
INTERNATIONAL JOURNAL OF MOlecular medicine  42:  1875-1884,  2018

Abstract. Piperlongumine (PL), a biologically active compound 
from the Piper species, has been shown to exert various pharma-
cological effects in a number of conditions, including tumours, 
diabetes, pain, psychiatric disorders and neurodegenerative 
disease. In this study, we evaluated the therapeutic effects of 
PL on hippocampal function and cognition decline in aged 
mice. PL (50 mg/kg/day) was intragastrically administrated 
to 23‑month‑old female C57BL/6J mice for 8 weeks. Novel 
object recognition and nest building behaviour tests were used 

to assess cognitive and social functions. Additionally, immu-
nohistochemistry and western blot analysis were performed 
to examine the effects of PL on the hippocampus. We found 
that the oral administration of PL significantly improved novel 
object recognition and nest building behaviour in aged mice. 
Although neither the percentage area occupied by astrocytes 
and microglia nor the level of 4‑hydroxynonenal protein, 
a specific marker of lipid peroxidation, were altered by PL 
treatment, the phosphorylation levels of N‑methyl‑D‑aspartate 
receptor subtype 2B (NR2B), calmodulin‑dependent protein 
kinase II alpha (CaMKIIα) and extracellular signal‑regulated 
kinase 1/2 (ERK1/2) were markedly increased in the hippo-
campus of aged mice following the administration of PL. 
We also found that PL treatment resulted in a CA3‑specific 
increase in the phosphorylation level of cyclic AMP response 
element binding protein, which is recognized as a potent 
marker of neuronal plasticity, learning and memory. Moreover, 
the number of doublecortin‑positive cells, a specific marker of 
neurogenesis, was significantly increased following PL treat-
ment in the dentate gyrus of the hippocampus. On the whole, 
these data demonstrate that PL treatment may be a potential 
novel approach in the treatment of age‑related cognitive 
impairment and hippocampal changes.

Introduction

The aging population is increasing at a rapid rate worldwide, 
giving rise to a number of age‑related diseases that have a 
significant social and economic burden on the community. 
With normal aging, the brain undergoes synaptic dysfunction, 
extensive neuronal death and declined neurogenesis. Learning 
and memory impairment and cognitive deficits are well‑known 
characteristics of the aging process (1‑3). In addition, aging 
is associated with various debilitating neurodegenerative 
conditions, including Alzheimer's disease (AD). Thus, the 
prevention or delay of the onset of age‑related diseases and 
age‑related cognitive decline may improve the quality of life.
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The hippocampus, located in the medial temporal lobe of the 
brain, is crucial for normal learning and memory consolidation. 
This region is particularly vulnerable to the aging process (2,4). 
The hippocampus has been shown to undergo several structural 
and functional changes with age (2). Significant aged‑related 
neuronal atrophy and volume decreases of the hippocampus, as 
well as hippocampal‑dependent learning and memory decline 
have been demonstrated (5). An upregulation in the levels of 
of pro‑inflammatory genes and inflammatory parameters has 
also been observed in the hippocampus during aging (6,7). 
Additionally, changes in synaptic plasticity have been detected 
in the hippocampi of aged humans and rodents (8,9). Although 
the mechanisms underlying age‑related synaptic plasticity 
impairment are still under investigation, dysregulations and 
alterations in the expression levels of several proteins, that play 
key roles in synaptogenesis and synaptic stabilization, in the 
hippocampus have been reported (2,10). 

Piperlongumine (PL, 5,6‑dihydro‑1‑[(2E)‑1‑oxo‑3‑​
(3,4,5‑trimethoxyphenyl)‑2‑propenyl]‑2(1H)‑pyridinone) is 
a natural alkaloid that can be isolated from the long pepper 
(Piper longum L.). PL is found in the fruits and roots of the 
plant (11). Cumulative evidence has indicated that PL has a 
number of pharmacological activities, including antidepres-
sant, anxiolytic, anti‑fungal, antidiabetic, antinociceptive 
and antitumour properties (11‑16). Moreover, in our previous 
study, it was demonstrated that administration of PL improves 
cognitive function in a transgenic mouse model of AD (17). 
Thus, we hypothesized that PL would enhance cognitive 
function in aged mice. In the present study, we demonstrate 
that PL treatment modulates age‑related cognitive decline and 
hippocampal dysfunction in aged mice. 

Materials and methods

Preparation of PL. PL was isolated from Piper  longum. 
Preparation was performed as described in previous 
studies (17‑19). Dried fruits (500 g) of Piper  longum were 
extracted with ethyl acetate (EtOH; 1 liter x 3 times) at room 
temperature for 1 week. The combined EtOH extracts were 
concentrated to yield a dry residue (32.5 g), which was subse-
quently suspended in water (H2O; 500 ml) and partitioned with 
EtOAc (3x500 ml). The partial EtOAc extract (6.0 g), which 
was subjected to a silica gel column chromatography (CC; 
5x40 cm), was eluted with a gradient n‑hexane/acetone system 
(20:1 to 1:1) to yield 5 fractions (F1‑F5). Fractions F3 and F4 
were combined and further applied to a reversed phase‑C18 CC 
(3x30 cm) with methanol (MeOH)/H2O (1:1 to 9:1). Subfraction 
F34.3 (60.8 mg) was purified by high‑performance liquid 
chromatography [mobile phase: MeOH in H2O containing 
(0‑40 min: 65% MeOH); flow rate: 2 ml/min; UV detection at 
205 and 254 nm] to yield a compound (tR=17.2 min, 14 mg). The 
chemical structure of the isolated compound was confirmed by 
comparison with the reported chemical structure of PL using 
1D and 2D nuclear magnetic resonance spectroscopy. 

Animals. Female C57BL/6J mice, at 3 months (n=7, weighing 
19‑22  g) and 23  months of age (n=28, 28‑34  g), were 
obtained from the Korea Research Institute of Bioscience 
and Biotechnology (KRIBB, Daejeon, Korea) and housed in 
regular polycarbonate plastic cages in an environment with a 

controlled temperature (21‑22˚C) and humidity (50‑60%) and 
a 12‑h light/dark cycle (lights on at 7 a.m.). The mice were 
maintained on an ad libitum diet of lab chow (Teklad 2018S, 
Harlan, WI, USA) with free access to water. The cages were 
filled to an approximate depth of 1.5 cm with bedding made 
of chopped wood particles (JSBio, Daejeon, Korea). All mate-
rials used were autoclaved and gamma‑irradiated. The animal 
room was maintained in specific‑pathogen‑free conditions. 
The C57BL/6J mice at 23 months of age were randomized 
into the vehicle [0.5% carboxymethyl cellulose (CMC), Aged 
vehicle, n=14)] and PL (Aged PL, n=14) groups. The PL 
extract was suspended in 0.5% CMC at a concentration of 
5 mg/ml as a stock solution. The 23‑month‑old female mice 
were orally administrated 10 µl/g/day of PL stock solution or 
0.5% CMC for 8 weeks. The 3‑month‑old female mice were 
used as young controls (n=7). Multiple behaviour tests were 
performed on a single cohort of mice and the following order 
was obeyed: Open field test → novel object recognition test 
→ nest‑building behaviour test (17,20). All the animal experi-
ments were approved by the Institutional Animal Use and 
Care Committee of the KRIBB (KRIBB‑AEC‑14074).

Open filed locomotor activity. The mice were individually 
placed in an open field box (45x45x45 cm3) for 30 min. The 
horizontal locomotion of the mouse was measured using 
a computerized video tracking system, SMART (Panlab, 
Barcelona, Spain). 

Novel object recognition test. The novel object recognition 
test was performed as described in previous studies (21,22). 
The mice were individually habituated to a testing chamber 
(40x20x20 cm3) with no objects for 5 min and then placed in a 
testing chamber for 10 min with two identical objects (familiar, 
acquisition session). The mice were then returned to the home 
cages. One day later, the mice were placed back into the testing 
chamber in the presence of one of the original objects and one 
novel object (novel, recognition session) for 10 min. The orig-
inal objects were cylindrical wooden blocks 10 cm high x 2 cm 
in diameter. The novel object was a 10x2.5x2 cm rectangular 
wooden block. The acquisition and recognition sessions were 
video‑recorded and an observer, who was blinded to the drug 
treatment, scored the time spent exploring the objects. The 
chambers and objects were cleaned with ethanol between trials. 
Exploration was defined as sniffing and touching the object 
with the nose and/or forepaws. Sitting on the object was not 
considered exploratory behaviour. A discrimination index was 
calculated for each animal and expressed using the following 
formula: [time (number) of contacts with the novel object‑time 
(number) of contacts with the familiar object]/[time (number) 
of contacts with the novel object + time (number) of contacts 
with the familiar object] on day 2.

Nest‑building behaviour test. The nest building behaviour 
test was performed as described in a previous study (23). The 
mice were housed in single cages containing chopped wood 
particles for 5 days. On the first day of testing, one piece of 
cotton (5x5 cm; Nestlets, Ancare, Bellmore, NY, USA) was 
introduced into the home cage to permit nesting. The pres-
ence and quality of nesting was rated 1 day later on a 5‑point 
scale ranging from 1 to 5 as follows: 1, nestlet not noticeably 
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touched (>90% intact); 2, nestlet partially torn up (50‑90% 
remaining intact); 3, mostly shredded, but often no identifiable 
nest site; 4, an identifiable but flat nest; and 5, a (near) perfect 
nest. Immediately afterward, the mice were group‑housed as 
before. 

Western blot analysis. Western blot analysis was performed as 
described in a previous study (21). Following 8 weeks of PL 
treatment, the mice were sacrificed and the hippocampal 
tissues were rapidly removed and homogenized in a homogeni-
zation buffer (50 mM Tris‑HCl, pH 8.0, 150 mM NaCl, 1% 
Nonidet P‑40, 0.1% sodium dodecyl sulfate and 0.1% sodium 
deoxycholate) containing a cocktail of protease inhibitors 
(Roche Diagnostics GmbH, Mannheim, Germany). Protein 
samples were resolved by performing sodium dodecyl 
sulfate‑polyacrylamide gel electrophoresis. The samples were 
then transferred onto polyvinylidene fluoride membranes 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA). The blots 
were incubated with primary antibodies followed by secondary 
antibodies, and specific signals were visualized using an 
Enhanced Chemi Luminescence kit (Intron Biotechnology, 
Gyeonggi‑do, Korea). Western blot images were quantified 
using Quantity One 1‑D analysis software version  4.6.1 
(Bio‑Rad Laboratories, Inc.). The primary antibodies used 
were vesicular glutamate transporter 1 (VGLUT1; 1:1,000, 
#135 302, SYSY, Göttingen, Germany), vesicular glutamate 
transporter 2 (VGLUT2; 1:1,000, #75‑067 UC Davis/NIH 
NeuroMab Facility, Davis, CA, USA), glutamate receptor 1 
(GluR1; a gift from Dr J.R. Lee, KRIBB, Daejeon, Korea, 
1:1,000), N‑methyl‑D‑aspartate receptor subtype 2B [(NR2B, 
1:1,000, #4212, Cell Signaling Technology (CST), Danvers, 
MA, USA)], phosphorylated (p‑)NR2B (p‑Tyr‑1472‑NR2B, 
1:1,000, #4208, CST), synaptophysin (1:1,000, #S5768, 
Sigma‑Aldrich Co. LLC; Merck KGaA, Darmstadt, Germany), 
post‑synaptic density protein 95 (PSD‑95, 1:1,000, #124 014, 
SYSY), glutamate decarboxylase 65/67 (GAD65/67, 1:1,000, 
#AB1511, Merck KGaA), gephyrin (1:1,000, #147 011, SYSY), 
vesicular GABA transporter (VGAT, 1:1,000, #131 002, 
SYSY), cAMP response element binding protein (CREB, 
1:1,000, #06‑863, Merck KGaA), p‑CREB (p‑Ser133‑CREB, 
1:1,000, #06‑519, Merck KGaA), calcium/calmod-
ulin‑dependent protein kinase type II α (CaMKIIα, 1:1,000, 
#sc‑13141, Santa Cruz Biotechnology, Inc., Dallas, TX, USA), 
p‑CaMKIIα (p‑Thr‑286‑CaMKIIα, 1:1,000, #sc‑12886, Santa 
Cruz Biotechnology, Inc.), extracellular signal‑regulated 
kinases 1/2 (ERK1/2, 1:1,000, #9102, CST), p‑ERK1/2 
(p‑Thr202/Tyr204‑ERK1/2, 1:1,000, #9101, CST) and β‑actin 
(1:1,000, #MAB1501, Merck KGaA). The secondary anti-
bodies used were horseradish peroxidase‑conjugated goat 
anti‑rabbit IgG (1:2,000, #NCI1460KR, Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) or goat anti‑mouse 
(1:2,000, #sc‑2005, Santa Cruz Biotechnology).

Histological analysis. Immunohistochemistry and immu-
nofluorescence staining were performed as previously 
described (21,24‑26). Following 8 weeks of PL treatment, the 
mice were deeply anesthetized (250 mg/kg Avertin, intraperi-
toneally) and transcardially perfused with saline followed by 
4% paraformaldehyde in phosphate‑buffered saline (PBS). 
The brains were removed, post‑fixed overnight, and then 

cut into 40‑µm‑thick coronal sections using a vibratome 
(Vibratome VT1000A, Leica Microsystems GmbH, Wetzlar, 
Germany). The free‑floating sections were then incubated 
in PBS containing 3% H2O2 (v/v), rinsed 3  times in PBS, 
and blocked with serum for 1 h at room temperature. The 
sections were then incubated with the phospho‑CREB (Ser133, 
1:1,000, #06‑519, Merck KGaA), doublecortin (DCX, 1:1,000, 
#sc‑8666, Santa Cruz Biotechnology), 4‑hydroxy‑2‑nonenal 
(4‑HNE, 1:1,000, #HNE11‑S, Alpha Diagnostic, San Antonio, 
TX, USA), ionized calcium‑binding adapter molecule 1 (Iba1, 
1:1,000, #019‑19741, Wako Chemicals USA, Inc., Richmond, 
VA, USA) and glial fibrillary acidic protein (GFAP, 1:1,000, 
#Z‑0334, Dako, Glostrup, Denmark) primary antibodies over-
night at 4˚C. The sections were then washed and incubated 
with biotinylated secondary anti‑rabbit IgG (1:200, #BA‑1000, 
Vector Laboratories, Inc., Burlingame, CA, USA), followed 
by the avidin‑biotinylated peroxidase complex (Vector 
Laboratories, Inc.) and 3,3'‑diaminobenzidine (Sigma‑Aldrich 
Co. LLC; Merck KGaA). Immunofluorescence staining was 
then performed with an Alexa Fluor 594 goat anti‑rabbit 
IgG antibody (secondary antibody, 1:200, #A11012, Thermo 
Fisher Scientific, Inc.). Sections containing the hippocampus 
were selected and the number of doublecortin‑positive cells 
in the dentate gyrus (DG) were counted under a microscope 
(Olympus Corp., Tokyo, Japan). The intensity of 4‑HNE‑ and 
p‑CREB‑stained cells and the percentage area occupied by 
GFAP‑ and Iba‑1‑positive cells in hippocampal CA1, CA3 
and DG were assessed using the MetaMorph image analyser 
(Molecular Devices, LLC, Sunnyvale, CA, USA). 

Statistical analysis. GraphPad PRISM (GraphPad Software, 
Inc., La Jolla, CA, USA) software was used to perform the 
statistical analyses. Two‑sample comparisons were performed 
using a Student's t‑test, while multiple comparisons were made 
using a one‑way ANOVA followed by the Tukey‑Kramer's post 
hoc test. Associations between distance and discrimination 
index were examined by Pearson's correlation coefficient. All 
data are presented as the means ± SEM and statistical differ-
ences are accepted at the 5% level (P<0.05), unless otherwise 
indicated. 

Results

PL improves the performance of aged mice in novel object 
recognition and nest building tasks. The aged female 
C57BL/6J mice (23 months old) were randomly separated into 
the vehicle‑ and PL‑treated groups. PL was administered at 
a dose of 50 mg/kg/day for 8 weeks, from the ages of 23 to 
25 months. The experimental design is presented in Fig. 1A. 
The aged mice (24 months of age) exhibited a significantly 
lower locomotor activity in the open field test than the young 
control mice (Fig. 1B, P<0.05). PL treatment did not markedly 
affect the exploratory behaviour of the aged mice compared 
to the aged vehicle group (Fig. 1B, P>0.05). To determine 
whether PL can improve cognitive function in aged mice, we 
performed the novel object recognition test. In the recognition 
session, with two different objects (one novel and the other 
familiar), the young control mice explored the novel object for 
a relatively long time period and a made contact with it a rela-
tively high number of times, yielding a discrimination index 
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(DI) of approximately 0.24±0.08 and 0.15±0.07, indicating 
that they had a memory of the familiar object (Fig. 1D and E). 
By contrast, the aged mice treated with the vehicle exhibited 
a DI that was significantly lower than that of the younger 
controls (‑0.05±0.05 and ‑0.06±0.04, Fig. 1D and E), which 
is consistent with impaired cognition. PL treatment markedly 

increased the DI in aged mice to approximately 0.24±0.06 and 
0.17±0.05 (Fig. 1D and E), reflecting a therapeutic effect of 
PL on age‑related cognitive impairment. PL treatment did not 
alter the total exploration time (aged vehicle, 10.14±1.11 sec; 
aged PL, 8.97±0.48 sec, P=0.466) and total number of contacts 
(aged vehicle, 16.92±2.22; aged PL, 19.71±1.25, P=0.680) to 

Figure 1. Effect of piperlongumine (PL) on novel object recognition and nest building in aged female mice. (A) Experimental design for PL treatment, 
behaviour testing and sampling. Open field test, novel object recognition test and nest building behaviour test were performed at 39, 42 and 54 days of PL 
treatment. (B) Total locomotor activity for a 30‑min period in young control mice and aged mice following treatment with the vehicle or PL (young control; 
n=7, aged vehicle; n=14, aged PL; n=14). (C) The presence and quality of nesting over a 24 h period, rated on a 5‑point scale, in young control mice and aged 
mice following treatment with the vehicle, or PL (young control; n=7, aged vehicle; n=8, aged PL; n=9). (D and E) The discrimination index [(D) the time spent 
exploring and (E) the number of contacts] of the young mice, and aged mice following treatment with the vehicle or PL in the novel object recognition test 
(young control; n=6, aged vehicle; n=14, aged PL; n=14). (F and G) The correlation between locomotor activity in open field test and discrimination index in 
novel object recognition test in aged mice was absent [F, between locomotion (B) and DI (time, D), r=0.09955, P=0.6285; G, between locomotion (B) and DI 
(number, E), r=0.04872, P=0.8132, n=26]. *P<0.05 and **P<0.01, significant differences from an indicated group, determined by one‑way ANOVA, followed 
by Tukey‑Kramer's post‑hoc test.
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both objects (familiar + novel) on day 2, indicating no influ-
ence on the total exploration activity of PL in the novel object 
recognition test. Additionally, we could not find any associa-
tion between the distance in the open field test and the DI in 
the novel object recognition test in the aged mice (Fig. 1F 
and G, P>0.05). 

Previous studies have reported that nest building, which 
is an indicator of well‑being and social context in mice, is 
decreased in aging in rodent models of AD (27,28). Reduced 
nesting has also been observed in mice with hippocampal 
lesions (29). In this study, the nesting score in the nest building 
test was significantly lower in the aged mice than in the young 
control mice (Fig. 1C, P<0.05). PL significantly increased the 
nesting score in the aged mice (Fig. 1C, P<0.05). These results 
indicate that treatment with PL may improve cognitive and 
social decline without affecting locomotion in aged mice. 

PL did not alter the glia activation and lipid peroxidation in 
the hippocampus of aged mice. An upregulation of inflamma-
tory responses and oxidative stress have been observed in the 
hippocampus in aging (30‑33). An increase in inflammation 
in aging implicates the activation of microglia and astrocytes 
in the brain over this period (34). In aged brains, there is an 
increase in the number, size and activation of microglia (34). 
In this study, to investigate the effects of PL on microglia 
and astrocytes in aging, we measured the percentage area 

occupied by astrocytes (Fig. 2A and D) and microglia (Fig. 2B 
and E) in hippocampus through immunohistochemical assay. 
Additionally, immunofluorescence analysis for oxidative stress 
(4‑HNE, an indicator of lipid peroxidation) in the hippocampus 
was performed (Fig. 2C and F). PL administration at a dose of 
50 mg/kg/day for 8 weeks had no significant effect on glial 
activation and oxidative stress in the hippocampus at this point 
in aging. 

PL increases the phosphorylation of NR2B, ERK1/2 and 
CaMKIIα in the hippocampus of aged mice. As the results 
from the behavioural tests pointed to a reduction in age‑related 
cognitive impairment with PL treatment, we examined the 
level of synaptic markers in the hippocampus of the aged mice 
treated with the vehicle or PL. As indicated by the results of 
western blot analysis, the expression levels of gephyrin, VGAT, 
GAD65/67, PSD95, VGLUT1, VGLUT2 and synaptophysin 
were similar between the aged vehicle and aged PL groups 
(Fig. 3A and B). Additionally, PL had no effect on the protein 
expression of the AMPA (GluR1) or NMDA (NR2B) recep-
tors (Fig. 3C and D). Of note, the levels of phosphorylation 
of NR2B (Tyr1472), ERK1/2 (Thr202/Tyr204) and (Thr286) 
were significantly higher in the aged mice treated with PL than 
in the aged mice treated with the vehicle (Fig. 3C and D). There 
was a tendency for the phosphorylation of CREB (Ser133) to 
be slightly higher in the aged PL group than the aged vehicle 

Figure 2. Effect of piperlongumine (PL) on neuroinflammation and oxidative stress in the hippocampus. Activation of microglia and astrocytes was analysed 
by immunohistochemical staining against glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (Iba1) and 4‑hydroxynonenal 
(4‑HNE), respectively. Images showing (A) GFAP, (B) Iba1, and (C) 4‑HNE labelling in the hippocampus of aged mice treated with the vehicle or PL. 
(D) Percentage area of hippocampus [CA3, CA1 and dentate gyrus (DG)] occupied by astrocytes (thus GFAP labelled; aged vehicle; n=6, aged PL; n=9) in aged 
mice treated with the vehicle or PL. (E) Percentage area of hippocampus (CA3, CA1, and DG) occupied by microglia (thus Iba‑1 labelled; aged vehicle; n=6, 
aged PL; n=9) in aged mice treated with the vehicle or PL. (F) 4‑HNE‑intensity in the hippocampus (CA3, CA1, DG) in aged mice treated with the vehicle or 
PL aged vehicle; n=4, aged PL; n=4). Scale bar, 200 µm. Data are presented as the means ± SEM.
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group, although this difference was not significant. To further 
investigate the level of p‑CREB in the areas of the hippo-
campus, we measured the integrated optical density (IOD) of 
p‑CREB by immunohistochemical assay in the CA1, CA3, and 
DG of the aged vehicle‑ and aged PL‑treated mice (Fig. 4). The 
IOD in the CA3 was markedly higher in the aged mice treated 
with PL than in the aged mice treated with the vehicle (Fig. 4A 
and C, P<0.01); however, the level of p‑CREB in the CA1 and 
DG did not differ significantly between the groups (Fig. 4A, B 
and D). Taken together, these results suggest that the molecular 
signalling pathways involving NR2B, CaMKIIα, ERK1/2 and 
CREB are regulated by PL treatment in the hippocampus of 
the aged mice. 

PL increases neurogenesis in the DG of aged mice. Neuro
genesis markedly declines with aging and, thus, the 
maintenance of an adequate level of hippocampal neurogen-
esis is another important factor to consider in maintaining 

cognitive function (35). In this study, to investigate whether 
PL treatment affects hippocampal neurogenesis, we exam-
ined neuronal proliferation by immunohistochemistry using 
the neuroblast marker, DCX, in the DG of aged mice treated 
with the vehicle or PL (Fig. 5). The number of DCX‑positive 
cells was markedly lower in the aged mice treated with the 
vehicle than in the young control group (Fig. 5). However, 
the number of DCX‑positive cells was significantly higher in 
the PL treated aged mice than in the vehicle treated aged mice 
(Fig. 5, P<0.05). These results suggest that PL increases adult 
neurogenesis in the DG of aged mice. 

Discussion

Aging is a natural biological process that is associated with 
physical and cognitive decline. Notably, in both normal aging 
and under pathological conditions, cognitive decline can 
diminish the quality of life. In the present study, we found 

Figure 3. Effect of piperlongumine (PL) on the expression of synaptic proteins and NMDAR signalling proteins. (A and B) Western blot analysis and quantita-
tive analysis of the expression of synaptic proteins [gephyrin, vesicular GABA transporter (VGAT), glutamate decarboxylase 65/67 (GAD65/67), postsynaptic 
density protein 95 (PSD95), vesicular glutamate transporter 1 (VGLUT1), vesicular glutamate transporter 2 (VGLUT2) and synaptophysin, aged vehicle; 
n=5, aged PL; n=7] in hippocampal homogenates of aged mice treated with the vehicle or PL. (C and D) Western blot analysis and quantitative analysis of 
the expression of NMDAR signalling proteins [glutamate receptor 1 (GluR1), N‑methyl‑D‑aspartate receptor subtype 2B (NR2B), p‑NR2B, extracellular 
signal‑regulated kinase (ERK)1/2, p‑ERK1/2, calcium/calmodulin‑dependent protein kinase type II α (CaMKIIα), p‑CaMKIIα, cAMP response element 
binding protein (CREB) and p‑CREB, aged vehicle; n=5, aged PL; n=7] in hippocampal homogenates of aged mice treated with the vehicle or PL. *P<0.05 and 
**P<0.01, significant differences from the aged vehicle, as shown by the Student's t‑test. Data are presented as the means ± SEM.
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that treatment with piperlongumine (PL), isolated from the 
long pepper, significantly improved cognitive function in 
novel object recognition and performance in nest building in 
25‑month‑old female mice. These effects appear to be partly 
due to the modulation of neuronal activity and neurogenesis in 
the hippocampus. We found that treatment with PL increased 
the phosphorylation levels of the NR2B subunit of the NMDA 
receptor in the hippocampus of aged mice. Furthermore, we 
observed that PL significantly increased the phosphorylation of 
ERK1/2 at Thr202/Tyr204, CaMKIIα at Thr286, and CREB at 
Ser133, and increased the number of doublecortin‑positive cells.

PL is a primary constituent of Piper longum, which has 
been reported to kill multiple types of cancer cells through 
the targeting of the stress response to reactive oxygen species 

(ROS)  (14,36). Diagnosis with certain tumours, such as 
age‑related degenerative diseases, increases with age and the 
molecular alterations that occur in aging can favour carcino-
genesis (37). Senescent cells can drive hyperplastic pathology 
and promote age‑related neurodegeneration (38,39). Recently, 
PL has been reported to be a potential novel lead for the devel-
opment of senolytic agents (40) and the selective depletion of 
senescence cells as an anti‑aging strategy may prevent cancer 
and aging‑related degenerative diseases. Although in this study, 
we did not investigate the anti‑tumour activities of PL in aged 
mice, PL treatment may be beneficial through the apoptosis of 
age‑related senescence cells. Cellular senescence is associated 
with oxidative stress and inflammation (39). An increase in the 
expression of GFAP has been the most common change to be 

Figure 5. Effect of piperlongumine (PL) on hippocampal neurogenesis. (A) Representative photomicrographs of the DG of the hippocampus of young control, 
aged vehicle and aged PL groups. Arrows indicate doublecortin (DCX)‑positive cells. (B) The number of DCX‑positive cells in the DG area of aged mice 
treated with the vehicle or PL and young mice (young control; n=5, aged vehicle; n=6, aged PL; n=9). Scale bar, 100 µm. *P<0.05 and **P<0.01, significant 
differences from an indicated group, determined by one‑way ANOVA, followed by Tukey‑Kramer's post‑hoc test. Data are presented as the means ± SEM.

Figure 4. Effect of piperlongumine (PL) on the phosphorylation of CREB in the hippocampus of aged mice. (A) Images showing anti‑p‑CREB antibody‑stained 
CA1, CA3 and dentate gyrus (DG) of the hippocampus in aged mice treated with the vehicle or PL. Results of the quantitative analysis of the relative intensity 
of p‑CREB in the (B) CA1, (C) CA3, and (D) DG of aged mice treated with the vehicle or PL (aged vehicle; n=5, aged PL; n=4). Scale bar, 200 µm. **P<0.01, 
significant differences from the aged vehicle, as shown by the Student's t‑test. Data are presented as the means ± SEM.
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observed in astrocytes with aging (41). The results of this study 
demonstrated that PL did not affect the size of area occupied 
by glia, such as microglia and astrocytes, in the hippocampus 
of the aged mice (Fig. 2). We also observed that lipid peroxi-
dation in the hippocampus was not altered in the aged mice 
(Fig. 2). However, previously, we have demonstrated that PL 
effectively decreases astrogliosis and microglia activation in 
the parietal cortex in animal models of AD (17). The results 
indicated that the inflammation and microglia activation that 
was triggered by pathological conditions were effectively 
suppressed by PL treatment. 

The precise mechanism of action through which PL 
improves cognitive function remains unclear. The results of 
this study demonstrated that PL modulates the NR2B subunit of 
the NMDA receptor and CaMKII in the hippocampus (Fig. 3). 
The phosphorylation of NR2B at Tyr‑1472 in hippocampus 
was increased by treatment with PL (Fig. 3C and D). The 
level of Tyr‑1472 phosphorylation is increased after the induc-
tion of long‑term potentiation (LTP) in the hippocampus, 
indicating that the phosphorylation of Tyr‑1472 is involved 
in synaptic plasticity (42). Additionally, CaMKII is the main 
protein of post‑synaptic density and is an essential protein 
for the induction of NMDAR‑dependent LTP (43). CaMKIIα 
promotes synaptic formation, strengthening, and integration 
into existing neural circuits  (44). Autophosphorylation at 
Thr286 of CaMKIIα is also required for NMDAR‑dependent 
LTP and hippocampus‑dependent learning (45). However, 
CaMKIIα activation is impaired in an age‑dependent manner 
in the hippocampus and amygdala (46). The loss of CaMKIIα 
activity results in severe electrophysiological abnormalities 
that are associated with impaired synaptic plasticity and 
memory formation, while the overexpression of CaMKIIα 
improves cognitive performance, as assessed by Morris water 
maze testing (45,47). NR2B‑containing NMDARs is coupled 
to ERK activation (48). The present study demonstrates that 
the oral administration of PL also significantly increased 
ERK1/2 and CREB phosphorylation in the hippocampus 
(Figs. 3 and 4). One of the key signalling proteins activated 
downstream of CaMKII and ERK is CREB (49,50). It has 
been well‑documented that CREB plays a role in LTP and 
memory formation (51). A reduction and deficit in CREB 
signalling has been observed in aged animals  (52). The 
phosphorylation of Ser133 seems to be a critical step in 
CREB activation (51,53). Total CREB levels do not appear to 
change; however, the level of p‑CREB is decreased in aged 
rats (53,54). Additionally, the level of p‑CREB expression has 
been found to be associated with performance in emotional 
memory tests, where a higher level of p‑CREB is indicative 
of a better emotional memory performance (56,57). In the 
current study, PL significantly increased the phosphorylation 
of CREB in the CA3 region of the hippocampus (Fig. 4). 
Therefore, considering the functional role of these molecules 
in the regulation of cognitive function, the modulation of 
CaMKII/ERK/CREB signalling transduction could account 
for the therapeutic effect of PL. 

The age‑related decline in adult neurogenesis is a 
well‑documented process  (58). In mice, aging is associ-
ated with a decreased number of neural stem cells in the 
hippocampus (59). New‑born neurons in aged mice are highly 
associated with neurogenesis‑dependent cognition  (60). 

Moreover, hippocampal neurogenesis in response to exer-
cise and enriched environment contributes to hippocampal 
plasticity (58,61). Previously, we reported that PL markedly 
increases sirtuin 1 deacetylase activity in in vitro assays (17). 
Sirtuin 1 is one of seven mammalian sirtuins and has been 
shown to modulate aging and memory (62,63). Although the 
regulation of neurogenesis by sirtuin 1 has not been inves-
tigated in this study, it has been reported that the activation 
of sirtuin 1 restores cognitive performance and neurogenesis 
in mice exhibiting reduced adult neurogenesis and lowered 
hippocampal cognitive abilities (64). In the present study, there 
were few DCX‑positive neuroblasts in the DG of 25‑month‑old 
female mice (Fig. 5). Moreover, the aged mice treated with 
PL exhibited significantly higher number of DCX‑positive 
cells in the DG than in the aged mice treated with the vehicle 
(Fig. 5). These results suggest that PL may have an effect on 
neurogenesis by preventing or reversing age‑related decline. 
However, the precise mechanisms responsible for the effect of 
PL on neurogenesis in aged mice are not yet clear. Further 
studies, therefore, are warranted to investigate the effects of 
PL on neurogenesis, including in in vitro models. Additionally, 
studies on target mediators of signalling pathways involved in 
the formation of new neurons can be utilized to determine the 
effect of PL on neurogenesis in the adult brain.

In conclusion, our in vivo analysis of aged female mice 
demonstrates that PL improves some properties of aging, such 
as age‑associated cognitive impairments, synaptic dysfunction 
and the decline in neurogenesis. Although additional studies 
are required to elucidate the underlying molecular mecha-
nisms and validate the anti‑aging effects of PL in male mice, 
the results of the present study suggest that the activation of 
NR2B, CaMKIIα, ERK1/2 and CREB, and the increase 
in neurogenesis following PL treatment may contribute to 
hippocampal neuronal activity in the aged brain. 
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