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Abstract: A simple design of an ultrathin six-band polarization-insensitive terahertz perfect
metamaterial absorber (PMMA), composed of a metal cross-cave patch resonator (CCPR) placed
over a ground plane, was proposed and investigated numerically. The numerical simulation results
demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to
the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits
a higher Q factor (>65). In addition, the absorption properties can be kept stable for both normal
incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism
behind the observed high-level absorption is illustrated by the electric and power loss density
distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon
resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore,
the resonance absorption properties of the PMMA can be modified and adjusted easily by varying
the geometric parameters of the unit cell.
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1. Introduction

Since the perfect metamaterial absorber (PMMA) concept was first proposed and demonstrated
experimentally by Landy et al. [1], it has become a hot research topic of science and technology.
PMMAs have recently been rapidly developed in a wide electromagnetic (EM) spectrum range from
microwave [1–3], terahertz [4–11], and infrared [12–16] to the visible region [17–20]. PMMA is not
limited by the quarter-wavelength thickness and is also scaled to different EM spectrum ranges due to
its geometric scalability. PMMAs have been proposed and demonstrated across a wide range of the EM
spectrum and hold great potential for applications such as thermal imaging [12], sensors [16,21–23],
solar cells [24], thermal emitters [25], and so on. The typical PMMA consists of three functioned layers:
a patterned metallic structure (e.g., split ring, cut wire, patch, ring, and so on) as the EM resonator;
a dielectric or magnetic substrate as a middle spacer; and a continuous metal film or metal wire as
the ground layer. Generally, the PMMA can achieve near-unity absorption based on the fundamental
resonance of the EM resonator. By adjusting the shape, size, thickness, and properties of the patterned
metallic structure and of the dielectric spacer of the PMMA, the permittivity εeff(ω) and permeability
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µeff(ω) can be equivalent, and thus an impedance can be matched to free space [1–9,26]. For this
fundamental EM resonance, the electric response stems from the excitation of the electric resonators
by the electric field [5–7]. The magnetic response is usually provided by pairing the top layer with
a metal ground plane or metal wire for an external magnetic field. The strong local EM resonance
usually restricts the unique responses to only a single narrow-band absorption, which greatly affects its
applications, particularly for biological sensing, thermal imaging, and spectroscopic detection. Thus,
simple and effective designs of high-performance multi-band PMMAs are also necessary.

Many efforts have been made to try to achieve a multi-band or broadband high-level absorption
for EM waves [27–33]. Generally, there are two design strategies to achieve multi-band absorption
or to extend the absorption bandwidth for PMMAs. One approach is to combine multiple sub-units
within a coplanar super-unit resonant structure [6–8], and another method is to construct an alternating
multiple patterned metallic structure and dielectric layers with different geometric parameters stacked
vertically [28–32]. However, both design strategies for the multi-band or broadband PMMAs have some
disadvantages: Firstly, the super-unit resonant structure could be very complicated, thus increasing the
fabrication cost of the PMMAs. Secondly, there are many interactions between the sub-units resulting
in an increased angular dependence in practice. Nearly all of the above-mentioned designs are based
on the overlapping of the fundamental resonance of the patterned metallic structure with different
geometric parameters and usually neglect the high-order EM response. In effect, high-order resonances
of (metamaterials) MMs are vital, but often overlooked in the design of PMMAs. It is very useful to
design a multi-band PMMA by combining the fundamental and high-order resonance modes in a
single patterned metallic structure [3,8,11,34–37]. For example, Mao et al. demonstrate a multi-band
PMMA based on ancient Chinese coin-shaped structures [3], attributed to the combination of the
fundamental resonance (LC resonances) and dipole resonances. Dayal reported a multi-band PMMA
comprised of metallic circular gold micro-disks separated from a thin metallic film by a dielectric
zinc sulphide film, the perfect multi-band absorption originating from the excitation of multi-pole
resonances at infrared wavelengths [34]. Dung et al. presented a broad PMMA and clarified that the
mechanism of dual-band absorption is due to fundamental and third-order magnetic resonances [35].
Wang et al. proposed a PMMA based on a single patched structure, which can achieve a dual-band
and triple-band absorption originating from the fundamental resonance and high-order responses
by appropriate geometric parameters designs [36]. However, most designs focus on the dual-band
and triple-band PMMAs, some of which are polarization-sensitive, and the multi-band, especially the
six-band, PMMAs are rarely proposed and demonstrated.

In this paper, we present a simple and effective design of an ultrathin six-band polarization-insensitive
PMMA in the terahertz region. Our design consists of an array of a cross-cave patch resonator
(CCPR) and a copper ground plane separated by a thin lossy Gallium Arsenide (GaAs) dielectric
film. Six ultra-narrow absorption bands are obtained, and their resonance peaks are on average larger
than 95%. Compared with the previous reported PMMAs [3–11,29–32,34–39], our design has some
advantages: Firstly, our PMMA has a compact unit size design and novel resonance mechanism.
Secondly, the simple design of the PMMA has more absorption peaks in a single patterned metallic
structure and is also polarization-insensitive for normal incident waves. Thirdly, the Q factors of
our design are much larger than those of previous PMMAs. Such a simple and effective design may
provide some potential applications in biological sensing, material detection, thermal imaging, and
communications at terahertz regions.

2. Structure Design and Simulation

We introduce a simple and compact unit cell for a six-band PMMA, as shown in Figure 1.
The designed PMMA is composed of a metallic CCPR array over a ground plane layer separated by
a dielectric substrate. Figure 1a shows a 2D array structure of the designed PMMA, and the front
view and perspective view of the unit–cell structure are displayed in Figure 1b,c. The optimized
geometrical parameters of the unit–cell of the PMMA are as follows: px = py = 75 µm, l = 68 µm,
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g = 1 µm, ts = 3.8 µm. The unit–cell structure of the PMMA is periodic along the x and y axes, with
periods of 75 µm to avoid diffraction at the normal incidence for frequencies up to 4 THz. In our
interesting frequency range (0.8–3.2 THz), the metal elements (CCPR structure and ground plane layer)
are made of a lossy copper film with a frequency-independent conductivity σ = 5.8 × 107 S/m and a
thickness of 0.6 µm, which is much larger than the typical skin depth in the terahertz regime (to avoid
transmission through the ground plane metallic film). GaAs with a complex dielectric constant of
ε = 12.9 + 0.0774i was selected as the dielectric spacer between two metallic layers.
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Figure 1. Schematic of the designed six-band polarization-insensitive terahertz perfect metamaterial
absorber (PMMA): (a) 2D array, (b,c) front view and perspective view of the unit cell.

To verify the efficiency and investigate the resonant absorption behavior of our design,
the full-wave EM simulations were performed using a frequency domain solver based on finite
integration technology (FIT) in a Computer Simulation Technology (CST) Microwave Studio. In the
simulation, the periodic boundary conditions in the x- and y-directions are applied for the transverse
boundaries to replicate an infinite array of the PMMA, and the perfectly matched layers are applied
along the z-direction. The incident electric field and wave vector direction are shown in Figure 1,
the periodic array structures being illuminated by a normally incident terahertz plane wave with the
electric field parallel to the x-axis and the magnetic field parallel to the y-axis. The absorbance of the
designed PMMA can be calculated by the formulas A(ω) = 1− R(ω)− T(ω), where A(ω), R(ω), and
T(ω) are the absorbance, reflectance, and transmittance as functions of the frequency ω, respectively.
Regarding the plane EM wave normal incidence for our PMMA, no transmission can be examined, as
it is blocked off by the continuous copper film. Thus, T(ω) = 0, and only the reflectance needs to be
measured in our simulations. The absorbance can achieve unity ( A(ω)→ 1) when the reflection is
near zero ( R(ω)→ 0) at resonance frequency.

3. Results and Discussion

Figure 2 shows the simulated absorbance spectra of the proposed PMMA: six resonant frequencies
(f 1, f 2 . . . f 6) can be observed clearly. From Figure 2b–g, at resonant frequencies of f 1 = 1.13 THz,
f 2 = 1.56 THz, f 3 = 1.77 THz, f 4 = 2.18 THz, f 5 = 2.85 THz, and f 6 = 3.14 THz, the absorbance A(ω)
is about 90.5%, 94.4%, 98.7%, 96.2%, 95.4%, and 95.2%, respectively. The corresponding electric
thickness of the PMMA is about λ1/70, λ2/50, λ3/45, λ4/36, λ5/28, and λ6/25, respectively (the
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λi is the resonance wavelength, where i = 1, 2, 3 . . . 6). Thus, our designed PMMA possesses an
ultrathin thickness compared with the operation wavelength (<λ/25, at 3.14 THz). In addition, it also
exhibited a frequency selectivity of the six-band PMMA, since the bandwidth of perfect absorption
is very narrow and the off-resonance absorption is very small (A(ω) < 5%). The peak absorption at
different resonant frequencies corresponds to the nature of the different resonance modes, which will
be illustrated and classified by analyzing the distributions of the electric fields of the unit–cell structure.
It can be conjectured that the high-level absorption of those six resonance peaks is attributable to
the higher-order multipolar plasmon resonances of the CCPR structure. It can be found that the
absorption frequency band for the six-peak PMMA is relatively narrow compared with the previous
PMMAs [5–8,11,12,36,37]. It is expected that the proposed PMMA has a significantly higher Q factor
than the previous ones.
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Figure 2. (a) The absorption spectra of the proposed six-band PMMA, (b–g) the absorbance spectra
under different resonant frequency domain.

The Q factor is usually defined as the ratio of the central frequency to the full width at half
maximum (FWHM) bandwidth of the resonance, and this was calculated for our design. At the above
six resonant frequencies (f 1 = 1.13 THz, f 2 = 1.57 THz, f 3 = 1.77 THz, f 4 = 2.18 THz, f 5 = 2.83 THz,
and f 6 = 3.14 THz), the FWHM bandwidth is about 0.0167 THz, 0.0139 THz, 0.0219 THz, 0.0219 THz,
0.0251 THz, and 0.0286 THz, respectively. Thus, the corresponding Q factor is about Q1 = 67.48,
Q2 = 113.19, Q3 = 80.6, Q4 = 77.39, Q5 = 112.67, and Q6 = 109.53, respectively. From the above results,
the high-level absorption with high Q factor only occurs at resonant frequencies. The Q factor of the
previous MMs structure for sensing applications is usually relatively lower (Q factor < 20) [21–23,40],
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in contrast, our proposed PMMA has a relatively higher Q factor (>60). Especially, it can be expected
that our proposed PMMA can serve as a highly sensitive sensor for phase imaging of prohibited
drugs, detection of combustible, toxic and harmful gases, and biological sensing, due to its high Q
factor. In addition, it can be expected that the proposed structure of the PMMA is insensitive to the
polarization state of the incident terahertz wave, due to the high geometric rotational symmetric of the
unit–cell structure.

We characterized the polarization angle dependence of the PMMA for both TE and TM waves
under normal incidence, and the results are shown in Figure 3. We only needed to consider the
polarization angles from 0

◦
to 45

◦
, owing to the rotational symmetry of the unit–cell structure of the

PMMA, as shown in Figure 3a,b. Obviously, under normal incidence, the absorbance under different
polarization angles remains unchanged for both the transverse electric(TE) and the transverse magnetic
(TM) modes. This means that the designed PMMA can keep the absorption stability for normal incident
terahertz waves with different polarization in practical application. It should be noticed that the first
absorbance can be kept unchanged for both the TE and the TM mode, when the angle of the incident
wave is below 65

◦
. The absorbance performance of the higher-resonant frequencies (for example,

second resonance, third resonance . . . and sixth resonance frequency) will deteriorate with the increase
of the incident angle (θ > 30

◦
), due to the higher-order multipolar plasmon resonance (not shown).
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To illustrate the resonant absorption mechanism of the PMMA, several physical interpretations
or theory modes have been proposed and demonstrated, such as the effective media theory for
impedance matching [41,42], the electric or the magnetic resonance theory [43–46], the interference
theory [47,48], the coupled mode theory [49], the surface plasmon theory [50], the standing-wave
theory [51], and the equivalent LC circuit theory [52,53]. When using these theory modes to analyze
and explain the underlying mechanism of the proposed PMMAs, they are persuasive and convincing.
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However, most of these theory modes have some limitations, for example, when using the coupled
mode theory, the higher-order resonance modes are usually ignored and not considered. In all of
these physical interpretations or theory modes, the electric or magnetic resonance mechanisms are
closer to the physical nature of the MMs structure. Thus, in this work, we elucidate the underlying
physics mechanism of the multi-band PMMAs by observing and analyzing the resonant response
of the CCPR structure for normal incident THz waves. Similarly to previous works [54,55], we only
simulated electric field and power loss density distributions of the unit–cell structure to analyze the
physics mechanism of our proposed PMMA.

Figure 4 shows the simulated electric field distributions at the different resonant frequencies,
which can provide insight on the physical nature of the resonance absorption of our proposed PMMA.
It can be observed that the z-component (Ez) of the electric field of the incident wave is mainly
concentrated on the patch edges, gap edges, and corners of the metallic CCPR structure. As shown in
Figure 4a, at the lowest frequency (f 1 = 1.13 THz) the electric field is mainly concentrated on the corners
of the upper and lower triangle areas of the CCPR structure, indicating an excitation of quadrupolar
resonance. This means that the upper and lower triangle areas of the resonator structure can strongly
couple with the electric field and supply quadrupolar resonances, which can be interpreted by a simple
dipole–dipole interaction along the electric field direction [38,39,43,44]. For the second frequency
(f 2 = 1.56 THz), as shown in Figure 4b, the upper and lower areas of the CCPR structure and the
greater part of the triangle section generate the half-wave resonance mode, coupling strongly to the
electric field. Similarly to the lowest mode (f 1), the CCPR structure at the second mode (f 2) supplies
hexapolar resonance. In effect, the electric field distributions revealing quadrupolar and hexapolar
resonances correspond to the nature of localized surface plasmon (LSP) behaviors [56,57]. Figure 4c
shows that for the third resonant frequency (f 3 = 1.77 THz) the electric field (Ez) distribution is mainly
concentrated on the upper, middle and lower areas of the CCPR structure, showing an excitation of
multiple half-wavelength charge oscillations in the structure corresponding to the first higher-order
mode [34]. Essentially, the higher-order modes occurring at the higher frequencies are due to the
fact that the dimension of the CCPR structure is larger than the multiple of a half-wavelength of
the resonant modes [8,11,34,36,39]. Similarly, as shown in Figure 4e, the Ez distribution at the fifth
frequency (f 5 = 2.85 THz) reveals the next higher-order excitation of multiple half-wavelength charge
oscillations in the CCPR structure. The Ez distributions for the higher-order mode possesses a finite
dipole moment for these two modes (f 3 and f 5), which is much like the fundamental dipole resonance
response [30]. At the other frequencies (f 4 = 2.18 THz and f 6 = 3.14 THz), as shown in Figure 4d,f, the
Ez distributions reveal decapole and octadecapole excitations of the CCPR structure [57]. It can be seen
that the resonant electric fields associated with the multipolar modes (f 4 and f 6) are highly localized on
the CCPR structure as well as highly enhanced in comparison to fields at nearby frequencies. It should
be noted that the excitations of the propagating surface plasmon (PSP) also contribute to the formation
of the absorption peaks (f 4 and f 6) [57]. This also means that the fourth and sixth absorption peaks
(f 4 and f 6) originate from the combination of the high-order LSP and PSP resonance of the designed
CCPR structure [57]. Therefore, this six-band perfect absorption of the PMMA is realized easily, based
on the combination of the PSP resonance and the high-order multipolar response of the CCPR structure.
These results suggest a new approach for designing a multi-band PMMA by integrating different
resonance modes in a single patterned structure.

To further characterize the terahertz wave resonance absorption behavior of the proposed six-band
PMMA, we provided the distributions of the power loss density of the unit–cell structure at different
resonant frequencies, as shown in Figure 5a–f. It can be clearly observed that the regions of maximum
power losses occur mainly around the gap, the upper and lower edges, and other side areas of the
middle dielectric layer for the proposed PMMA. In effect, the majority of the terahertz wave EM
energy is dissipated as dielectric loss in the middle dielectric layer at the different resonance modes.
For example, as shown in Figure 5a, the distribution of power losses is mainly concentered on the gap
of the structure, which is induced by the excitation of quadrupolar resonance. From the Figure 5b–f
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it can be observed that the properties of the power loss density distributions are similar to those of
the electric field distributions. Obviously, the distributions of power loss density associated with the
higher-order multipolar modes are highly localized for the CCPR structure and the middle dielectric
layer at the different resonance modes. Thus, it can be concluded that the PSP resonance and high-order
multipolar resonances play an important role for the high-level absorption at the resonant frequencies.Materials 2017, 10, 591 7 of 13 
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Figure 5. Distributions of power loss density in the middle dielectric layer for the proposed PMMA at
frequencies of (a) f 1 = 1.13 THz, (b) f 2 = 1.56 THz, (c) f 3 = 1.77 THz, (d) f 4 = 2.18 THz, (e) f 5 = 2.85 THz,
and (f) f 6 = 3.14 THz, respectively.
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Based on the above explanations of the resonance absorption mechanism of the six-band PMMA,
the influence of geometric parameters of the unit–cell structure on the resonance frequencies could
be easily understood. It can be conjectured that the resonance absorption frequencies of the PMMA
mainly depend on the length l, gap width g of the metallic CCPR, and the thickness ts of the dielectric
layer. Taking a further step, we studied the influences of geometric parameters of the unit–cell structure
on the resonance absorption properties of the proposed PMMA.

Firstly, the PMMAs with different CCPR lengths l (l = 68 µm, 69 µm, 70 µm) were calculated when
the other geometric parameters were fixed, as shown in Figure 6. It can be observed that the CCPR
length l can influence the all resonant frequencies (f 1, f 2, f 3, f 4, f 5, and f 6), which will decrease with the
increase of the l. The absorption peaks of the resonance modes f 1 and f 3 will remain almost unchanged,
and those of the f 2 and f 4 will increase slightly, while the ones of the other resonances (f 5 and f 6) will
decrease slightly with the increase of the l. In addition, it should be noted that another peak close
to f 6 can be observed clearly when the CCPR length is greater than 68 µm (>68 µm), revealing that
the higher-order resonance mode is excited in this case. However, the absorbance of the resonant
frequency close to f 6 is relatively small (<70%). According to the equivalent LC resonance circuit
theory, the resonant frequency can be expressed as fi =

1
2π
√

LC
, where the equivalent capacitance C

and inductance L are mainly determined by the geometric parameters (l, g, and ts) of the unit–cell
structure of the PMMA [51,52,58]. The C will increase with the increase of the l, thus resulting in
a decrease of the multiple resonant frequencies.Materials 2017, 10, 591 9 of 13 
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absorbance spectra on the l at different frequency domains.

Next, we discuss the effect of the CCPR gap width g on the absorption, and the absorbance of
the PMMAs with different g (g = 1 µm, 1.2 µm, 1.4 µm) was calculated when the other geometric
parameters were unchanged, as shown in Figure 7. From Figure 7b–e it is seen that the resonant
frequencies (f 1, f 2, f 3, f 4, f 5, and f 6) drift to the higher frequency, and the absorption peaks remain
almost unchanged when the parameter g was changed from 1 µm to 1.4 µm. Although the resonance
modes (f 3 and f 6) also shift to the higher frequency, the absorption peak of mode f 6 will decrease with
the increase of the CCPR gap width g. It also can be easily understood that C will decrease with the
increase of the CCPR gap width g, thus resulting in an increase of multiple resonant frequencies, which
is different to the change of the l.
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Furthermore, we discuss the effect of the dielectric layer thickness ts on the absorption, and
Figure 8 shows the calculated absorbance of the PMMA with different ts (ts = 3.7 µm, 3.8 µm, 3.9 µm)
while the other geometric parameters were unchanged. From Figure 8b–d, it is obvious that the
resonance absorption frequencies (f 1, f 2, f 3, and f 4) drift to the lower frequency, and the absorption
peak remains unchanged at a high level when changing the parameter ts from 3.7 µm to 3.9 µm.
Although the absorption frequencies (f 5 and f 6) also shift to the higher frequency, the absorption
peaks will increase with the increase of the dielectric layer thickness ts, as shown in Figure 8e. In this
case, when increasing the dielectric layer thickness ts, the L will increase, thus the multiple resonant
frequencies will decrease accordingly.
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Based on the above calculation and analysis, the absorption peaks and frequencies are sensitive
to the geometric parameters (l, g, and ts) of the unit–cell structure. We could adjust the absorption
peaks and frequencies by changing these parameters. Although all changes of the parameters almost
affect the resonant frequency absorption peak, the designed PMMA still remains high absorption level
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(A(ω) > 90%) at resonance. These results further confirm that the frequencies of the designed six-band
PMMA could meet different application needs, especially in sensors.

4. Conclusions

In summary, we present an ultrathin six-peak PMMA based on a metallic square cross-cave patch
structure placed over a ground plane separated by a dielectric substrate. Simulations confirm that
the absorption peak of the PMMA is on average more than 95% at six different resonant frequencies.
The designed PMMA exhibits a higher Q factor of more than 65, due to the ultra-narrow band
resonance absorption of the structure. Thus, it can be expected that our proposed PMMA can be
applied in spectroscopic detection and biological sensing, due to its higher Q factor. Moreover, the
high absorption level of the designed PMMA can be kept almost unchanged with different polarization
angles for both TE and TM waves under normal incidence. The absorption mechanism of this design
was illustrated by studying the electric field distributions at six resonant frequencies. The electric field
distributions for different frequencies (f 1, f 2 . . . f 6) revealed that the high-level absorption originated
from the PSP and the higher-order multipolar plasmon resonance response of the square cross-cave
patch structure. Furthermore, the resonance absorption properties of our design can be adjusted by
varying the geometric parameters of the unit–cell structure, which gives considerable freedom to shift
or change the operation frequencies of the PMMA to meet different application needs. In addition,
the simple design of the six-band PMMA is easily fabricated using the conventional photolithography
process and metallization process steps [59,60]. In our next work, we will perform an experiment for
our designed PMMA for practical sensing application. The aforementioned advantages of the six-band
PMMA make it a good candidate in some potential applications of thermal imaging, wavelength
selective radiators, thermal bolometers, biosensors, and so on.
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