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Abstract: Introduction and Background: Despite fast developments in the medical field, histological
diagnosis is still regarded as the benchmark in cancer diagnosis. However, the input image feature
extraction that is used to determine the severity of cancer at various magnifications is harrowing
since manual procedures are biased, time consuming, labor intensive, and error-prone. Current
state-of-the-art deep learning approaches for breast histopathology image classification take features
from entire images (generic features). Thus, they are likely to overlook the essential image features
for the unnecessary features, resulting in an incorrect diagnosis of breast histopathology imaging and
leading to mortality. Methods: This discrepancy prompted us to develop DEEP_Pachi for classifying
breast histopathology images at various magnifications. The suggested DEEP_Pachi collects global
and regional features that are essential for effective breast histopathology image classification. The
proposed model backbone is an ensemble of DenseNet201 and VGG16 architecture. The ensemble
model extracts global features (generic image information), whereas DEEP_Pachi extracts spatial
information (regions of interest). Statistically, the evaluation of the proposed model was performed
on publicly available dataset: BreakHis and ICIAR 2018 Challenge datasets. Results: A detailed
evaluation of the proposed model’s accuracy, sensitivity, precision, specificity, and f1-score metrics
revealed the usefulness of the backbone model and the DEEP_Pachi model for image classifying.
The suggested technique outperformed state-of-the-art classifiers, achieving an accuracy of 1.0 for
the benign class and 0.99 for the malignant class in all magnifications of BreakHis datasets and an
accuracy of 1.0 on the ICIAR 2018 Challenge dataset. Conclusions: The acquired findings were
significantly resilient and proved helpful for the suggested system to assist experts at big medical
institutions, resulting in early breast cancer diagnosis and a reduction in the death rate.

Keywords: histopathological images; breast cancer; medical images; transfer learning; multi-head
self-attention; image classification

1. Introduction

Cancer is among the majority of deadly diseases, claiming the lives of millions of
people each year. Breast Cancer (BC) is the most common cancer and the leading cause of
death among women [1]. As per World Health Organization (WHO) data, 460,000 people
die annually from BC out of 1,350,000 cases [2]. The United States (US) alone recorded
about 268,600 instances of BC in 2019, setting a new record [3,4]. BC develops due to
aberrant cell proliferation inside the breast [5]. The breast anatomy comprises several blood
arteries, tendons and ligaments, milk ducts, lacrimal gland, and lymph ducts [6]. Benign
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carcinoma is squamous cell carcinoma that forms due to minor anomalies in the breast.
Malignant carcinoma, in contrast, is classed as melanoma and further characterized as
invasive carcinoma or in situ carcinoma [7]. Invasive BC expands to nearby organs and
causes difficulties [8,9], whereas in situ carcinoma stays limited to its territory and does
not affect surrounding tissues. To avoid future progression and problems, BC must be
identified earlier and correctly classified as benign or malignant carcinoma. As a result, a
prompt and accurate therapy may be devised, lowering the disease’s fatality rate. Diverse
imaging techniques are used to identify BC, such as Histopathology (HP) [10], Computed
Tomography (CT) [11], Magnetic Resonance Imaging (MRI) [12], Ultrasound (US) [13],
Mammograms (MGs) [14], and Positron Emission Tomography (PET). Statistics reported in
recently published studies on imaging methods [15] reveal that 50% of datasets utilized
in BC-related research are MGs, 20% are US, 18% are MRI and 8% are HP. The remaining
percentage includes commercial records and data from different forms [6,12,16]. Further
studies prove that HP images do not offer binary identification and classifications but
support the multiclass identification and classification of BC subtypes [17–19]. In this
paper, a BHI dataset at various magnifications (40×, 100×, 200×, 400×) is studied. The
preprocessing of various magnification varies. For instance, with 100× magnification,
a specialist examines squamous development, mesenchymal involvement, and tumor
localization to determine the carcinoma. Nevertheless, developing an accurate and fast
model to evaluate BHI at various magnifications is difficult due to multiple factors such
as variable pixel intensity, microscopic size nucleus, diverse image characteristics, a wide
variation of nuclei, the existence of distortions, and so on. The current effort aims to create
a deep learning-based attention model to categorize BHIs in various magnifications.

Several strategies have been studied for classifying BHIs under 100× magnifica-
tion [20,21]. Conventional approaches are always focused on feature extraction. On the
other hand, finding relevant handmade characteristics necessitates experience and exper-
tise but these might fail to grasp all permutations in the dataset. Deep learning-based
approaches have recently gained prominence as processing computing capacity has im-
proved. Their ability to analyze end-to-end provides it a better choice for BHI classification.
Convolutional layers are used in deep learning algorithms to extract input image features.
These convolutional layers often extract unwanted features alongside the needed parts
or overlook the essential features. However, the extracted features influence the result
and choice of malignancy; thus, disregarding these aspects may result in incorrect image
evaluation. As a result, the extracted characteristics by the convolutional layers of CNN are
insufficient for classifying BHIs. We present an attention-based deep learning framework
that employs global and local features to determine tumor malignancy. The mechanism
of the human brain to interpret visual data while still analyzing the significance of input
elements is known as attention. This neurological mechanism enables exclusive focus on
a single piece of information while ignoring other discernible details. Nevertheless, in
opposition to the competency of attention, the conventional and commonly used CNN
classifier examines characteristics more broadly. It is not assured of extracting relevant
clinical knowledge subconsciously comparable to trained networks [22]. Self-attention is a
significant advancement of computer vision [23–28]. These advancements focus exclusively
on essential features in an informal m with no external guidance. The CNN models serve
as the backbone of the self-attention models. They are trained end-to-end, with no modifi-
cations in the training phase. Thus, employing self-attention processes inside conventional
CNN yields several advantages in accuracy, comprehensibility, and robustness on clinical
vision tasks.

1.1. Diagnostic Medical Methods Used in the Investigation of BC

Having mentioned several medical imaging methods used in diagnosing BC, this paper
describes the imaging methods related to our task and why we chose histopathological
images in this section. PET is an accepted imaging method that might provide handy
information regarding BC; nonetheless, it is usually utilized for early grading of advanced
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or metastatic invasive and reactive breast cancers, assessing progress to therapies and
detecting and localizing family history of the disease [29]. As a result, we did not include it
in our discussion.

The most often and extensively used technique is MGs [30–32], as they are easily
accessible as public datasets. MGs are small breast X-rays [33] that are simple and frequently
employed as the initial test for BC identification [34]. Regrettably, because of the vast
discrepancies in shape, the surface area of breast tissues and morphological form, these are
not reliable as they are associated with health effects, including radiation exposure risks
for carriers and radiologists and overdose of radiation effects for carriers [35]. Moreover,
due to inadequate specificity, these techniques subject a considerable proportion of the
population (65–85%) to unnecessary biopsy procedures [36,37]. Such unnecessary biopsies
increase the hospitalization cost for individuals and cause mental stress. Due to such
limitations, US imaging is considered a much better option for breast cancer diagnosis and
detection [38,39].

US imaging can significantly boost detection accuracy by 17% while decreasing overall
needless biopsy procedures by 40% [39] compared with MGs. Sonograms are another title
for breast US in clinical medicine. US might be a superior option to MGs for BC assessment
and diagnosis due to its adaptability, reliability, sensitivity, and selectivity [40]. On the
other hand, BC lesion identification and classification with US imaging need radiologists’
experience and knowledge due to its complexity and speckle [41]. Aside from the compli-
cated imaging form, US image-based assessment in female patients produces unsatisfactory
false detection results and misclassification [42]. As a result, there is insufficient evidence
to recommend the use of US in the diagnosis and treatment of BC.

MRI breast images yield better sensitivity for detecting BC in dense tissue [43]. MRI
images provide a more thorough overview of breast tendons than CT, US, or MGs im-
ages because multiple samples from different angles constitute a patient’s breast image
sample [44]. Since MRI scans are more comprehensive than other alternative imaging
techniques, they may uncover tumors not apparent on different imaging techniques or be
deemed malignant [45]. Despite MRI’s high sensitivity [46], its adoption for BC diagnosis
is limited due to its expensive cost [47]. Conversely, newer MRI methods, such as DWI
(Diffusion-Weighted Imaging) and UFMRI (Ultrafast Breast MRI), provide much improved
diagnostic precision with faster processing efficiency and lower expenses [48,49].

HP is the process of removing a heap from a questionable anatomical and physiological
spot for screening and extensive investigation by specialists [50]. In clinical medicine, this
procedure is commonly referred to as a biopsy. Biopsy specimens are mounted over a
microscope slide clouded with Hematoxylin and Eosin (H&E) for examination [51]. HP
images come in two types: (i) Whole Slide Images (WS), which are computerized color
imaging, and (ii) image patches derived from WSI. Several researchers have effectively
employed HP images in the multiclassification of BC due to tissue level examination [17–19].
BC identification and classification with HP images has several benefits over MGs and other
imaging alternatives such as MRI and US. In particular, HP images do not offer only binary
identification and classifications but support multiclass identification and classification of
BC subtypes. Table 1 illustrates the summary of the discussed Breast cancer modalities, its
robustness, constraints and available datasets.
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Table 1. Robustness and constraints of various imaging techniques for BC diagnosis and treatment.

Imaging Techniques Robustness Constraints Public Datasets

MG

1. Reliable and premium approach for
capturing, storing, and processing images
of breast tissue [52,53]
2. Unlike HP images, they do not need a
comprehensive experience or professional
understanding to analyze and classify.

1. Due to their microscopic dimensions and scattered
form features, they have restricted abilities in acquiring
segments and sub in the human breast [54].
2. Unsuitable for detecting breast cancer in thick
breasts due to the absence of malignant tissues [55].
3. Not reliable in identifying BC; hence more screening
may be necessary for accurate assessments [56].

-BCDR
-CBIS-DDSM

-MIAS
-Mini-MIAS

-DDSM
-InBreast

US

1. Does not make patients vulnerable to
dangerous rays and is thus regarded
exceedingly safe, particularly for
expectant mothers [57].
2. These are specifically convenient
imaging techniques for identifying BC in
thick breasts, where MGs fail [58].
3. Allows for viewing a breast tumor from
multiple viewpoints and configurations,
lowering the possibility of a negative
result assessment.

1. Often yield false diagnoses if the scanner probe is
not moved or pushed appropriately [59].
2. They cannot correctly portray the tumor outline in
the breast due to its signal weakness to the human
muscles [60].
3. US images are of low quality compared to the
images of MGs; thus, obtaining ROI for more advanced
analysis is challenging with US imaging.

-BCDR
-BUSI

MRI

1. MRI can detect questionable spots,
which can be explored further with
autopsy (MRI-assisted biopsy).
2. MRI, just like US, does not make
patients vulnerable to any dangerous
radioactive materials.
3. MRI gives a thorough description of
soft breast internal tissues as well as the
ability to record

1. To improve MRI images, supplement chemicals are
frequently administered, which might cause
sensitivities or other issues and are thus not suggested
for patients, particularly renal patients [61].
2. MRI is typically not suggested throughout
pregnancy [62] and is primarily advised as a follow-up
test only after an MGs-based examination has
been performed.
3. MRI is a pricey procedure relative to MGs or US;
hence, it is not often used for BC diagnosis. MRI offers
highly accurate data about the interior breast tissues,
but it can overlook some malignant areas that MGs can
identify [63].

Duke-Breast-
Cancer
RIDER

Breast MRI

HP

1. Images of HP are RGB images that are
very efficient in diagnosing many types of
malignancies and provide a greater
efficacy for an early phase of BC.
2. An in-depth study of breast tissues is
feasible with HP images, resulting in a
more reliable examination of BC than
other imaging alternatives.
3. Multi ROI images may be produced
from full flip HP images, increasing the
likelihood of detecting cancer tissues and
lowering the number of false positives.

1. HP images are obtained by mammogram, which is
an expensive approach with significant potential
complications, necessitating special attention from
pathologists as comparable to other
imaging alternatives
2. HP images are easy to misinterpret, and the
conventional examination of HP images takes a long
time [64]. As a result, experts are needed for
correct interpretation.
3. Extreme caution is required during histopathology
specimen preparation (From the extraction of a tissue
sample from the breast to the application of
microscope to the extracted tissue sample, the
adjustment/control of the color disparities caused by
different staining processes) to reduce the possibility of
a mistaken diagnosis.

UCI (Wisconsin)
BICBH

BreakHis

Identified Public site
for BC Dataset

http://peipa.essex.ac.uk/info/mias.html, http://marathon.csee.usf.edu/Mammography/Database.html,
https://biokeanos.com/source/INBreast, https://bcdr.ceta-ciemat.es/information/about

https://wiki.cancerimagingarchive.net/display/Public/, https://www.repository.cam.ac.uk/handle/1810/250394,
accessed on 20 March 2022.

1.2. Related Studies

The AI approach’s classification of BHI has received much attention in the research
field [10,65–67]. There are significant obstacles in developing AI systems to examine these
images, such as cancerous specimen variability, illumination variations and hue variations,
intraclass fluctuations, different magnifications, and the existence of abnormalities, among
others. Researchers used the traditional technique and deep learning models, which are
further explored below and summarized in Table 2.

http://peipa.essex.ac.uk/info/mias.html
http://marathon.csee.usf.edu/Mammography/Database.html
https://biokeanos.com/source/INBreast
https://bcdr.ceta-ciemat.es/information/about
https://wiki.cancerimagingarchive.net/display/Public/
https://www.repository.cam.ac.uk/handle/1810/250394
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Table 2. Summary of the related studies.

Ref Year Image Type Techniques Task Recorded Result

[8] 2017 - ConvNet classifier Detection

75.86% Dice coefficient
71.62% positive prediction
96.77% negative prediction
(pixel-by-pixel evaluation)

[12] 2017 -

Multiscale Basic Image
Features, Local Binary

Patterns, Random Decision
Trees Classifier

Classification 84% Accuracy

[32] 2017 BreaKHis
Augmented BreaKHis CSDCNN model Multi-Classification 93.2% accuracy

[37] 2017 -
Hybrid Contour Model-Based

Segmentation with
SVM Classifier

Binary Classification
Multi-Classification 88% AUC.

[36] 2018 BreaKHis
VGG16, VGG19, and

ResNet50 with
Logistic Regression

Binary Classification 92.60% accuracy, 95.65% AUC,
95.95% precision score

[33] 2018 BACH (ICIAR 2018) Two-Stage CNN Multi-Classification 95% accuracy

[4] 2018 BreaKHis DL model with
handcrafted features Mitosis detection

92% Precision
88% Recall

90% F-Score

[5] 2018 BreaKHis Transfer Learning based CNN Mitosis detection 15% F1-Score improvement

[27] 2018 TMAD, OUHSC Transfer Learning. Binary Classification 90.2% Accuracy with GoogleNet

[23] 2019 BACH (ICIAR 2018) Hybrid CNN + Deep RNN Multi-Classification 91.3% Accuracy

[24] 2019 BreaKHis Small SE-ResNet Binary Classification
Multi-Classification

98.87–99.34% Binary Classification
Accuracy

90.66–93.81%
Multi-Classification Accuracy

[25] 2019
BACH (ICIAR 2018)

Bioimaging2015
Extended Bioimaging2015

CNN + RNN + Attention
Mechanism Multi-Classification -

[6] 2019 BreaKHis
Mask R-CNN network, with

features obtained from
Handcrafted and DCNN

Mitosis detection -

[26] 2019
BreaKHis

L.R.H. hospital
Peshawar Data

Transfer Learning.
GoogleNet, VGGNet, ResNet Binary Classification 97.53% Accuracy

[28] 2019 BreaKHis D2TL and ICELM Binary Classification Classification Accuracy 96.67%,
96.96%, 98.18%

[29] 2019 BreaKHis Inception_V3
Inception_ResNet_V2 Multi-Classification -

[30] 2019 BreaKHis
BACH (ICIAR 2018)

Deep CNN with Wavelet
decomposed mages

Binary Classification
Multi-Classification

96.85% Accuracy
98.2% Accuracy

[34] 2019 deep selective attention Classification 98% accuracy

[21] 2020 B.H.I.s
BreaKHis

Modified Inception
Network/Transfer Learning

Classification
multiclass -

[22] 2020 BreaKHis ResHist model (Residual
Learning CNN) Classification

84.34% Accuracy
90.49% F1-Score

92.52% Accuracy (DA)
93.45% F1-score (DA)

[31] 2020 BACH (ICIAR 2018) Attention Guided CNN Detection and
Classification

90.25 ± Accuracy
0.98425 AUC

Single 88% Accuracy
Ensemble 93% Accuracy

[35] 2020 BreaKHis
BACH (ICIAR 2018)

CNN and multi-resolution
Spatial Features

wavelet transform

Binary Classification
Multi-Classification

97.58% Accuracy
97.45% Accuracy

[38] 2020 BreaKHis CNN With Several Classifiers Binary Classification
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Table 2. Cont.

Ref Year Image Type Techniques Task Recorded Result

[39] 2020 VGG16, VGG19, and
ResNet50 with SVM

[19] 2021 BHIs DCNN with several
Optimizers Classification 99.05% accuracy

Various conventional approaches to image analysis have been presented by numerous
scholars [68–71]. These approaches include several phases, such as the preprocessing phase,
region of interest segmentation phase, the extraction of features phase, and identification
phase. In Refs. [71,72], Local Binary Patterns (LBP) were used for BHI categorization,
while the authors of Ref. [73] used the frequency distribution index, in conjunction with
contours, to identify meiosis. Unfortunately, due to the varied properties of cancerous
images, appearance alone will be inadequate for effective image classification. Furthermore,
support vector machines (SVM) [71] and decision trees (DT) [74,75] have been widely
investigated for image classification. These strategies focused on data preprocessing since
it significantly influenced the recognition rate. Such techniques depend on characteristics
that have been handcrafted. Furthermore, detecting these handcrafted traits necessitates
technical knowledge and expertise. Moreover, these characteristics might not perfectly
capture all variabilities in the sample, resulting in poorer predictive performance.

The ability of Deep Learning models to represent complicated patterns has made
them a common approach for image processing. Several CNN-based methods such as
ResNet, VGG-16, Inception, VGG-19, and others were proposed for image classification
tasks. Ref. [76] authors employed Deep CNN for BHI classification. The authors of Ref. [8]
used CNN to detect invasive BC. In contrast, the author of Ref. [77] used the same CNN
approach to address the sample class imbalance and extractions of input image features at
various BHIs Magnification. The authors of Ref. [78] employed the Residual neural network
for automated BHI assessment. The authors of Ref. [79] combined CNN and Residual
neural network for multi-level feature extraction. The authors of Ref. [80] argued for the
integration of squeeze and excitation blocks and residual neural network yields compared
to Ref [79] for this classification. The authors of Ref. [81] suggested that the combination of
Ref. [79] and Ref. [80] yields a better result. They used Ref. [80]’s approach to extract the
input image features in Latent space and used an attention mechanism [80] for classification.
Transfer learning [82–84] has been widely investigated as it provides room for better model
performance where there are few training samples. Ref [85] used Inception with a residual
connection model via transfer learning for more feature extraction. Ref. [86] entails using
CNN’s wavelet decomposition for image classification. Ref. [87] integrated a soft attention
network to its architecture to focus entirely on the region of interest alone. At the same time,
the author of Ref. [88] designed a class-specific Deep CNN network for BHIs multiclass
classification. To tackle the computational cost of processing huge images, the authors
of Ref. [89] developed a dual-stage CNN. The authors of Ref [90] integrated the idea of
Refs. [76,86]. They used adaptive spectral composition and an attention technique [90]
for classification.

Several researchers have employed the hybrid technique to seek a better and more
accurate BHI classification model. The authors of Ref. [91] used the ensemble of ResNet50,
VGG19 and VGG16 as feature extractors for a logistic regressor classifier. The authors
of Ref. [92] suggested that a cascaded ensemble model with an SVM classifier yields
better and more accurate results. The cascaded ensemble is seen at the feature extraction
(multi-lateral and syntactic feature) by the CNN model. Ref. [92] created an ensemble
of DenseNet121, InceptionV3, ResNet50, and VGG-16 as feature extractors. Ref. [93]
investigated several Deep learning pre-trained models as feature extractors and used SVM
as classifiers. Unfortunately, CNN-based techniques require a substantial amount of labeled
training samples. Much research that focused on patch level [94] feature extraction and
image-level [95] feature extraction for BHIs classification has been performed. The author of
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Ref. [95] used a voting principle for the classification after extracting input image features
via image and patch levels. In contrast, the authors of Ref [94] employed pre-trained
models (ResNet and Inception architecture) for input image feature extraction via images
and patch level. Notwithstanding, there are chances where the input images analyzed for
patch features fail to contain RIO, thus yielding false malignancy results as they might not
adequately depict the input image.

Research has proposed numerous convolutional neural network-based classification
architectures for BHIs to extract features from the entire input image. This approach mostly
fails as the network might overlook the essential features. The identified properties/regions
of the input images that might be overlooked are the cores, proliferative cells, and ducts,
which are critical in determining the tumor’s malignancy. As a result, neglecting cer-
tain traits may impact outcomes. Furthermore, extracting distinctive features at different
magnifications is difficult due to the tiny size of cores. To address these constraints of
multiclassification of BC using the BHI dataset, this article proposes “DEEP_Pachi”, an
end-to-end deep learning model incorporating multiple self-attention network heads and
Multilayer Perceptron. The input images are processed as a series of patches. Each patch is
squished into a single feature vector by merging the layers of all pixels in a patch and then
exponentially extending it to the appropriate input dimension. Even though the proposed
architectures require more training samples than CNN architectures, the most typical ap-
proach is to use a pre-trained network and then to finetune it on a smaller task sample.
This paper used the option of pre-trained networks to mitigate the issues of more training
sample requirements of the proposed model. To select the pre-trained networks, we first ex-
amine four pre-trained deep learning models (DensetNet201, VGG16, InceptionResNetV2,
and Xception network) on BHIs images using a transfer learning technique. Afterward,
an ensemble of pre-trained models functioned as feature extractors for the DEEP_Pachi
network. We propose an automated method to distinguish between benign breast tumors
such as Adenosis, Fibroadenoma, Phyllodes_tumor, and Tubular_adenoma and malignant
breast tumors Ductal_carcinoma, Lobular_Carcinoma, Mucinous_Cancinoma, and Pap-
illary_carcinoma to help medical diagnosis even when professional radiologists are not
accessible. Furthermore, to provide a point of comparison for our findings, the proposed
method is compared to other baseline models and recently published research.

The significant contribution of this paper is summarized as follows:

v This research reviews several Medical BC imaging techniques, their robustness and
limitation, and associated public dataset.

v This paper proposed a fine-tuned approach termed “DEEP_Pachi,” an end-to-end
deep learning model incorporating multiple self-attention network heads and Multi-
layer Perceptron for the multiclassification of Breast cancer diseases using histopatho-
logical images.

v According to the comprehensive study via transfer learning experiment, the suggested
feature extractor discriminates remarkably between benign breast tumors such as
Adenosis, Fibroadenoma, Phyllodes_tumor and Tubular_adenoma malignant breast
tumors Ductal_carcinoma, Lobular_Carcinoma, Mucinous_Cancinoma, and Papil-
lary_carcinoma to help medical diagnosis even when professional radiologists are
not accessible.

v We reported a well robust deep learning method in Accuracy, Specificity, Sensitivity,
Precision, F1 Score, Confusion matrix, and AUC using receiver operating characteris-
tics (ROC) for the multiclassification of Breast cancer diseases using histopathological
images based on the detailed experimental evaluation of the proposed model and
comparison with state-of-the-art results.

v Finally, this research suggests that the proposed model “DEEP_Pachi” can also be used
to increase ensemble deep learning models’ detection and classification accuracies.

The remainder of this article is organized as follows; Section 1 is devoted to the intro-
duction and relevant studies of this research. Section 2 outlines the materials, the proposed
approach, and the evaluation measures. Section 3 introduces the experimental setup and
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outcomes, whereas Section 4 explains the results. Section 5 discusses the conclusion and
future studies.

2. Materials and Methods

This section examines the suggested architecture and materials in depth. The imple-
mentation structure of this research is depicted in Figure 1. First, this paper argues that data
preprocessing should only be applied to the training set because when test set data are pre-
processed, there is every likelihood that the training model will perform poorly in real-time;
thus, the first step in this paper was to split the dataset downloaded from the database.
After splitting the dataset into train and test sets, data preparation procedures such as
scaling, rotation, cropping, and normalization are performed in the train set. To make our
model robust enough, transfer learning was used as the network backbone’s (feature extrac-
tion). While selecting the optimum network backbone for the proposed model, this paper
conducted an experimental examination on four deep learning pre-trained models. On
the other hand, researchers have argued that ensemble models provide more generalized
results than single models; hence, we adopted the ensemble architecture for the proposed
network backbone. The ensemble network now serves as the input to the proposed model
(DEEP_Pach). The proposed model comprises a self-attention network and an MLP block,
as seen in Figure 2. The self-attention network receives the input in two forms: patch
embedding and position embedding. This helps the self-attention network differentiate
between the various symptoms in the fed images. The multilayer perceptron (MLP) block
improves the self-attention network’s outcomes in false symptom detection in the fed
dataset. The input evaluated by the self-attention network is transferred to the multilayer
perceptron layer for extraction before being passed to the classification/detection layer for
prediction. We go over the following stages for putting our suggested approach into action.
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v Step 1: Data collection, splitting, and data preprocessing
v Step 2: Backbone selection and Ensembling for more robust and generalized features.

The examined models were DenseNet201, VGG16, Xception, and InceptionResNetV3
architecture.

v Step 3: Feeding the extracted features from the ensemble model into DEEP_Pach
architecture.

v Step 4: This is the last stage of the proposed model: the identification and classification
stage. The learned features are passed into the classification layer for the final result
prediction.

v Step 5: Then, evaluation with the test set is performed after training.

2.1. Dataset

BreaKHis, the broadest currently accessible dataset of BC histopathology images, was
introduced by the authors of Ref. [4]. The dataset was obtained in brazil at the Pathological
Anatomy and Cytopathology (P&D) Lab. Eighty-two patients were diagonalized, generat-
ing Benign microscopic images (BI) and Malignant images (MI) in several magnifications.
The BI is 2480 in number while MI is 5429, totaling 7909 images. The generated micro-
scopic images magnification includes 40×, 100×, 200×, and 400×. Figure 3 shows the
pictorial illustration of the BreaKHis dataset. It depicts the binary classification, Benign vs.
Malignant, and each class’s subclass. The benign classes include the following adenosis
(A), fibroadenoma (F), phyllodes_tumor (PT), and tubular_adenoma (TA), while the malig-
nant classes include ductal_carcinoma (DC), lobular_carcinoma (LC), mucinous_carcinoma
(MC), and papillary_carcinoma (PC). Table 3 summarizes the distribution of the employed
BreaKHis dataset.
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Table 3. BreaKHis dataset.

Class Sub_Class
Magnification

Total Nos_Patients
40× 100× 200× 400×

Benign

Adenosis 114 113 111 106 444

24
Fibroadenoma 253 260 264 237 1014

Phyllodes_tumor 109 121 108 115 453
Tubular_adenoma 149 150 140 130 569

Malignant

Ductal_carcinoma 864 903 896 788 3451

58
Lobular_carcinoma 156 170 163 137 626

Mucinous_carcinoma 205 222 196 169 792
Papillary_carcinoma 145 142 135 138 560

Total 1995 2081 2013 1820 7090 82

2.2. Data Pre-Processing/Augmentation

The first step towards the employed dataset was to augment the data as the number of
samples in each subclass varies. Moreover, it is worthy to note that deep learning models
require a massive quantity of data to increase their performance or minimize the rate of
misdetection and classification of the minority samples. Table 4 shows the type of data
argumentation carried out in this paper. Augmentor is a Python library used by researchers
to increase the number of samples.

Table 4. Data augmentation Python algorithm.

Import Augmentor

def upsample(dir, num_samples):
p = Augmentor.Pipeline(dir)
p.rotate(probability = 1, max_left_rotation = 5, max_right_rotation = 5)
p.zoom(probability = 0.2, min_factor = 1.1, max_factor = 1.2)
p.skew(probability = 0.2)
p.shear(probability = 0.2, max_shear_left = 2, max_shear_right = 2)
p.crop_random(probability = 0.5, percentage_area = 0.8)
p.flip_random(probability = 0.2)
p.sample(num_samples)
p.random_distortion(probability = 1, grid_width = 4, grid_height = 4, magnitude = 8)
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Table 4. Cont.

Import Augmentor

p.flip_left_right(probability = 0.8)
p.flip_top_bottom(probability = 0.3)
p.rotate90(probability = 0.5)
p.rotate270(probability = 0.5)

src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/40
src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/100
src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/200
src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/400

upsample(src_dir, 1500)

The Python Augmentor library was only used on a different Python script to generate
the training samples as the original samples were kept for evaluation of the model. Samples
numbering 1500 were generated for training in each magnification for benign and malignant.
The TensorFlow data loader function was used during training to augment the train set
further. Images were rescaled (rescale operation indicates image magnification or reduction)
using the 1./255 ratio: zoom range = 0.2, rotation range = 1, and horizontal flip = True.
The rotation range specifies the span under which the images were spontaneously rotated
throughout training. Zoom range dynamically zooms the images to a ratio of 0.2 percent,
and the images were eventually flipped horizontally.

2.3. Network Backbone

The proposed network backbone in this study is the ensemble of two deep-learning
models via the transfer learning approach. Four deep learning pretrained models were
first examined using the malignant subclass magnification of the BreaKHis dataset: the
DenseNet201 and the VGG16 architecture produced a better classification performance
among the four examined models. Hence, we used both as the network backbone via the
ensemble approach. Ensembling is the capacity to combine several learning algorithms to
obtain their collective performance, i.e., to improve the performance of existing models by
integrating many models into a single trustworthy model. The network backbone serves as
feature extractors to the proposed model DEEP_Pachi, as seen in Figure 4.

v VGG16 [96]: VGG16 consists of 16 layers. Following preprocessing, the captured
values are fed into a stacked Convolutional layer with 3 × 3 receptive-field filters and
a fixed stride of 1. Following that, five max-pooling convolutional layers are used to
perform spatial pooling. A 2 × 2 filter’s max-pooling layer is run with a stride of 2.
To finalize the design, two fully connected layers (FC) and SoftMax (for the output)
are added at the end of the final convolution.

v DenseNet201 [97]: This architecture assures information flow across network levels
by linking each layer to each layer in a feed-forward fashion (with equal feature-map
size). It concatenates (.) the previous layer’s output with the output of the next layer.
The transition layers consist of a 1 × 1 convolution followed by a 2 × 2 average
pooling. Global pooling is utilized after the last dense block before applying SoftMax.
Table 5 summarises the parameters of all implemented models in this article.
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Table 5. Optimal parameters of all implemented models.

Models Learning Rate Loss Function Trainable
Parameter

Non-Trainable
Parameter Total Parameter Optimizers Nos. of

Epochs

DenseNet201 0.001 Categorical
smooth loss 1,106,179 18,321,984 19,428,163 Adam Early stop

VGG16 0.001 Categorical
smooth loss 598,403 14,714,688 15,313,091 Adam Early stop

InceptResNetV2 0.001 Categorical
smooth loss 393,475 54,336,736 54,730,211 Adam Early stop

Xception 0.001 Categorical
smooth loss 1,179,907 20,861,480 22,041,387 Adam Early stop

Ensemble 0.001 Categorical
smooth loss 43,872,899 33,036,672 76,909,571 Adam Early stop

DEEP_Pachi 0.001 Categorical
smooth loss 766,291 33,036,848 33,803,139 Adam Early stop

2.4. DEEP_Pachi Architecture

The proposed architecture is based on an attention mechanism and multilinear percep-
tron [98]. The attention mechanism is self-attention. The attention function is the mapping
to an output of a set of keys, value pairs, and a query. The weights allocated to each value
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are determined by the query compatibility function with the relevant key, whereas the
weighted sum of the values results in the output. Considering an input with dimension
dk of queries and keys and dimension dv, the dot product of all the queries with keys are
computed by dividing each with

√
dk while using SoftMax to ascertain the weights on the

values. The attention matrix contains a set of queries Q, keys K, and values V, which are
used to compute the attention function simultaneously.

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

Multi-head attention allows the model to simultaneously attend to inputs from sev-
eral representation subspaces at various locations. Figure 5 elaborates the computation
performed by multi-head self-attention:

MultiHead(Q, K, V) = Concat(head1, · · · , headh)WO (2)

where headi = Attention(QWQ
i , KWK

i , VWV
i ).
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The parameter matrices are projections WQ
i ∈ Rdmodel∗dk , WK

i ∈ Rdmodel∗dk , WV
I ∈ Rdmodel∗dk ,

and WO ∈ Rhdi∗dmodel . MLP is made up of two GELU non-linearity layers.

z0 =
[

xclass; x1
pE; x2

pE; · · · ; xN
p E
]
+EPOS, E ∈ R(p2 ×C)×D, Epos ∈ R(N+1)×D (3)

zI
l = MSA(LN(zl−1)) + zl−1, l = 1 . . . . .L (4)

zl = MLP
(

LN
(

zI l
))

+ zI
l , l = 1 . . . . L (5)

y = LN
(

z0
l

)
. (6)

The classification head is implemented with one hidden layer during pre-training
(Equation (5)) and a single linear layer (Equation (6)) during finetuning by an MLP. This
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paper uses the SoftMax layer after the MLP Block to accurately detect a sample. The
SoftMax layer’s primary function converts the encoding layer’s output information into
a likelihood interval (0, 1). We considered detection as a multi-classification issue in this
study. After that, we send input samples to the encoding network, for which its outputs
are then transferred into the likelihood interval (0, n) via the SoftMax layer, as seen in
Equation (7):

li = P(ti|Si) =
1

1 + e−(Wcu+bc)
ε(0, n) (7)

where the weight matrix and the bias term are denoted as Wc and bc, respectively. We used
categorical_smooth_loss to calculate the loss between the ground truth and the detected
item. Categorical_smooth_loss is the addition of smoothing of the label’s functions to the
cross-entropy loss function.

2.5. Experimental Setup

This experiment was performed using an Intel(R) Core (TM) i9-10850K CPU @ 3.60 GHz,
64.0 GB RAM Desktop Computer, and an NVIDIA GEFORCE RTX-3080 Ti 10 GB graphics
processing unit (GPU). We use open-source libraries such as Keras and TensorFlow to im-
plement this. The experimental parameters for all of the studies documented in this work
remained consistent during training: reduce learning rate (factor of 0.2, epsilon = 0.001,
patience = 10, verbose = 1), es callback (early stopping, patience = 10), Adam optimizer,
clip value of 0.2, and an epoch of 100. An epoch of 50 was utilized to select the pre-trained
models, while all other parameters remained fixed as in the main experiment. In the
encoder implementation, patch size = (2, 2), drop rate = 0.01 for all the layers, number of
heads = 8, embed_dim = 64, num_mlp = 256, window size//2, and then the global average
pooling for the shift size.

2.6. Evaluation

The proposed model used various evaluation metrics to evaluate the robustness of
the model. The metrics include Accuracy, Precision, Specificity, F1-score, Sensitivity, and
area under a receiver operating characteristic curve (AUC). The predefined notations are
TP = True Positive, FP = False Positive, TN = True Negative, and FN = False Negative. We
defined classification Accuracy (ACC) as follows.

ACC =
TP + TN

(TP + TN) + (FP + FN)
× 100 (8)

Precision (PRE) is defined as follows.

PRE =
TP

TP + FP
× 100 (9)

Specificity (SPE) is defined as follows.

SPE =
TN
N
× 100 =

TN
TN + FP

× 100 (10)

Sensitivity (SEN) is mathematically formulated as follows.

SEN =
TP
P
× 100 =

TP
TP + FN

× 100 (11)

The Precision and Sensitivity harmonic means are referred to as the F1 score, mathe-
matically represented as thus.

F1 =

(
SEN−1 + PRC−1

2

)−1

=
2× TP

2× TP + FP + FN
(12)
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The AUC measures a classifier’s performance, while the probability curve is obtained
from plotting at different threshold settings, the FP rate is referred to as the ROC (Receiver
Operating Characteristic). The AUC indicates how well the model distinguishes between
the given instances. The higher the AUC, the better. AUC = 1 implies a perfect classifier,
whereas AUC = 0.5 suggests a classifier randomizing class observation. To determine the
area under the ROC curve, AUC is calculated using trapezoidal integration.

3. Results

This section describes the results of the experiment. The parameter sensitivity ex-
periment was first presented in this section to guide readers on how the proposed model
parameter was selected for optimal performance. The transfer learning, binary, and mul-
ticlass experimental results were discussed using the employed evaluation metrics and
compared with the state-of-the-art results.

3.1. Parameter Sensitivity Analysis of the Proposed Method

This paper carried out a parameter sensitivity analysis of the optimal number of heads
and feature extractors to ascertain the parameter setting for the proposed model’s best
and worst performance scenario. The number of epochs and learning rate is kept constant
during this experiment. The evaluation metrics used here include accuracy, precision,
and F1_score. The obtained result is recorded in Table 6. The computational cost was
considered during the parameter sensitivity analysis; hence, only two, four, and eight
numbers of self-attention heads and one, two, and three backbones were set up in the
analysis. The backbone models used for this analysis were DenseNet201, VGG16, and
Xception architecture. It was observed that using only one pre-trained network as the
proposed model backbone with different numbers of self-attention heads does not have any
significant result enhancement; thus, we focused on using only two and three pre-trained
networks for the optimal feature selection approach. The best accuracy, F-1 score, and
precision were obtained when the number of self-attention network heads is set from four
using two pre-trained networks. The optimal best parameter setting of the proposed model
is seen while using three pre-trained models as network backbone and setting the number
of self-attention heads = 16. Although there was a minimal difference from using two
pre-trained models and four self-attention heads, this paper used two pretrained model
backbones and set the number of self-attention heads to be eight in all experiments to reduce
the computational cost of the proposed model. The malignant class of the BreaKHis dataset
was used in this evaluation. We combined all the malignant magnification subclasses into a
binary classification task. We combined the 40× and the 100×magnification for low-quality
image resolution while combining 200× and 400×magnification for the high-quality image
resolution. We used 80 percent for training and 20% for the test during this analysis.

Table 6. Parameter sensitivity analysis of DEEP_Pachi.

Nos. of Pre-Trained
Network

Nos. of Self-Attention
Heads Learning Rate Nos. of Epoch Accuracy (%) Precision (%) F1_Score (%)

1 2 3 × 10−3 50 0.96 0.96 0.96
2 2 3 × 10−3 50 0.96 0.97 0.96
3 2 3 × 10−3 50 0.97 0.97 0.97

1 4 3 × 10−3 50 0.96 0.97 0.96
2 4 3 × 10−3 50 0.97 0.98 0.97
3 4 3 × 10−3 50 0.98 0.97 0.97
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Table 6. Cont.

Nos. of Pre-Trained
Network

Nos. of Self-Attention
Heads Learning Rate Nos. of Epoch Accuracy (%) Precision (%) F1_Score (%)

1 8 3 × 10−3 50 0.96 0.97 0.97
2 8 3 × 10−3 50 0.97 0.99 0.98
3 8 3 × 10−3 50 0.98 0.98 0.98

1 16 3 × 10−3 50 0.98 0.98 0.98
2 16 3 × 10−3 50 0.99 1.0 0.98
3 16 3 × 10−3 50 1.0 0.98 0.99

3.2. Transfer Learning Experiment for Backbone Network Selection

Having first obtaining the optimal best performance using the number of self-attention
networks and number of pre-trained models for the backbone, we carried out a detailed
experiment using both the Benign class and the Malignant class on various magnifications,
as recorded in Table 7. From the recorded results, the transfer learning models performed
very well in the benign class; hence, we focused our attention on the malignant class for
backbone network selection. The excellent results of the models using the Benign class can
be traced to the data preprocessing technique employed in this paper. The DenseNet201
architecture had the best result in all magnification (40×, 100×, 200×, and 400×). By
comparing the recorded results, the malignant class’s results in all magnifications are lower
than the benign class. VGG16 results show how robust the model is on both low and
high-image resolutions compared to the Xception model. However, they recorded almost
the same results in this experiment. The InceptionResNet is the least performing model;
hence, DenseNet and the VGG16 were selected for the network backbone.

Table 7. Transfer learning classification result. The experiment was performed specifically for the
selection of the proposed model backbone.

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score (%) AUC (%)

40×Magnification-Benign

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0
InceptionResNet 0.99 0.99 0.99 0.98 0.98 0.99
VGG16 1.0 1.0 1.0 1.0 1.0 1.0
Xception 1.0 1.0 1.0 1.0 1.0 1.0

100×Magnification-Benign

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0
InceptionResNet 1.0 1.0 1.0 1.0 1.0 1.0
VGG16 0.99 0.99 0.99 0.98 0.98 0.99
Xception 0.99 0.99 0.99 0.98 0.98 0.99

200×Magnification-Benign

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0
InceptionResNet 0.99 0.98 0.99 0.99 0.98 0.98
VGG16 1.0 1.0 1.0 1.0 1.0 1.0
Xception 1.0 1.0 1.0 1.0 1.0 1.0

400×Magnification Benign

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0
InceptionResNet 1.0 1.0 1.0 1.0 1.0 1.0
VGG16 0.99 0.98 0.99 0.99 0.98 0.98
Xception 0.99 0.98 0.99 0.99 0.98 0.98
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Table 7. Cont.

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score (%) AUC (%)

40×Magnification Malignant

DenseNet201 0.98 0.99 0.99 0.95 0.97 0.99
InceptionResNet 0.94 0.95 0.97 0.83 0.88 0.96
VGG16 0.94 0.93 0.96 0.82 0.86 0.94
Xception 0.94 0.93 0.96 0.82 0.86 0.94

100×Magnification Malignant

DenseNet201 0.97 0.98 0.98 0.91 0.94 0.98
InceptionResNet 0.94 0.95 0.97 0.83 0.88 0.96
VGG16 0.94 0.94 0.96 0.83 0.87 0.95
Xception 0.96 0.96 0.97 0.86 0.90 0.97

200×Magnification Malignant

DenseNet201 0.98 0.97 0.98 0.94 0.95 0.98
InceptionResNet 0.93 0.94 0.96 0.80 0.85 0.95
VGG16 0.92 0.93 0.95 0.79 0.84 0.94
Xception 0.95 0.95 0.97 0.85 0.89 0.96

400×Magnification Malignant

DenseNet201 0.98 0.98 0.98 0.92 0.95 0.98
InceptionResNet 0.96 0.97 0.98 0.88 0.92 0.97
VGG16 0.97 0.96 0.98 0.90 0.93 0.97
Xception - - - - - -

ACC denotes Accuracy; SEN = Sensitivity; SPE = Specificity; PRE = Precision; AUC = Area under the ROC Curve.

3.3. DEEP_Pachi Architecture Classification Result

For ideal and well-detailed microscopic image analysis, the magnification factor plays
a significant role; hence, this paper experimented on all BreaKHis dataset magnification
(40×, 100×, 200×, and 400×). However, before then, a Binary classification was carried
out on the BreaKHis dataset combing all 100× and 400× magnifications for the benign and
malignant class. The reason behind selecting only the 100× and the 400×magnification
was to analyze the robustness of the model in low and high-quality image resolution and
have a neutral experiment without data augmentation. The binary classification is shown
in Table 8. The evaluation was between the backbone network, the Ensemble of DenseNet
architecture and VGG16 and the DEEP_Pachi model (Proposed model). We can see a
significant contribution of the proposed model with 0.1% improvements in the Benign
class and +0.1–+0.3% improvements in the Malignant class. Figure 6 visualizes the class
performance of each model using the Precision–Recall curve and the Reciever Operating
Characteristics (ROC) Curve.

Table 8. Binary classification using DEEP_Pachi.

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score AUC

100×Magnification

Backbone
Network 0.99 0.99 0.99 0.99 0.99 0.99

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0

400×Magnification

Network
Backbone 0.95 0.93 0.93 0.95 0.94 0.93

DEEP_Pachi 0.96 0.96 0.96 0.97 0.95 0.96
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Table 9 depicts the multiclass classification of the BreaKHis dataset. Since the Benign
class has described excellent results due to the ideal preprocessing techniques used in this
paper, we focused our discussion more on the Malignant class. Comparing the network
backbone classification performance using the Accuracy, Sensitivity, Specificity, Precision,
F1-score and AUC evaluation metrics, the DEEP_Pachi architecture significantly improved
by +0.1–+0.3% classification performance. Figure 7 visualized the Benign individual class
performance using the Precision-Recall (PR) curve and the Reciever Operating Characteris-
tics (ROC) Curve while Figure 8 visualized the Benign individual class performance using
the Precision-Recall (PR) curve and the Reciever Operating Characteristics (ROC) Curve.
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Table 9. Multiclass classification using DEEP_Pachi vs. the network backbone.

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score
(%) AUC (%)

40×Magnification-Benign

Network
Backbone 1.0 1.0 1.0 1.0 1.0 1.0

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0

100×Magnification-Benign

Network
Backbone 1.0 1.0 1.0 1.0 1.0 1.0

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0

200×Magnification-Benign

Network
Backbone 1.0 1.0 1.0 1.0 1.0 1.0

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0

400×Magnification Benign

Network
Backbone 1.0 1.0 1.0 1.0 1.0 1.0

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0

40×Magnification Malignant

Network
Backbone 0.97 0.98 0.98 0.92 0.94 0.98

DEEP_Pachi 0.99 1.0 1.0 0.96 0.98 0.98

100×Magnification Malignant

Network
Backbone 0.97 0.98 0.98 0.91 0.94 0.98

DEEP_Pachi 0.99 1.0 1.0 0.94 0.98 0.98

200×Magnification Malignant

Network
Backbone 0.96 0.96 0.98 0.90 0.92 0.97

DEEP_Pachi 0.99 0.99 0.99 0.95 0.98 0.98

400×Magnification Malignant

Network
Backbone 0.98 0.98 0.98 0.92 0.95 0.98

DEEP_Pachi 1.0 1.0 1.0 0.97 0.99 0.99
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Figure 7. Benign individual class performance using Receiver Operating Characteristics (ROC) Curve
and Precision–Recall (PR) Curve. (a) depicts the PR Curve @40×, (b) depicts PR Curve @100×
(c) depicts PR Curve @ 200×, (d) depicts PR Curve @ 400×, (e) depicts ROC curve @ 40×, (f) depicts
ROC curve @ 100×, (g) depicts ROC curve @ 200×, and (h) depicts ROC curve @ 400×.
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4. Discussion

Table 9 shows the multiclass classification performance of the proposed model vs.
the backbone model (Ensemble model). Using the Precision–Recall (PR) curve and the
Receiver Operating Characteristics (ROC) Curve as shown in Figure 8, the individual
performances of Malignant Ductal_carcinoma, Lobular_Carcinoma, Mucinous_Cancinoma,
and Papillary_carcinoma were recorded. Table 9 reveals that DEEP_Pachi classification
accuracy is substantially higher than that of the Backbone model, which is four classes, with
greater accuracy of at least 0.3%. These findings demonstrate that the DEEP_Pachi models
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significantly enhanced the accuracy of the BC classifier. These models can capture more
essential tumor cell properties than traditional DL architectures. Conventional DL models
comprised shallow convolution layers, which were insufficient for extracting the unique
properties of BC cells, and this was a difficult task due to the significant variations of H&E
staining. DEEP_Pachi models, on the other hand, can capture comprehensive information
from breast types of cells, indicating the similarity of BC cells to normal breast cells. An
intense network was used as our network backbone, which was critical for retaining the
inherent ordering of items. In backbone models, low-level characteristics were recorded,
and object pieces were retrieved at higher levels. Furthermore, the attention mechanism
raises feature levels, resulting in better classification performance.

Figure 7 shows the ROC and the PR curve of the benign multiclass classification
while Figure 8 shows malignant multiclass classification. The mucinous carcinoma and
the papillary carcinoma attend the highest area and AP in the malignant class, whereas
lobular carcinoma recorded the lowest AP and Area. Table 9 shows that when the results
of the DEEP_Pachi architecture are compared to the state-of-the-art results, the backbone
model alone achieves a higher accuracy for the multiclassification task. The accuracy of the
backbone model alone was at least 3% greater than any of the state-of-the-art models. This
demonstrates that this model can use the deep network architecture of multi-resolution
input images to collect multi-scale relevant information and the benefits of its single models.
The DEEP_Pachi model outperforms the multiclass classification by a margin for binary
classification. This is because the various classes are not dissimilar and share many charac-
teristics. The findings show that the backbone model outperformed the other algorithms in
the binary classification task, with a total accuracy of 99%. Table 9 also shows the backbone
model’s sensitivity, Sensitivity, Precision, F1-Score, and AUC vs. the DEEP_Pachi. Because
our model can capture multi-level and multi-scale data and distinguish individual nucleus
features and hierarchical organization, the DEEP_Pachi performed well. DEEP_Pachi may
also learn features at multiple sizes through its convolutional layers. As a result, it can
accurately distinguish individual nuclei and nuclei structures. The experimental findings
reveal that the ensemble technique outperforms all other approaches, achieving gains of
at least 0.2–0.8% for images at 40×, 100×, 200×, and 400×magnification due to its capac-
ity to collect multi-scale contextual information. DEEP_Pachi demonstrates that features
derived from cross image inputs and then merged into a boosting framework outperform
standard deep learning architectures in object classification tests. This also indicates that
our enhancing approach exceeds deep learning networks when dealing with few training
data samples.

4.1. Visualization the Influence of DEEP_Pachi Framework

To evaluate the influence of patches and embedding in the DEEP_Pachi model, an
experiment was carried out utilizing the malignant image with 200× magnification as
shown in Figure 9. The input image (a) was first split into patches as shown in (b) before
the positional embedding (c) is added. By combining the pixel layers in a patch and then
immensely extending it to the suitable input dimension, each patch is squeezed into a vector
representation. Positional embedding (c) demonstrates how the model understands when
to encrypt distance within the input image in the comparability of position embeddings,
i.e., relatively close patches have much more position similar embeddings. The reason for
the patches and the learnable embeddings is to treat each patch separately for an accurate
feature extraction. The positional embedding helps the model to know where each patch
was at the initial input during the output. The patches are first converted using 2D learnable
convolutions. Furthermore, to analyze the impact of the patch and embedding combination,
(d) validates the envisaged approach’s efficacy in improving prospective ROIs; this enalbes
the model in efficiently and successfully concentrating on these areas and for determining
the cancer.
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Figure 9. The visualization of the implementation steps of the DEEP_Pachi model. (a) depicts the
input image, (b) the input image patches, (c) learnable position embedding of the input image patches,
and (d) attention matrix.

Figure 9d shows how the self-attention heads enable DEEP_Pachi to generalize across
the input frame, even within the minimum layers. According to the diagram, the total
distance in input images in which relevant data are assimilated is comparable to receptive
scale factor in CNNs and is highly recognized in our model due to our network backbone,
which is an ensemble of DenseNet201 and VGG16; thus, we observed continuously small
attention scales in small layers. Implementing the DEEP_Pachi model without a network
backbone, i.e., generating features from scratch, causes the attention heads to focus on
the majority of the image in the lowest layers, demonstrating that the model’s potential
to consolidate information globally really is used. Furthermore, as the network depth
increases, so does attention proximity. We discover that the model focuses on visual
features that are semantic information significant for classification, as depicted in Figure 10.

Diagnostics 2022, 12, x FOR PEER REVIEW 24 of 33 
 

 

   
(a) (b) (c) (d) 

Figure 9. the visualization of the implementation steps of the DEEP_Pachi model. (a) depicts the 
input image, (b) the input image patches, (c) learnable position embedding of the input image 
patches, and (d) attention matrix. 

Figure 9d shows how the self-attention heads enable DEEP_Pachi to generalize 
across the input frame, even within the minimum layers. According to the diagram, the 
total distance in input images in which relevant data are assimilated is comparable to re-
ceptive scale factor in CNNs and is highly recognized in our model due to our network 
backbone, which is an ensemble of DenseNet201 and VGG16; thus, we observed continu-
ously small attention scales in small layers. Implementing the DEEP_Pachi model without 
a network backbone, i.e., generating features from scratch, causes the attention heads to 
focus on the majority of the image in the lowest layers, demonstrating that the model’s 
potential to consolidate information globally really is used. Furthermore, as the network 
depth increases, so does attention proximity. We discover that the model focuses on visual 
features that are semantic information significant for classification, as depicted in Figure 
10. 

 
Figure 10. The visualization of the implemented DEEP_Pachi Attention. 

4.2. Comparison with the State-of-the-Art Results 
This section discusses the proposed model results vs. the state-of-the-art results. The 

result is illustrated in Table 10. The state-of-the-art models can be seen in two ap-
proaches—single models and ensemble models. Ensemble modeling is the most general 
approach, as seen in Table 10. Refs. [98,99] experimented with several deep learning mod-
els as feature extractors while using conventional machine learning algorithms (SVM and 

Figure 10. The visualization of the implemented DEEP_Pachi Attention.

4.2. Comparison with the State-of-the-Art Results

This section discusses the proposed model results vs. the state-of-the-art results. The
result is illustrated in Table 10. The state-of-the-art models can be seen in two approaches—
single models and ensemble models. Ensemble modeling is the most general approach,
as seen in Table 10. Refs. [98,99] experimented with several deep learning models as
feature extractors while using conventional machine learning algorithms (SVM and LR) as
classifiers. However, the results were not as promising as the recorded results are below
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90%. Among well-known Deep learning models, DenseNet and Xception architectures are
preferred over the other models. They tend to yield classification accuracies above 90%, as
recorded in Refs. [77,100,101] suggested that extracting breast cancer features using different
feature extractors boosts models’ classification performance. They employed the Shearlet-
based features extractor and histogram-based features extractor. For their final models,
they concatenated the output features and achieved better performance compared to single
feature extractors. They performed a +5–8% accuracy improvement in all magnifications
of the BreaKHis dataset Ref [102], although the result is not promising, and using Data
augmentation for better performance is suggested. They carried out a binary classification
of the BreaKHis dataset and a multiclass classification using 400x magnification. Among
their employed data augmentation techniques, GAN-based DA yielded 77.3% accuracy for
binary classification while yielding 78.5% multiclass classification performance. Comparing
the performance of the inception models, Inception_V3 and Inception_ResNet_V2 [93]
produced a better performance as they extracted more relevant information by running
convolution operations with varied regions of interest concurrently. The use of transfer
learning is more evident in binary classification. The authors of Refs. [103–107] based
their work on binary classification by combining the subclasses of the benign and the
malignant. VGG is seen to be often used for feature extraction as it has deeper layers
able to identify conceptual features. Comparing our proposed model DEEP_Pachi, which
is a modification of the vison transformer self-attention heads computation techniques,
ensemble models, and a classification layer using the Multilinear perceptron block, we
argue that extracting increased breast cancer features requires an accurate vision system and,
hence, and attention mechanism to focus on the region of the disease instead of extracting
entire image features. Refs. [108–111] proposed an accurate and more unique approach for
breast cancer classification. Ref. [108] employed the use of multi-view attention mechanism.
Ref. [109] proposed the deep attention high order network, while Ref [110] proposed using
a different branch of CNN for more feature generation. Ref [111] proposed a three-channel
feature low dimension model. All these approaches were in line with better breast cancer
feature extraction; thus, they achieved the highest classification performance with +95%
classification accuracy on all magnifications of BreaKHis (40×, 100×, 200×, and 400×
magnification). In line with the current state-of-the-art results, our model achieved an
accuracy of 99% for all magnifications except 400%, where we achieved an accuracy of 1.0%.
Our analyses demonstrate that our proposed models significantly enhanced the efficiency
of the BC classifier. Our models can extract more critical breast cell features than CNN.
CNN was made up of four thin convolution layers, which were insufficient for extracting
unique properties of BC tumors, which was a difficult task due to the large variation of
H&E smears.

Table 10. Result comparison with the state-of-the-art result using the BreaKHis Dataset.

Ref/Year Approach Data Type Classification
Type

Accuracy (%)

40× 100× 200× 400× Binary

[112] 2018 Ensemble (CNN + LSTM) BreaKHis 88.7 85.3 88.6 88.4

[113] 2018 DenseNet CNN BreaKHis 93.6 97.4 95.9 94.7

[77] 2018 Xception BreaKHis 95.3 93.4 93.1 91.7

[114] 2018 KAZE features + Bag of Features BreaKHis 85.9 80.4 78.1 71.1

[102] 2019

CNN

BreaKHis

77.2

CNN + DA 76.7

CGANs based DA 77.3

DA + CGANs based DA 75.2

CNN 75.4

CNN + DA 75.9

CGANs based DA 78.5
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Table 10. Cont.

Ref/Year Approach Data Type Classification
Type

Accuracy (%)

40× 100× 200× 400× Binary

DA + CGANs based DA 78.7

[115] 2019 Deep ResNet + CBAM BreaKHis 91.2 91.7 92.6 88.9

[103] 2019 Transfer Learning (VGG16 + VGG19 + CNN)
98.2 98.3 98.2 97.5

98.1

[116] 2019 IRRCNN BreaKHis 98.0 97.6 97.3 97.4

[85] 2019

Inception_V3

BreaKHis

Multiclass 90.3 85.4 84.0 82.1

Binary 97.7 94.2 87.2 96.7

Inception_ResNet_V2
Multiclass 98.4 98.7 97.9 97.4

Binary 99.9 99.9 1.0 99.9

[80] 2019
BHCNet-6 + ERF

BreaKHis
Multiclass 94.4 94.5 92.3 91.1

CNN + SE-ResNet Binary 98.9 99.0 99.3 99.0

[117] 2020 Deep CNN BreaKHis 73.4 76.8 83.2 75.8

[94] 2020

VGG16 + SVM
(Balanced + DA)

BreaKHis

94.0 92.9 91.2 91.8

Ensemble (VGG16 + VGG19 + ResNet 50) +
RF Classifier 90.3 90.1 87.4 86.6

Ensemble (VGG16 + VGG19 + ResNet 50) +
SVM Classifier 82.2 87.6 86.5 83.0

[78] 2020 ResHist (RL Based 152-layer CNN) BreaKHis 86.4 87.3 91.4 86.3

[64] 2020
VGGNET16-RF

BreaKHis
92.2 93.4 95.2 92.8

VGGNET16-SVM 94.1 95.1 97.0 93.4

[118] 2020 CNN + spectral–spatial features BreaKHis Malignant 97.6 97.4 97.3 97.0

[100] 2020 NucTraL+ BCF BreaKHis 96.9

[119] 2020 ResNet50 + KWE LM BreaKHis Malignant 88.4 87.1 90.0 84.1

[93] 2020

AlexNet + SVM

BreaKHis

84.1 87.5 89.4 85.2

VGG16 + SVM 86.4 87.8 86.8 84.4

VGG19 + SVM 86.6 88.1 85.8 81.7

GoogleNet + SVM 81.0 84.5 82.5 79.8

ResNet18 + SVM 84.0 84.3 82.5 79.8

ResNet50 + SVM 87.7 87.8 90.1 83.7

ResNet101 + SVM 86.4 88.9 90.1 83.2

ResNetInceptionV2 + SVM 86.3 86.3 87.1 81.4

InceptionV3 + SVM 85.8 84.7 86.8 82.9

SqueezeNet + SVM 81.2 83.7 84.2 77.5

[120] 2020 Optimized CNN BreaKHis 80.8 76.6 79.9 74.2

[110] 2020 InceptionV3 + BCNNs BreaKHis
95.7 94.7 94.8 94.5

96.1

[105] 2020

VGG16 + SVM

BreaKHis

78.6 85.2 82.0 79.6

VGG19 + SVM 77.3 79.1 83.0 79.1

Xception + SVM 81.6 82.9 78.4 76.1

ResNet50 + SVM 86.4 86.0 84.3 82.9

VGG16 + LR 78.8 85.2 81.2 79.1

VGG19 + LR 77.6 82.4 82.2 77.8

Xception + LR 82.4 79.6 79.4 83.1

ResNet50 + LR 83.1 86.7 84.0 80.1
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Table 10. Cont.

Ref/Year Approach Data Type Classification
Type

Accuracy (%)

40× 100× 200× 400× Binary

[107] 2020

Shearlet-based features

BreaKHis

89.4 88.0 86.0 83.0

Histogram-based features. 92.6 93.9 95.0 94.7

Concatenating all features 98.2 97.2 97.8 97.3

[104] 2021 MA-MIDN BreaKHis 96.3 95.7 97.0 95.4

[108] 2021 AhoNet (Resnet18 + ECA + MPN-COV) BreaKHis 97.5 97.3 99.2 97.1

[109] 2021 3PCNNB-Net BreaKHis 92.3 93.1 97.0 92.1

[121] 2021 APVEC BreaKHis 92.1 90.2 95.0 92.8

[111] 2021 Stochastic Dilated Residual Ghost Model BreaKHis 98.4 98.4 96.3 97.4

[105] 2021 Transfer Learning via Fine-tuning Strategy BreaKHis
99.3 99.0 98.1 98.8

98.4

[122] 2021 BCHisto-Net BreaKHis 100×
Magnification 89

Ours DEEP_Pachi BreaKHis 99.8 99.8 99.8 1.0 99.8

The proposed model was also evaluated using the ICIAR 2018 breast cancer Histology
images used for the BACH Grand challenge [123]. This dataset has 400 images while having
100 images per class. The classes of the dataset are Normal, Benign, In situ carcinoma, and
Invasive carcinoma. This paper first augmented the dataset following the same principle of
augmentation used for the BreaKHis data implemented. Table 11 summarizes the result
attend with that of the state-of-art results. The use of the ensemble model is very evident
in the compared models. Our proposed model supersedes the accuracy of the compared
models, showing our model’s superiority.

Table 11. Result comparison with the state-of-the-art result using the ICIAR 2018 Dataset.

Ref/Year Approach Data Type Accuracy (%)

[18] 2018 DCNN + SVM BACH 77.8

[123] 2018 Pre-trained VGG-16 BACH 83.0

Ensemble of three DCNNs 87.0

[124] 2018 Ensemble (DenseNet 169 + Denseness 201 + ResNet 34) BACH 90.0

[20] 2019 All Patches in One Decision BACH 90%
92.5

[125] 2019 Ensemble (DenseNet 161 + ResNet 152 + ResNet 101) BACH 91.8

[126] 2020

Hybrid Features + SVM

BACH

92.2

Hybrid Features + MLP 85.2

Hybrid Features + RF 80.2

Hybrid Features + XGBoost 82.7

[87] 2020 Attention Guided CNN BACH 93.0

[99] 2020

Random Forest

BACH

91.2

SVM 95.0

XGBoost 42.5

MLP 91.0

[104] 2021 MA-MIDN BACH 93.57

[108] 2021 AhoNet (Resnet18 + ECA + MPN-COV) BACH 85.0



Diagnostics 2022, 12, 1152 27 of 32

Table 11. Cont.

Ref/Year Approach Data Type Accuracy (%)

[101] 2021 Inception V3 + XGBoost BACH 87.0

[127] 2022 DSAGu-CNN BACH 96.47

Ours DEEP_Pachi BACH 99.9

5. Conclusions

To tackle the extraction of irrelevant features by conventional deep learning models,
which results in the model’s misclassification and prediction, this paper proposed the
DEEP_Pachi framework based on ensemble model, multiple self-attention heads, and
multilinear perceptron for an accurate breast cancer histological image classification. First,
a thorough review of medical image modalities for breast cancer classification was carried
out with the related open access datasets. Secondly, we applied the Python augmentation
library to address the issues of limited raining data samples. The Python Augmentor
was used to generate the training image samples while utilizing the original image for
testing. The proposed model utilizes ensemble model (Densenet201 and VGG16) as the
network backbone for a more generalized feature extraction of the input images (global
features), whereas multiple self-attention heads extract spatial information (regions of
interest). The superiority of the proposed model was evaluated using two publicly available
databases, BreakHis and ICIAR2018, and using various evaluations metrics, and the result
obtained show that the proposed DEEP_Pachi outperforms the state-of-the-art results in
histopathological breast cancer image classification. The suggested technique achieved an
accuracy of 1.0 for the benign class and 0.99 for the malignant class in all magnifications of
the BreakHis datasets and an accuracy of 0.99 on the ICIAR 2018 Challenge dataset.

As much as the proposed framework exhibit high classification accuracy, there is
still room to evaluate DEEP_Pachi using other data augmentation techniques. Future
work will see the exploration of various data augmentation techniques such as GAN for
increasing training samples. We also intend on extending the DEEP_Pachi framework to
other disease classification using histopathological or microscopic images such as Oral
cancer, Skin Cancer, etc. On the other hand, this paper will investigate the replacement of
the MLP Block with SGTM neural-like structures to evaluate the possible best approach in
our model.
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