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Inhibition of Cell Proliferation and MAP Kinase and Akt Pathways
in Oral Squamous cell Carcinoma by Genistein and Biochanin A
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High morbidity and mortality associated with oral squamous cell carcinoma (OSCC) are largely
attributable to late stage diagnosis. Despite significant advances in therapeutic strategies, the
five-year survival rate for oral cancer remains at about 50%. A chemopreventive approach may
be an effective alternative or adjunct to current therapies. Previous studies have shown anti-
tumor effects of isoflavones in several cancers, including oral cancer. However, their mecha-
nisms of action are still unclear. We hypothesized that isoflavones inhibit multiple signaling
pathways implicated in oral carcinogenesis. To address our hypothesis, we investigated the
effects of three isoflavone derivatives, genistein, biochanin A and daidzein, on SCC15 and
SCC25 squamous cell carcinoma cell lines. In cell proliferation experiments, we found that
genistein and biochanin A inhibited SCC15 and SCC25 cell growth with an IC50 of 50 mM. We
also investigated the effect of isoflavones on ERK and Akt pathways. Our results, from western
blot analysis, suggest that both genistein and biochanin A induced decreases in phosphorylation
of ERK and Akt at treatment concentrations of 20, 50 and 100 mM. Taken together, our results
clearly demonstrate a differential regulation of signaling pathways by various isoflavones in
OSCC cell lines. Thus, tumor progression models can be utilized to study the preventive and
therapeutic roles of isoflavones in oral cancer cell lines.

Keywords: oral cancer – isoflavones – cell signalling – cancer prevention

Introduction

Worldwide, over 500 000 cases of head and neck squamous

cell carcinoma (HNSCC) are diagnosed each year, repre-

senting the sixth most common cancer, and a major cause

of morbidity and mortality (1). It is largely a preventable

disease either through primary prevention (lifestyle

changes), secondary prevention (treatment of high-risk

lesions), or tertiary prevention (prevention of second

primary tumors) (2,3). About 90% of HNSCC’s are oral

squamous cell carcinoma (OSCC). The associated high

morbidity and mortality are largely attributable to late

stage diagnosis and occurrence of second primary tumors.

Despite significant advances in therapeutic strategies,

the five-year survival rate for oral cancer remains at

about 50% (4). Current efforts examining the molecular

events underlying HNSCC tumor progression may present

the opportunity to identify molecular markers of diagnostic

and prognostic value, as well as novel therapeutic targets in

this particular cancer type.
In general, the transformation of normal epithelium to

SCC occurs in multiple steps, involving the sequential

activation of oncogenes and inactivation of tumor sup-

pressor genes (5,6). Although progress has been made in

the identification of the alteration of tumor suppressor

genes and their related protein products in HNSCC, the

nature of the proliferative pathways driving uncontrolled

cell growth in this tumor type are still poorly defined,

thus limiting our ability to identify mechanism-based

therapeutic approaches for this disease.
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Cells respond to extracellular stimuli by activating signal-
ing cascades that lead to cellular responses. Mitogen-
activated protein kinases (MAP kinases) are turned on
in response to growth factors and promoters, resulting
in proliferative signals (Fig. 1). Activation of epidermal
growth factor receptor (EGFR) by EGF leads to progres-
sion of a growth response signal via the MAP kinase
pathway (7). Mutation in HER-2/neu that codes for MAP
kinase results in its constitutive phosphorylation and
activation in HSC6 oral cancer cell line, showing the role
of MAP kinase in oral cancer cell proliferation (8).
In addition, the serine/threonine protein kinase Akt is
a downstream target of phosphatidylinositol 30-kinase
(PI3K) and has been shown to be a key regulator of various
cellular processes, including normal and aberrant cell
growth and cell fate decisions such as differentiation and
cell survival or death by apoptosis (Fig. 2). Akt promotes
cell survival by phosphorylating proapoptotic and anti-
apoptotic proteins, including the Bcl-2 family member
BAD, caspase-9, and inactivation of tumor suppressor
genes such as PTEN (9–11). Activated Akt has been shown

to be a frequent event in several cancer types such as breast,
colon and ovarian cancer (9,12). Furthermore, evidence
suggests that activated Akt accelerates tumor progression
and promotes the malignant conversion of immortalized
keratinocyte cell lines. Recent research indicates expression
of phospho-Akt correlates with positive lymph node
involvement in oral cancer patients (13).
Cancer treatment may be facilitated by the introduction

of accepted therapies derived from natural products.
Natural products have provided the basis for many of the
pharmaceutical agents currently used in cancer therapy
(14). The use of chemotherapeutic drugs in cancer ther-
apy increases the risk of life threatening host toxicity;
therefore, the search goes on to develop drugs, which
selectively act on tumor cells. Vieira et al. (15) demon-
strated that aqueous extracts from the plant Indigofera
suffruticosa show antitumor effects in human epidermoid
cancer cell lines with absence of cytotoxic effects. Flavo-
noids are polyphenolic compounds (Fig. 3) that occur
ubiquitously in foods of plant origin and have been
shown to have a variety of biological effects in numerous
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Figure 1. Receptor-linked tyrosine kinases such as the epidermal growth factor receptor (EGFR) are activated by extracellular ligands. Binding of

epidermal growth factor (EGF) to the EGFR activates the tyrosine kinase activity of the cytoplasmic domain of the receptor. The EGFR becomes

phosphorylated on tyrosines. Docking proteins such as GRB2 contain SH2 domains that bind to the phosphotyrosines of the activated receptor.

BRB2 binds to the guanine nucleotide exchange factor SOS by way of and SH3 domain of GRB2. When the GRB2–SOS complex docks to

phosphorylated EGFR, SOS becomes activated. Activated SOS promotes the removal of GDP from Ras. Ras can then bind GTP and become active.

Activated Ras activates the protein kinase activity of RAF kinase. RAF kinase phosphorylates and activates MEK, which in turn phosphorylates

and activates ERK (extracellular signal-regulated kinase) or mitogen-activated protein kinase (MAPK). The MAPK/ERK cascade may signal

survival, cell growth and cell cycle progression. Its effect on RSK (ribosomal S6 kinase) and MSK (mitogen and stress-activated protein kinase)

regulate the translational machinery, influencing cell growth and cell division.
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mammalian systems (16). Genistein is a known protein

kinase inhibitor; however, diadzein, which does not have

a hydroxyl group at the 5- position of genistein, lacks

inhibitory activity for protein tyrosine kinase (17).

Flavinoids such as genistein and biochanin A may act

at ATP-binding sites, although the precise inhibitory

mechanism is not known (18,19). Genistein is one of two

major isoflavones in soy and has anti-proliferative effects

on mitogen-stimulated growth of human breast cancer

cells in culture (20). Genistein has shown antiproliferative

effects in prostate cancer cells and antiangiogenic effect

in OSCC via down-regulation of vascular endothelial

growth factor (VEGF) (21,22). Previous studies have

revealed anti-tumor effects of isoflvones in several can-

cers, including oral cancer; however, their mechanisms of

action are still unclear (23–25). Evidence suggests genis-

tein can down-regulate the expression of about 11 genes

including VEGF and can arrest cell growth and prolif-
eration, invasion and angiogenesis (26).
We hypothesized isoflavones that inhibit tyrosine

kinase activity can be used to prevent the molecular
progression of OSCC through the inhibition of MAP
kinase and Akt pathways. We tested this hypothesis by
examining proliferation of isoflavone treated OSCC cells
and determining the effects of isoflavones on MAP kinase
and Akt protein expression in OSCC cells.

Methods

Cell Cultures

HNSCC cell lines SCC15 and SCC25 (American Type
Culture Collection, Rockville, MD) were maintained in
Dulbecco’s Modified Eagle’s Medium and Ham’s
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Figure 2. The serine/threonine kinase Akt, also known as protein kinase B (PKB), has become a major focus of attention because of its critical

regulatory role in diverse cellular processes, including cancer progression. Activation of growth factor receptors (GFRs) is one of the major

mechanisms responsible for upregulation of Akt signaling which in turn include activation of oncoproteins and inactivation of tumor suppressors

intersecting the Akt signal transduction pathway. The Akt cascade is activated by receptor tyrosine kinases, and other stimuli that induce the

production of phosphatidylinositol 3,4,5 triphosphates [PtdIns(3,4,5)P3P] by phosphoinositide 3-kinase (PI3K). These lipids serve as plasma

membrane docking sites for proteins with pleckstrin-homology (PH) domains, including Akt and its upstream activator PDK1. Akt regulates cell

growth through its effects on the mTOR and p70 S6 kinase pathways, as well as cell cycle and cell proliferation through its direct action on CDK

inhibitors and levels of cyclin D1. Akt is a major mediator of cell survival through direct inhibition of pro-apoptotic signals such as Bad and the

Forkhead family of transcription factors.
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Nutrient Mixture (DMEM/Ham’s F12), 50:50 (v/v)
supplemented with 10% Fetal Bovine Serum (FBS) (v/
v) and 400 ngml�1 hydrocortisone in 5% CO2 at 37�C
according to ATCC propagation recommendations. Cells
were split every 3 days at 70% confluence to continue
growth. The cells were detached by treatment with sterile
0.25% trypsin/0.53% ethylenediamine tetraacetic acid
(EDTA) and split into above medium according to
ATCC subculturing recommendations. Cells were
counted using a Coulter counter before being seeded
into 75ml sterile tissue culture flasks for treatments.

Pharmacological Treatments

Genistein, biochanin A and daidzein (�98% purity) stock
solutions were prepared using dimethyl sulfoxide
(DMSO) as the vehicle and diluted to the following
concentrations: 5, 10, 20, 50 and 100 mM. Cells were
treated with the preceding drug concentrations for 72 h.
The isoflavones listed above were purchased from Sigma-
Aldrich (St. Louis, MO, catalog numbers G6649, D2016
and D7802, respectively).

Antibodies

The following antibodies were used in this study: rabbit
polyclonal anti-ERK 1, anti-phospho-ERK, rabbit poly-
clonal anti-Akt and anti-phospho-Akt (Santa Cruz
Biotechnology, Santa Cruz, CA).

Western Blotting

Cells were rinsed thrice in cold phosphate buffered
saline (PBS), lysed with protein lysis buffer (pH 7.6)
containing protease inhibitor solution [sodium ortho-
vandate (200mM), phenylmethanesulphonyl fluoride

(PMSF) (100mM), aprotonin (1mgml�1) and leupeptin
(5mgml�1)], scraped immediately, and transferred to
microcentrifuge tubes. Lysates were sonicated for 10 s.
After centrifugation of the sonicated lysate at 10 000� g for
10min. at 4�C, the resultant supernatant of the lysate was
collected. The protein concentration was quantified using
the Bradford protein assay kit (Bio-Rad, Hercules, CA)
according to the manufacturer’s instructions. Equivalent
amounts of protein (25 mg) were separated by SDS–PAGE
and then transferred to polyvinylidene difluoride mem-
branes. Membranes were then incubated for 1 h at room
temperature with the blocking reagent [5% milk, 2% BSA,
40ml Tris-buffered saline-0.5% Tween-20 (TBST) pH 7.6],
and then incubated overnight at 4�C with the primary
antibody (Santa Cruz Biotechnology, Santa Cruz CA).
The membranes were washed thrice in TBST and incubated
with anti-rabbit secondary antibody for 45min at room
temperature. After washing the membranes thrice with
TBST, they were analyzed using SuperSignal West Pico
chemiluminescent substrate (Pierce, Rockford, IL). The
bands on the x-ray film were scanned and quantified using
the Un-Scan-It image software (Un-Scan-It gelVersion 5.1,
Silk Scientific, Orem, UT).

Cell Proliferation Assay

Cell survival was assessed by formazan formation from
the to tetrazolium salt. Cells (5� 103) were cultured in
flat-bottomed 96-well plates (Phenix Research Products,
Hayward, CA) and treated with 2, 5, 10, 20, 50 and
100 mM of genistein, biochnin A and daidzein, respec-
tively. After incubation of the 96-well plates for 48 h at
37�C, 20 ml of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) (Sigma-Aldrich, St. Louis,
MO) solution (5mgml�1) was added to each well. The

Figure 3. Chemical structure of genistein, biochanin A and daidzein.

354 Isoflavones inhibit oral cancer cell lines



plates were incubated for 4 h. The medium was removed
with a needle syringe and 100 ml of DMSO added and
pipetted to dissolve crystals. The absorbance of each well
was measured at 570 nm using a plate reader (Synergy
HT Multi-Detection Microplate Reader, Bio-Tek
Instruments, Inc., Winooski, VT).

Statistical Analysis

ANOVA followed by the post hoc Tukey test was used
to determine the differences between groups of the data
obtained from the MTT assay and western blot by using
KaleidaGraph (Synergy Software for Windows and
Macintosh, Reading, PA). P-values <0.05 were consid-
ered statistically significant.

Results

Isoflavones Decrease Oral Cancer Cell Survival

We investigated the effect of genistein, biochanin A and
daidzein on survival of SCC25 cells. Figure 4 shows that
treatment with all three isoflavones induced decreases in
survival of OSCC cells in a concentration-related manner
at concentrations higher than 20 mM. The rank order of
the effect of the isoflavones studied was: genistein�
biochanin A>>daidzein (Fig. 4). The IC50 values

(i.e. the treatment concentration that gave rise to a
50% decrease in cell survival) for both genistein and
biochanin A were �50 mM (Fig. 4).

Genistein and Biochanin A Suppress Cell Proliferation

in OSCC Cells

Activation of the MAP kinase signaling pathway result-
ing in phosphorylation of ERK1/2 is one of the regula-
tory pathways implicated in controlling cell growth in
response to ligand binding and dimerization of EGFR.
Since MAP kinase plays a role in oral cancer cell prolif-
eration, we determined the effect of genistein, biochanin
A and daidzein on the protein expression of this signaling
pathway in SCC15 cells using western blotting. Our
results indicate that genistein and biochanin A treatment
for 72 h induced decreases in the expression of total ERK
at 50 and 100 mM (Figs 5 and 6a). Phosphorylated ERK
protein expression was also decreased when SCC15 cells
were treated with genistein and biochanin A for 72 h at
50 and 100 mM (Figs 5 and 6b). Treatment of SCC15 cells
with biochanin A for 72 h showed a pattern of results
similar to those obtained with genistein treatment, but
with more pronounced decrease in total ERK protein
expression when cells were treated 50 mM biochannin A
(Fig. 6a). However, treatment of SCC15 cells with daid-
zein did not lead to any change in ERK or pERK
expression (data not shown).

Analysis of Akt Protein Expression: Genistein

and Biochanin A Curb Cell Survival

Inappropriate activation of the PI3K/Akt pathway is a
crucial step leading to cell survival and motility and angio-
genesis. We therefore investigated the effect of genistein,
biochanin A and daidzein on Akt protein expression in
SCC25 cells by western blot analysis. Treatment of these
cells with genistein and biochanin A induced lowering
of Akt and pAkt expression at 50 and 100 mM (Figs 7, 8a
and b). However, treatment of these cells with daidzein at
similar concentrations (i.e. 5–100 mM) did not induce any
changes in their Akt and pAkt expression (data not shown).
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Figure 4. Treatment with genistein and biochanin A induced decreases

in survival and proliferation in SCC25 cells. Cells (5000 cells per well)

were seeded onto a 96-well plate and treated with 0, 5, 10, 20, 50 and

100mM of genistein, biochanin A and dadzein, respectively for 72 h.

Cell survival was then determined by MTT assay. Data represent the

mean�SD of at least three independent experiments. Statistical

significance was determined by ANOVA and post hoc Tukey test.

(*P<0.05). Abbreviations were: genistein, Gen; biochanin A, Bio; and

daidzein, Dai.

Figure 5. Western blot analysis of total and phosphorylated ERK1

protein in cell lysates from SCC15 cells treated with genistein and

biochanin A. Cells were treated with genistein and biochanin A,

respectively, at 5, 10, 20, 50 and 100mM, for 72 h. ß-actin was used as

an internal control.
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Discussion

OSCC is one of the most common cancers of the head
and neck, with a poor prognosis attributable to late stage

diagnosis, local invasion and recurrence of primary
tumors (1,4). A better understanding of the molecular

mechanisms underlying the development and progression
of OSCC may help identify novel targets for pharmaco-
logical intervention and chemoprevention of this disease

(2,3). In this regard, the milieu of signal transduction
pathways whose aberrant activity promotes the unregu-

lated growth and survival of OSCC cells has just begun
to be elucidated. These include the over-expression of
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Figure 6. (a and b) Densitometric analysis of western blot data as

shown in Fig. 5. Densitometic data were expressed as percentage of that

in the control (i.e. untreated cells) Data represent the mean� SD at

least three independent experiments. Statistical significance was deter-

mined by ANOVA and post hoc Tukey test. (*P<0.05; **P<0.01).

Abbreviations were: genistein, Gen; and biochanin A, Bio.

Figure 7. Western blot analysis of total and phosphorylated Akt protein

in cell lysates from SCC25 cells treated with genistein and biochanin A.

Cells were treated with genistein and biochanin A, respectively, at 5, 10,

20, 50 and 100mM for 72 h. ß-actin was used as an internal control.
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Figure 8. (a and b) Densitometric analysis of western blot data as

shown in Fig. 7. Densitometic data were expressed as percentage of that

in the control (i.e. untreated cells) Data represent the mean� SD at

least three independent experiments. Statistical significance was deter-

mined by ANOVA and post hoc Tukey test. (*P<0.05; **P<0.01).
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EGFR, the sustained phosphorylation of MAP kinase,
and persistent activation of the Akt pathway (9,25,27).
In this study, we clearly demonstrated that treatment
with the isoflavones, genistein and biochanin A, could
significantly decrease the in vitro proliferation of SCC15
and SCC25 cells, with a similar IC50 value for both
genistein and biochanin A at �50 mM. Thus, our results
are similar to those of Myoung et al. (22) who had also
demonstrated the cytotoxic effect of genistein in oral
squamous carcinoma cells. Additionally, Alhasan et al.
(28) report genistein induced cell growth inhibition and
apoptosis in a HNSCC cell line. Consistent with the
above findings in OSCC is the observation of Davis et al.
(29) who noted the antiproliferative effect of genistein in
prostate cancer cells and genistein’s effect in lowering
prostate specific antigen expression. Similarly, Su et al.
(30) showed that treatment of bladder cancer cells with
biochanin A resulted in decreases in cell growth, with an
IC50 of 30 mgml�1 (i.e. 20 mM) and directly induced
apoptosis in those cells. Furthermore, treatment with
deguelin, a flavinoid, inhibited the growth of and induced
apoptosis in premalignant and malignant human bron-
chial epithelial (HBE) cells but had minimal effects on
normal HBE cells (31). All in all, results of this study,
as well as those discussed above, strongly suggest that
isoflavones exert an antiproliferative effect on a variety of
cancer cell types, and this outcome may be related to
their effect(s) on signaling pathways such as MAP kinase
and Akt.
Most types of cancers exhibit constitutive activity of the

ERK MAP kinase protein, conferring increased prolifera-
tion and resistance to apoptotic stimuli (32,33). Constitu-
tive phosphorylation of MAP kinase represents a common
deregulated signaling route in OSCC (34,35). One objective
of our study was to determine whether isoflavones exert
inhibitory effects on this pathway in SCC15 and SCC25 cell
lines, particularly that of phosphorylated ERK. Our results
visibly establish that treatment of these two cell lines with
genistein and biochanin A induced a lowering of total ERK
and phosphorylated ERK protein expression in a dose-
related manner. Consistent with our findings is the recent
observation that treatment with genistein and kaempferol,
which is a natural flavonoid derived from tea, broccoli and
other plant sources, blocked induced activator protein 1
activity in human prostrate cancer cells (36). Moreover,
survival signals, including ERK and Akt, may be involved
in determining the radiosensitivity of human esophageal
cancer cells, and genistein treatment of these cells may
enhance their radiosensitivity via inhibition of their survival
signals (37).
Others have shown that pharmacologic and genetic

approaches targeting Akt suppress the proliferation of
premalignant and malignant human epithelial cells,
including reversal of characteristics of HBE cells (31),
In this study, we have demonstrated the inhibitory effect
of genistein and biochanin A on Akt and phosphorylated

Akt in two OSCC cell lines: thus, our results suggest
these agents could be useful chemopreventive agents and
may also be employed as chemotherapy for oral cancer.
Inhibition of PC-3 cells by genistein via repression of
the Akt pathway is another indication of isoflavones as
chemopreventive/therapeutic agents in the suppression
of carcinogenesis and cancer cell proliferation (38).
Consistent with this notion is the evidence, in vivo, that
genistein potentiated the gemcitabine-induced killing by
down-regulation of NF-kB and Akt (39). Further support
can be derived from the observation that genistein,
biochanin A and kaempferol potently inhibited ERK1/2
and Akt phosphorylation in a rat prostate cancer cell
line (40).
Because of our finding that both genistein and

biochanin A inhibit cell proliferation in OSCC cell lines
and their MAP kinase and Akt signaling pathways, our
results may have interesting therapeutic implications and
applications. For example, they prompt us to propose
isoflavone compounds as oral cancer chemopreventive
and/or chemotherapeutic agents. Consequently, further
elucidation of effects of isoflavones on regulation of
expression of oncogenes and tumor suppresser genes will
greatly enhance our understanding of the mechanistic
roles isoflavones play in inhibiting carcinogenesis. More
importantly, in contrast to some agents presently used in
oral cancer chemoprevention and therapy, genistein and
biochanin A may provide more effective but less toxic
alternatives to conventional chemotherapy. In conclusion,
our findings, together with those discussed above,
strongly suggest that the antitumor potential of both
genestein and biochanin A should be tested in vivo and,
in particular, in clinical trials of OSCC chemoprevention
and/or chemotherapy. Nevertheless, further studies are
clearly needed to comprehensively assess the value of
isoflavones in human cancer prevention and/or treatment.
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