mechanical platform is a
stepper motor, which is the main reason for a reduction in
imaging speed. The mechanical platform can provide high-
precision displacement for a light source because the repeated
positioning accuracy of the mechanical platform is less than 1
μm. However, as shown in eq 2, the mechanical platform

combines with a single light source to obtain pixels data one by
one. The displacement speed of the mechanical platform is
slow and limits the imaging speed of LAPS. For example,
Motoi Nakao achieves pH distribution images to observe
colonies of Saccharomyces cerevisiae indirectly,51 where the
image size and imaging speed are 128 × 128 pixels and 110
ms/spot, respectively. As shown in Figure 3a, Wagner et al.
propose the imaging system using a digital micromirror device
(DMD) projector as the light source.52 With the help of digital
light processing (DLP) technology, the DMD projector can
provide illumination with different spot sizes and positions
through fast switching mirrors, which have a switching speed of
1440 Hz. Because the displacement of the light source for the
DMD projector relies on a refresh of projected light, the
imaging system with the DMD projector is faster than that
with the mechanical platform. Nowadays, DMD is an
important part of the design of LAPS systems. For example,
a light-addressing device combining optical choppers with
DMD has a 120 Hz refresh rate, which is the light source for
LAPS and light-actuated AC electroosmosis integrated in an
acting and sensing system.53 Besides that of DMD projector,
there is reported that the commercially available projector
based on liquid crystal has been developed successfully for
LAPS addressing.54 The display based on an OLED or LCD
consists of many luminous units arranged in a regular pattern,
where each luminous unit of the displays can be turned on or

Figure 3. Four typical types of light source based on LAPS imaging system. (a) DLP technology controlling the DMD projector to finish moving
the single light source. Reproduced with permission from ref 52. Copyright 2012 Elsevier. (b) Single light source providing a light beam moved by
an analog micromirror system. Reproduced with permission from ref 58. Copyright 2014 Elsevier. (c) Light source being a lighting array based on
VCSEL diodes combined with the linear stage. Reproduced with permission from ref 59. Copyright 2011 Elsevier. (d) LED array including 7 × 5
LEDs used to illuminate the substrate from the front side. Reproduced with permission from ref 61. Copyright 2013 Elsevier.
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off independently through driven circuits. It can be found that
the display based on an OLED or LCD is a prime light source
for rapid imaging because it can shift the position of
illumination without physical displacement of the illumination
device, which is similar to the DMD projector. Werner et al has
proposed a LAPS system with OLED display as light
source,55,56 where the imaging speed of OLED-LAPS using
OLED display with high refresh rate can reach to 25 ms/
spot.56 Differing from switching mirrors, ref 52 mentioned
another addressing method through modifying the refraction
angle of a micromirror. However, the method about the
refraction angle is not fit for the DMD projector. It is worth
mentioning that this method is adopted by Das et al.57,58 As
shown in Figure 3b, an analog micromirror is controlled by a
MEMS controller card to modify the refraction angle about the
light beam from the red laser. The LAPS imaging system
integrated with an analog micromirror can provide high-speed
imaging with an imaging speed of 0.2 ms/spot.58 With a similar
method, Zhou et al. design a photoelectrochemical imaging
system based on LAPS for rapid pH monitoring, where the
high temporal resolution is credited to application of analog
micromirror.48

2.1.2. Optimization of LAPS Imaging System with
Lighting Array. It is clear that LAPS systems introduced in
Section 2.1.1 implement imaging relying on a single light
source. Although we can improve the imaging speed of a LAPS
system by optimizing the light source,52−58 the imaging
mechanism of a single light source system which is obtaining
pixels one by one is the possible reason to limit enhancement
of spatial resolution for LAPS imaging. On the other hand,
LAPS based on a single light source is not an ideal imaging
device for monitors because each pixel in the chemical image is
measured nonsimultaneously. Therefore, another type of LAPS
system using a lighting array as an illumination device is
proposed which can measure multiple pixels at the same
time.59−63 As shown in eq 2, there is nmeasure > 1 for the LAPS
system using a lighting array instead of a single light source. To
employ the advantage of the lighting array, Wagner et al.
propose the LAPS imaging system combining a linear stage
and a vertical-cavity surface-emitting laser (VCSEL) array,
where the VCSEL array supports high-density imaging and the
linear stage is useful for increasing the illumination range and
flexibility of imaging.59 Figure 3c provides the schematic and
picture of LAPS with a combined light source.
Because each illumination unit in the lighting array is

modulated with an alternating current with a specific
frequency, enhancement of the frequency bandwidth for the
LAPS means a higher imaging speed because the frequency
bandwidth decides the number of illumination units that can
be integrated in the lighting array to excite the sensor. It has
been proven that there are photocarriers generated and
separated within the depletion region directly during front-
side illumination.60 Therefore, the LAPS system based on
front-side illumination supports a wider frequency bandwidth
compared with the LAPS system based on back-side
illumination because of non-involving diffusion processes in
the depletion region. As shown in Figure 3d, Itabashi et al.
design a front-side-illuminated LAPS with LED array for pH
monitoring, where the highest speed of imaging is 0.4 ms/spot
and the LED array includes 7 × 5 LEDs.61 Usually, the single
core size of the multicore optical fibers is smaller than that of
LED. Therefore, a lighting array based on multicore fibers can
provide good spatial resolution and measurement speed for

LAPS simultaneously, which is suitable for imaging in vivo of
LAPS.62 However, the signal-to-noise ratio of fiber-based
LAPS should be improved, because the brightness of the fiber
is weak. Generally, LAPS with front-side illumination requires
a light source with lower brightness than that with back-side
illumination. Miyamoto et al. design the chemical imaging
system with high imaging speed for microfluidic channel
monitoring.63 Front-side illumination with optical fibers can
provide an imaging speed up to 0.15 ms/spot.
Besides illumination of the front side, the frequency

bandwidth of LAPS can be enhanced through optimizing the
structure and the material of the substrate.65−67 Truong et al.
propose that the partially etched structure on a substrate can
enhance the frequency bandwidth of LAPS.65 p−i−n
amorphous silicon (a-Si) and indium gallium zinc oxide
(IGZO) are reliable semiconductors for LAPS, which have
been proven by Yang et al.66,67 The frequency stability of the
spatial resolution (1−20 kHz) is confirmed in p−i−n a-Si
LAPS.66 Compared with LAPS based on Si substrate, IGZO
LAPS supports a higher maximum frequency of light excitation
(30 kHz).67 Characteristics of LAPS with optimizing the
imaging speed are summarized in Table 2.
2.2. Application of LAPS for Biochemistry Monitor-

ing. One of the applications of the rapid imaging system based
on LAPS is biochemistry monitoring.51,68−70 The development
of biological monitoring capabilities for LAPS is closely related
to the improvement of the LAPS imaging speed. Early LAPS
cost tens of minutes to form a chemical image with the help of
mechanical platform addressing.51 For example, Nakao et al.
observe the growth of microorganism colonies with an early
LAPS imaging system, where the time span for observation is
in hours.68

Most monitoring examples are based on the principle of pH
sensing.39,69,70 Hiraishi et al. monitor pH distribution on the
surface of bovine dentin using a LAPS imaging system.69 LAPS
imaging can be used to study crevice corrosion on stainless
steel.70−72 Miyamoto et al. design a LAPS system for in situ pH
imaging in the vicinity of a corroding metal surface, which is
shown in Figure 4a.70 LAPS is an ideal method for indirectly
observing the crevice corrosion because of the advantages of
LAPS in pH imaging, where the change in pH will appear in
the corrosion position. Subsequently, the new technology
combining LAPS and infrared reflection technology is
developed to support in situ imaging about pH and surface
roughening simultaneously.72 This indirect detection meth-
od70−72 can also be applied for study hydrogen permeation,73

where a pH change will appear in the anode surface of the iron
sheet because of redox reaction.
LAPS can be applied to study the cell growth and

metabolism. The imaging system addressing with a single
light source and mechanical platform is applied for monitoring
the recovery process of defects in a cultured cell layer.46 Figure
4b shows the chemical images of the defect recovery process in
the Caco-2 cell layer from day 1 to day 16. Dantism et al.
studies the extracellular acidification of Escherichia coli (E. coli)
K12 bacteria and CHO cells through differential imaging with
the help of differential LAPS, where the time interval for
imaging is 20 min.39 The example in ref 39 proves that LAPS
and ISFET have the same advantage, which is suitable for long-
term measurements of extracellular acidification.74

LAPS can also be used to monitor enzymatic reaction.33,34

Figure 4c shows an example of observation of a thin poly(ester
amide) film degraded by the enzyme α-chymotrypsin.33 As
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shown in Figure 4d, Zhao et al. fix urease on the sensor plate
and dynamically monitor the enzymatic reaction with urea-
sensitive LAPS.34

In recent years, the combination of LAPS and microfluidic
technology has been an important research direction.63,64 As
mentioned previously,63 the rapid imaging system with imaging
speed up to 0.15 ms/spot is used by Miyamoto et al. to view
the buffering action inside a microfluidic channel at 100 fps, of
which the scheme of the imaging system and pH images are
displayed in Figure 4e.
Miniaturization of sensors is an important requirement for in

vivo labeling experiments. Guo et al. develop a miniaturized
LAPS system as a label-free pH probe placed inside the living
body.75 As shown in Figure 4f, in vivo label-free pH probes
combining LAPS and multimodal fibers can provide pH
acquisition in real time at multiple pixels simultaneously. The
pH probe based on LAPS catches successfully the local pH
changes in the hippocampus of rats caused by pinch toe
stimulation.
In this section, the technologies about enhancing the

imaging speed with a single light source and lighting array
are analyzed. Multiple applications such as monitoring metal
corrosion,70−72 observing cell layer recovery,46 etc., have
demonstrated the monitoring ability of the LAPS imaging
systems. LAPS supports multiple research objectives, including
microorganism colonies,68 bovine dentin,69 metal surfa-
ces,70−72 cells,39,46 etc. At present, most examples are based
on pH detection mechanisms. More biochemical monitoring
systems based on other detection mechanisms, such as
enzymatic reaction,33,34 DNA detection, etc., need to be
developed. It can be expected that more ideas, such as a more
cost-efficient light source for a rapid LAPS system,
miniaturization of LAPS,1,75 etc., will be proposed to improve
the application value of a rapid imaging system based on LAPS.
On the other hand, through the example about crevice
corrosion imaging,70−72 we can know that LAPS imaging
systems are developing toward integration. By combining
LAPS with different detection technologies, such as infrared
reflection technology,72 microfluidic technology,63,64 etc., the
new sensor platform can undertake more complex tasks.

3. TECHNOLOGY OF HIGH-RESOLUTION IMAGING
FOR LAPS
3.1. Improvement of Spatial Resolution. Besides

imaging speed, another essential target for the LAPS imaging
system is spatial resolution. Normally, there are several
distances to represent spatial resolution obtained through
scanning LAPS with stripe pattern, such as the length from the
illumination position with high photocurrent to that with
photocurrent decayed to e−1,76,77 the minimum resolved
diameter of the pattern covering the substrate surface,78 the
length from the illumination position with 40% maximum
normalized photocurrent to that with 60% normalized
photocurrent,65,79,80 the full width at half-maximum (fwhm)
value of photocurrent curve of the first derivation,81 etc.
We cannot investigate spatial resolution without consid-

eration of the lateral diffusion of photocarriers appearing inside
the substrate. According to the theory research, not only the
doping concentration of substrate but also the thickness of the
semiconductor will affect the lateral diffusion of photocarriers
of LAPS.82,83 The distance of lateral diffusion Ylateral which
represents the length from the illumination position to theT
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position with minority carriers decayed to e−1 can be described
as82

= +Y L (L 2d)lateral p p (3)

where Lp is the diffusion length of minority carriers inside
substrate, d is the thickness of substrate. The smaller the Ylateral,
the faster the decay speed of the number of minority carriers,
which means that a higher spatial resolution of LAPS can be
obtained. Therefore, it is obvious that there are two strategies
for optimization of spatial resolution directly. One is to reduce
the thickness d, and the other is to choose the substrate with
small Lp.

3.1.1. Thickness Reduction of Silicon Substrates. The n-
doped or p-doped silicon (monocrystalline and polycrystalline

silicon) with a thickness of 100−400 μm is a prevailing
material of the LAPS substrate because of cost and fabrication,
where the spatial resolution of corresponding LAPS is 100−
500 μm. Similarly, there are many theoretical research works
about spatial resolution using Si LAPS as the object.82,84,85 In
this section, we will introduce thickness reduction technology
based on silicon substrates for improving spatial resolution.
The thin substrate can be obtained through decreasing the

thickness of the thick Si wafer with physical or chemical
method, such as wet etching,86−88 ion etching,89,90 etc. Nakao
et al. etch n-type Si with KOH to optimize LAPS, where the
spatial resolution is improved to 10 μm by etching the n-type
Si wafer with hundreds of micrometers thickness to 20 μm.86

However, LAPS with a thin Si layer as substrate is difficult to

Figure 4. Application and related technology of LAPS for biochemistry monitoring. (a) In situ pH imaging in the vicinity of a corroding metal
surface. Reproduced with permission from ref 70. Copyright 2015 Elsevier. (b) Visualization of the recovery process of defects in a cultured cell
layer. Reproduced with permission from ref 46. Copyright 2016 Elsevier. (c) Monitoring the degradation of a thin poly(ester amide) film with the
enzyme α-chymotrypsin. Reproduced with permission from ref 33. Copyright 2018 American Chemical Society. (d) Dynamic monitoring of
enzymatic reactions. Reproduced with permission from ref 34. Copyright 2022 Elsevier. (e) Visualization of buffering action inside the microfluidic
channel. Reproduced with permission from ref 63. Copyright 2014 Elsevier. (f) Real-time in vivo multiplexed pH acquisition. Reproduced with
permission from ref 75. Copyright 2020 Elsevier.
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apply in practice because of a lack of mechanical strength. To
solve this problem, LAPS with a local thinning substrate is
proposed. Chen et al. construct the structure of 100 μm deep
blind holes on Si wafer with 300 μm thickness through silicon
anisotropic wet etching,87 where the performance of LAPS is
improved and the mechanical strength is maintained because
of a local thinning substrate. Truong proposes a type of LAPS
with partially etched structure, where the Si substrate is
thinned with tetramethylammonium hydroxide (TMAH).65 In
partially etched LAPS, the thicknesses of the etched region and
frame region are 47 and 150 μm, respectively. Compared with
the 40 μm achieved in the frame region, spatial resolution
measured in the etched region is improved to 20 μm. In
subsequent research, LAPS with a multiwell sensor platform
based on the same etching technology as that in ref 65 is
designed.88 As shown in Figure 5a, there are several etching
wells with a depth of 100 μm as the measuring region in a
sensor plate. The spatial resolution for LAPS with the
multiwell sensor platform is less than 20 μm, which is based
on the premise that the thickness of LAPS in the etching well is
47 μm. Recently, we have proposed the LAPS using well-
ordered pyramidal pits-patterned silicon as the substrate.79 As
shown in Figure 5b, the structure of a well-ordered pyramidal
pits-pattern on the substrate is fabricated by microsphere
lithography and wet etching, where the microsphere
lithography technology decides the shape of etching wells
and wet etching is based on KOH solution. Because the
etching wells on the illumination area of LAPS can increase the
signal-to-noise ratio by reducing light reflection, LAPS with

well-ordered pyramidal pits-patterned silicon can provide
nearly twice the spatial resolution improvement compared
with LAPS based on flat silicon. Instead of wet etching
technology, Yang et al. decrease the Si substrate by inductively
coupled-plasma reactive-ion etching (ICP-RIE),89 which can
not only optimize the spatial resolution but also increase the
photocurrent by processing substrate with ICP-RIE. As shown
in Figure 5c, LAPS with a thickness of 100 μm provides spatial
resolution of 5 μm for 2D chemical imaging, which is not
inferior to that of LAPS introduced in ref 86. Zeng et al. use
deep reactive-ion etching (DRIC) technology to reduce the
thickness of Si wafer from 350 to 100 μm.90 As it turns out,
thinning the Si substrate of LAPS by DRIC can improve the
performance of photocurrent and spatial resolution, in which
the photocurrent increased by three times compared with non-
etched LAPS, and the spatial resolution of etched LAPS is 100
μm.
Silicon on insulator (SOI)78 and silicon on sapphire

(SOS)76,91 are two types of structures with an ultrathin Si
layer and used to fabricate LAPS devices. As shown in Figure
5d, Ito designs ultrathin Si film LAPS78 based on SOI, where
the thickness of the Si layer is 0.5 μm. Thanks to the ultrathin
Si layer, the spatial resolution of SOI-base LAPS is less than 5
μm. Figure 5e shows a high-resolution LAPS with SOS
substrate.76 In another instance, the thickness of the Si layer in
SOI is 1 μm, and it is proved that the spatial resolution of
LAPS is less than 1 μm in combination with a specific
illumination method.91 LAPS based on SOI or SOS has a
brilliant imaging performance. We look forward to reducing

Figure 5. Typical designs applied to thin Si LAPS. (a) Multiwell structure partially etched with TMAH. Reproduced with permission from ref 88.
Copyright 2019 John Wiley and Sons. (b) Well-ordered pyramidal pits-patterned silicon for LAPS. Reproduced with permission from ref 79.
Copyright 2022 Elsevier. (c) Thickness decreasing of Si substrate through etching with the help of ICP-RIE. Reproduced with permission from ref
89. Copyright 2017 Elsevier. (d) Ultrathin Si LAPS based on SOI structure. Reproduced with permission from ref 78. Copyright 1998 Elsevier. (e)
LAPS based on SOS structure. Reproduced with permission from ref 76. Copyright 2010 Elsevier.
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the cost of SOI and SOS with the development of a material
process in the future.

3.1.2. Utilization of Material Properties. The spatial
resolution of LAPS can be improved by utilizing a semi-
conductor with a low diffusion length, because the
phenomenon of lateral diffusion about photocarriers is related
to the diffusion length. There are many semiconductors with
low diffusion, such as AsGa,92 amorphous silicon,93,94 etc., that
have been used in fabrication of LAPS. Das et al. propose
LAPS with a-Si as a semiconductor layer, in which the
thickness and diffusion length of the semiconductor layer are 1
and 0.57 μm, respectively. There is a high spatial resolution of
25 μm for a-Si LAPS with illumination of a miniprojector.94 Tu
et al. propose LAPS with a simple structure and high spatial
resolution (2.3 μm) because ZnO nanorods synthesized on
FTO-coated glass are used to construct a semiconductor
without the traditional sensing membrane and insulator layer
of LAPS.33 The 1D ZnO nanorods-based LAPS has good
spatial resolution because the diameter of 1D ZnO nanorods is
less than 80 nm and the light scattering effect is negligible.
Recently, Li et al. have proposed bipolar LAPS based on a
fullerene layer with excellent pH sensitivity (150 mV/pH) and
high spatial resolution (3.8 μm), which is owed to the small
diffusion length (≈40 nm) and small thickness of the
semiconductor layer (5 μm).95 As a commercially transparent
electrode, indium−tin oxide (ITO) glass is used as the
substrate by Zhang et al. for LAPS fabrication.45 As shown in
Figure 6a, the thin ITO layer plays the roles of electrode,
semiconductor, and sensing membrane of LAPS. Compared
with Si, ITO is a low cost and robust material for LAPS design.
Combining with a light source with a specific wavelength (405

nm), LAPS based on commercial ITO glass can provide high
spatial resolution imaging (2.3 μm). Similar to ITO, IGZO is
another material of transparent electrode which has been used
as the semiconductor material of LAPS. Yang et al. design and
optimize the IGZO LAPS, which achieves a spatial resolution
less than 50 μm.96

LAPS with a multilayer semiconductor is the novel target for
fabrication of LAPS.66,97,98 Zhou et al. design a LAPS with a
stacked structure of the semiconductor including the GaN
layer and InGaN layer to increase the spatial resolution, which
is up to 7 μm.97 LAPS with an InGaN/GaN layer can be
applied for cell imaging. Yang et al. design a thin-film LAPS
with p−i−n amorphous silicon as the semiconductor layer.66,98

Compared with a-Si LAPS, the photovoltage of LAPS with p−
i−n amorphous silicon is increased by 50% because the p−i−n
amorphous structure can provide good photoelectric trans-
mission efficiency and a conductive path for the photocarrier
inside the LAPS. Importantly, frequency stability is inves-
tigated in LAPS with p−i−n amorphous silicon.

3.1.3. Active Suppression of Carrier Diffusion. The
strategies introduced in Sections 3.1.1 and 3.1.2 reduce carrier
diffusion in a passive approach. In this section, we will present
the strategy about active suppression of carrier diffusion.
Guo et al. propose the LAPS with a combined light source

which consists of an alternating-modulated light beam and a
ring of constant illumination surrounding it.99,100 The constant
illumination provides photocarriers that limit the lateral
diffusion of carriers from the alternating-modulated light by
enhancing the composite. The novel illumination method
proved that it can improve spatial resolution of LAPS through
device simulation. Afterward Ko-ichiro Miyamoto verifies the

Figure 6. Typical example of improving spatial resolution by utilization of material properties. Active suppression of carrier diffusion and
optimization of illumination. (a) Scheme and imaging result of LAPS using ITO glass as substrate for imaging. Reproduced with permission from
ref 45. Copyright 2017 American Chemical Society. (b) Illumination scheme and imaging result of LAPS with a hybrid illumination. Reproduced
with permission from ref 102. Copyright 2018 Elsevier. (c) Scheme and spatial resolution result of pulse-driven light-addressable potentiometric
sensor. Reproduced with permission from ref 103. Copyright 2017 Elsevier.
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feasibility of combined light source by experiment, where two
types of hybrid illumination, illumination based on a bundle of
optical fibers101,102 and based on a binocular tube head,102 are
designed. As shown in Figure 6b, The LAPS system with a 200
μm thick Si substrate and hybrid illumination based on a
binocular tube head can image with spatial resolution less than
100 μm.102

Recently, we have designed the LAPS with a honeycomb
meshed working electrodes, which can reduce the lateral
diffusion of carrier because the light beam will be separated
into several sublights for a small lateral diffusion length and the
carrier concentration in the honeycomb hole is much higher
than that in the adjacent metal boundary.80 Therefore, LAPS
with honeycomb meshed working electrodes has a higher
spatial resolution compared with LAPS with flat working
electrodes.

3.1.4. Optimization of Illumination. According to the
principle of LAPS,13 illumination will excite the photocarriers
within the semiconductor, which leads to the appearance of
photocurrent. The factors of light source, such as the diameter
of light beam, frequency, and wavelength of alternating-
modulated illumination, etc., will affect the spatial resolution
directly. As mentioned in Section 3.1.1 pyrimidal pits-pattern
on the silicon changes the route of light beam and makes the
illumination focus on detection position.79 The surface design
will lead to improvement of the spatial solution because of
optimization of illumination. Werner proved that it is useful to
optimize the excitation method for high spatial resolution. The
pulse-driven LAPS is shown in Figure 6c, in which the pulse
with the length of 300 ns is used to drive the illumination.103

Compared with the excitation method of continuous
modulation, the higher spatial resolution can be observed by
reading out the integrated photocurrent within the short time
after illumination because the lateral diffusion will occur after
illumination, which is the main reason for lateral diffusion.
Therefore, integration of the photocurrent can lead to a lower
lateral diffusion and, furthermore, higher spatial resolution.
Theoretically, the bigger wavelength of light sources will

cause the deeper penetration of illumination into the Si
substrate, where the higher spatial resolution can be
obtained.82 Wang et al. verify another conclusion in SOS
LAPS modified with an octadecyl monolayer since the focus of
the light source is dependent on wavelength.77 LAPS based on
the IGZO substrate96 displays excellent spatial resolution by
modification of the wavelength and duty cycle of illumination
modulated with a square wave. In tradition, although we look
forward to the higher wavelength of illumination, which means
a higher penetration depth and brings a higher spatial
resolution, the bandgap of the materials limits the wavelength
of illumination. Chen et al. use the laser with lower energy than
silicon (wavelength = 1250 nm) to break out the limitation
and excites SOS LAPS successfully because of the application
of a two-photon effect.76

One of the direct methods to improve spatial resolution is
utilization of a light beam with a small diameter. LAPS based
on AsGa introduced in ref 92 provides a high spatial resolution
because of the substrate material and light beam based on a
CD-ROM with a small diameter (2.6 μm). Besides, many types
of light source, such as a miniprojector,52 OLED display,55,56

analog micromirror,58 VCSEL,59 etc., have been verified as
reliable light sources for high-resolution LAPS because of their
unique advantages, respectively.

Alternating-modulated illumination plays the role of
excitation of the carriers within the substrate. However,
exciting LAPS with illumination is not a unique option. An
ion sensor using electron beam but not light beam to excite
LAPS plate is proposed.81,104 This sensor, named electron-
beam-addressable potentiometric sensor (EAPS), has a
detection mechanism similar to that of LAPS and is observed
to provide sub-micrometer level ion imaging. Nii et al. design
EAPS with spatial resolution in sub-micrometer level (216 nm)
by applying the electron beam for SOI LAPS with 50 nm thick
Si,81 which indicates that the potential of biochemical sensing
systems is based on the LAPS mechanism. Table 3 lists the
technical features of LAPS with optimizing spatial resolution
which are mentioned in Section 3.1.
3.2. Application of High-Resolution LAPS for Bio-

chemical Imaging. High spatial resolution allows LAPS to be
applied for the study of microbiology, such as cell imaging,13

colony imaging,86 etc. In 1990s, LAPS has been used for
Escherichia coli (E. coli) colonies imaging through pH
response.86 As mentioned above, LAPS has been used for
imaging a cultured cell layer.46 Dantism et al. analyze the
relationship between metabolic activity and extracellular
acidification about E. coli K12 and Chinese hamster ovary
(CHO) cells by differential LAPS imaging.39 Zhang et al.
obtain the chemical image about multilayer yeast Saccha-
romyces cerevisiae by SOS LAPS.105 Obviously, the clear image
that is shown in Figure 7a relies on SOS LAPS with high
spatial solution. However, due to contact problem, the image
of an individual cell cannot be obtained in ref 105.
Furthermore, Jacques et al. design a photoelectrochemical
imaging system (PEI) integrating SOS LAPS,106 which
improves the contact between cells and sensor surfaces by
applying pressure to the organoid. PEI can clearly obtain
images with two cardiomyocyte cells.
Recently, LAPS has been reported to be utilized for

individual imaging. For example. Zhou et al. design the
photoelectrochemical imaging system based on SOS LAPS for
B50 cells imaging, where the single cell contour can be
distinguished in the photocurrent image.48 As shown in Figure
7b, the chemical image about single mesenchymal stem cell is
obtained by LAPS with high spatial resolution (7 μm), which
has the semiconductor of an InGaN/GaN layer.97

Chemical reaction, such as enzymatic reaction33,34 and
electrochemical reaction,70,107 is an important branch of LAPS
application. LAPS is often used to study chemical imaging. For
example, LAPS based on a ZnO nanorod substrate is used to
image the degradation process of a thin polyfilm with the
enzyme α-chymotrypsin.33 LAPS can also be applied to
electrochemical reaction imaging. As shown in Figure 7c,
Chen et al. observe water electrolysis through LAPS, in which
the size of the measurement area is 2 μm × 2 μm per pixel.107

Accurate control of the injected solution is crucial in
microfluidic technology. LAPS can provide an efficient,
accurate, and pollution-free observation for microinterfaces
within channels. Figure 7d displays the chemical images of the
laminar flows in a Y-shaped microchannel with the width of
160 μm.108 Besides, LAPS imaging system can be used for
high-speed chemical imaging inside a microfluidic channel63

and observation of enzymatic reaction in the microfluidic
channel.109,110 For example, Welden et al. build an observation
and regulation system for pH gradient changes in microfluidic
channels, where LAPS is applied to study the pH changes
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caused by penicillin enzymatic reactions in a 1 mm wide
microfluidic channel.110

In this section, we analyze the strategies about improving the
spatial resolution and introduce them with examples. From the
applications of high-resolution LAPS, it is obvious that the
typical applications of high-resolution LAPS are unlabeled
imaging of cell populations or even a single cell. The
prerequisite for applying LAPS to single cell imaging is that
its spatial resolution is less than 10 μm.48,97,110 SOS LAPS
seems to be very promising. In practical applications, the
improvement of the imaging performance not only depends on
spatial resolution97,107 but also depends on the contact
between the sample and the sensor surface,109,110 where the
former can be improved through strategies mentioned in
Section 3.1 and the latter indicates the importance of
appropriate sample fixation methods. Meanwhile, LAPS is an
adaptable sensing technology for microfluidic systems, where it
can serve as a reliable biochemical imaging technology for lab
on chip systems based on its easy surface modification
characteristics.63,108−110 Recently, this strategy of integrating
LAPS into microfluidic systems is applied to the low-
temperature transport of cells, where the LAPS modified by
elastic electrospun fibers plays an important role in protecting
cells and accurately controlling the microenvironment.111 We
expect that more new application scenarios can be excavated
for the microfluidic systems combined with LAPS, such as
monitoring of the cell culture in the microchannel, component
analysis of a trace sample, drug selection based on a trace
sample, etc.

4. CONCLUSIONS
Hereby, we review recent studies about improving the
chemical speed and spatial resolution, respectively. Imaging
speed and the spatial resolution are two vital indicators for
evaluating the performance of a biochemical imaging system
using a microscale. However, the relationship between the two
indicators is mutual restraint within a certain measuring range.
When the increase of the pixel numbers improves the spatial
resolution, the imaging speed will be reduced. Therefore, there
is an important topic to find a balance between the imaging
speed and the spatial resolution based on the requirement for
different conditions.
With the development of biochemistry, the demand for

microscale observation has grown urgent. The LAPS-based
biochemical imaging system with rapid chemical speed has
played an important role in the dynamic monitoring of the
biochemical process, such as the corroding of a metal surface,
the recovery process of defects in a cultured cell layer, the
metabolism of bacteria and eukaryotic cells, enzymatic
reactions, etc. And the system with high spatial resolution is
adapted in the field that has the demand for detecting the
object in the micrometer scale, for instance, the cellular
observation. Reviewing the development history of the LAPS-
based biochemical imaging system, we can find that the
innovation of lighting devices and semiconductor materials will
promote the development of this imaging system.
In further, there are several possible breakthroughs of

microscale imaging of LAPS with the development of material
and microelectronics technology, including the density of
lighting arrays, the flexibility of an imaging mechanism, the
application of advanced materials, such as monolayer two-
dimensional materials, polymer materials, etc. Surely, the
miniaturization and generality of the LAPS-based imagingT
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system are also important, which are the key to serviced to
business. We also look forward to when LAPS can participate
in various complex detection platforms as a subunit.
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