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Abstract
Background: In the present article, we propose a method for determining optimal metabolic
pathways in terms of the level of concentration of the enzymes catalyzing various reactions in the
entire metabolic network. The method, first of all, generates data on reaction fluxes in a pathway
based on steady state condition. A set of constraints is formulated incorporating weighting
coefficients corresponding to concentration of enzymes catalyzing reactions in the pathway. Finally,
the rate of yield of the target metabolite, starting with a given substrate, is maximized in order to
identify an optimal pathway through these weighting coefficients.

Results: The effectiveness of the present method is demonstrated on two synthetic systems
existing in the literature, two pentose phosphate, two glycolytic pathways, core carbon metabolism
and a large network of carotenoid biosynthesis pathway of various organisms belonging to different
phylogeny. A comparative study with the existing extreme pathway analysis also forms a part of this
investigation. Biological relevance and validation of the results are provided. Finally, the impact of
the method on metabolic engineering is explained with a few examples.

Conclusions: The method may be viewed as determining an optimal set of enzymes that is
required to get an optimal metabolic pathway. Although it is a simple one, it has been able to
identify a carotenoid biosynthesis pathway and the optimal pathway of core carbon metabolic
network that is closer to some earlier investigations than that obtained by the extreme pathway
analysis. Moreover, the present method has identified correctly optimal pathways for pentose
phosphate and glycolytic pathways. It has been mentioned using some examples how the method
can suitably be used in the context of metabolic engineering.

Background
Metabolism is a complex process that takes place for pro-
ducing energy and forms the driving force for cellular
activity. It involves a large number of chemical reactions/
conversions carried out by living organisms as they feed,
grow and reproduce. A cascade of such reactions/conver-
sions form a highly branched network. A metabolic net-

work consists of many reactions and transport processes
associated with the production and depletion of cellular
metabolites. Metabolic pathways are defined as coordi-
nated series of biochemical reactions in which the product
of one reaction is the reactant of the subsequent one in the
chain. Examples of metabolic pathways include Glycoly-
sis, the Krebs cycle and the Pentose phosphate pathways.
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There exist various categories of data models for analyzing
metabolic pathways. The huge amount of genomic data,
available at present, has led to the construction of
genome-scale models of metabolism [1]. The biological
information from genomes can be extracted by construct-
ing computational models and subsequently making pre-
dictions from them [2,3]. Flux balance analysis is a
constraint-based approach [4-6] that spans the closed
solution space within which many steady state solutions
would lie. Optimization techniques are used to find out a
single state, within this space of allowed states, which
reflects the actual flux distribution of the cell under a
defined set of nutrient conditions [7,8]. The utilities of
such modeling include predicting systems behavior, iden-
tifying crucial steps in systems regulation. In [9], Cascante
et. al. have shown how this kind of modeling can be used
for characterizing fermentation pathway of S. cerevisiae.
Moreover, modeling and analysis of metabolic networks
may be useful to perform rational drug design [10].

Reactions in a metabolic pathway are mostly enzymatic.
That is, for a reaction A → B catalyzed by an enzyme E, the
rate of production of B depends not only on the concen-
tration of the substrate A but also on the concentration of
E that is available for catalyzing the reaction. Assuming
that sufficient amount of the substrate A being present, if
the concentration of E is low (high) then the rate of pro-
duction of B will also be low (high). In the extreme path-
way analysis (one of the methods under flux balance
approach) [11], the authors have considered the reaction
flux but not the enzyme concentration. This motivates us
to develop a new method that considers both the sub-
strate and enzyme concentration, thereby it becomes
somewhat closer to real life situations than what extreme
pathway analysis offers. We intend to undertake this
endeavor in the present article.

Here we develop a method for identification of a meta-
bolic pathway, in terms of the level of enzyme concentra-
tion, which yields the maximum rate of production of a
metabolite in the pathway starting from a given substrate.
The method determines an optimal set of enzymes that is
required to get an optimal metabolic pathway through
which the rate of production of a metabolite is maximum.
In other words, the method is able to determine a set of
enzymes that needs to be expressed at a certain level for
increasing the production of the target metabolite. The
method, first of all, generates the possible flux vectors in
the pathway. For this purpose, assuming steady state con-
dition, we consider the basis vectors that span the null
space of the given stoichiometric matrix. Then we take
convex combination of these basis vectors to generate the
flux vectors that satisfy certain inequality constraints. A set
of weighting coefficients, corresponding to enzymes cata-
lyzing biochemical reactions in the said pathway, is incor-
porated, and then a set of constraints incorporating these
weighting coefficients is formulated. An objective func-
tion, in terms of these weighting coefficients, is formed,
and then minimized under regularization method. The
weighting coefficients corresponding to a minimum value
of the objective function represent an optimal pathway.
Fig. 1 depicts the flowchart of the method that is easy to
implement, yet workable. For simplicity, we have made
some assumptions as mentioned in the methodology sec-
tion.

The effectiveness of the present method is demonstrated
on two synthetic systems designed in [12,13], on two pen-
tose phosphate, two glycolytic pathways [14], one large
carotenoid biosynthesis pathway [14] and a network of
core carbon metabolism [15] of various organisms
belonging to different phylogeny. The method is com-
pared with the existing extreme pathway analysis [11].

Outline of the proposed methodFigure 1
Outline of the proposed method. Outline of the proposed method.
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The major differences of the present method from the
existing extreme pathway analysis have been pointed out.
Finally, we provide biological relevance of the results. A
possible validation from biological point of view along
with the salient features of the method is also included. It
has been demonstrated with a few examples that the
method can be appropriately applied to the problems of
metabolic engineering.

Results
The proposed method is described in the methodology
section. Here we provide a comparative analysis of the
present method with extreme pathway analysis using two
synthetic [12,13] and four different real life pathways.
Real life pathways include pentose phosphate and glyco-
lytic pathways of E. coli K-12 MG1655, T. pallidum and P.
falciparum, a large network of carotenoid biosynthesis [16-
20] and a network of core carbon metabolism [15]. All
these real life pathways are obtained from the KEGG data-
base [14]. In order to restrict the size of the article, we have
provided a brief account on these real-life pathways in the
Additional File 1. Some of the results are included here
while the others are provided in the Additional File 1 for
restricting the size of the article.

Analysis of the results
On the synthetic system in Fig. 2
For the system in Fig. 2, we want to maximize the rate of
yield of the metabolite P, starting from the substrate A.
The system is composed of 10 reactions R1, R2,...,R10
involving 6 metabolites A, B, C, D, E and P. The reactions
R2 and R8 are reversible. We associate the weighting factors
c1, c2,...,c10 corresponding to the enzymes catalyzing these
reactions respectively. There are 6 internal fluxes R5,
R6,...,R10 and 4 exchange fluxes R1, R2,...,R4 as depicted in
Fig. 2. The constraints as mentioned in the methodology
section, and following [13] are as follows:

α = (0, -∞, 0, 0, 0, 0, 0, -∞, 0, 0); β = (1, 0, ∞, ∞, ∞, ∞, ∞, 
∞, ∞, ∞).

The terms α2 and α8 are -∞ because R2 and R8 are reversi-
ble. Moreover, β2 = 0 because exclusive growth on sub-
strate A is considered. Finally, we assume that the
maximal uptake rate of A is 1 (β1 = 1). Following the
method described in the methodology section, we have
generated a set of flux vectors.

In order to maximize the rate of yield of P for growth on
substrate A, the objective function y (Eq. (7)) is mini-
mized, where z is given by z = c9v9 + c10v10 - c3v3. We vary
the value of λ from 0.1 to 1.0. Initially, we should always
give stress on the maximization of the rate of yield rather

Synthetic reaction system 1Figure 2
Synthetic reaction system 1. A chemical reaction network consisting of 6 metabolites and 10 reactions.
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than on the constraint. That is, initially λ should be kept
small. As we go from λ = 0.1 to λ = 1.0, it implies that we
are increasing the stress on the constraint, and finally both
the rate of yield (z) and the constraint are treated equally.
For each value of λ, we minimize y, and consider that set
of ci-values corresponding to the λ-value as the final solu-
tion, for which y becomes minimum. Here we have
obtained an optimal pathway as R1 → R5 → R9 → R3,
which is in accordance with earlier investigations [13].
The optimal pathway is obtained for λ = 1.0 in 85 itera-
tions.

Table 1 shows a few pathways along with c-values and
average amount (z) of the target P. Since, we have gener-
ated a set of flux vectors, we have considered average of
these vectors to compute the average amount of the target
product P. For example, the pathway R1 → R5 → R9 → R3
yields the highest average z, and hence it is the optimal
pathway. It is to be mentioned here that the paths involv-
ing the reactions R6 and R7 need to be activated to yield C
and D respectively, as both C and D are required to pro-
duce P through these paths. The other synthetic pathway
is included in Fig. 8 in Additional File 1 in order to restrict
the size of the article.

We have varied the upper bound of the flux values to
show the variation of enzyme concentrations (c-value)
and the amount (z) of the target metabolite. The results
are provided in Table 2 for some high and low upper
bounds. It is clear from Table 2 that z-value, as expected,
decreases with the decrease in upper bound. In all the
cases, we have found the same optimal path although
absolute c-values differ. This shows the consistency of the
proposed method in determining optimal metabolic
paths.

On the Glycolytic Pathway in T. pallidum (Fig. 3)
The glycolytic pathway in T. pallidum consists of 13
metabolites and 25 fluxes (Fig. 3). The starting metabolite
is α -D-Glucose-1P and the target product is phosphoe-
nolpyruvate. Thus we maximize the rate of yield z = c25v25
- c24v24 of phosphoenolpyruvate, starting from the sub-
strate α-D-Glucose-1P. Here an optimal pathway has been
obtained as α - D - Gluucose - 1P → α - D - Gluucose - 6P →
β - D - Fructose - 6P → β - D - Fructose - 1, 6P2 → Glyceral-

dehyde - 3P → Glycerate - 1, 3P2 → Glycerate - 3P → Glycer-
ate - 2P → Phosphoenolpyruvate in 100 iterations as shown
by bold (black) arrows. The optimal pathway is obtained
for λ = 0.9.

On the Carotenoid biosynthesis pathway (Fig. 9 in Additional File 1)
Considering the reference pathway from KEGG database,
the starting metabolite for the carotenoid biosynthesis
pathway is phytoene and the target metabolite is abscisic
alcohol [21,22]. There are 83 metabolites and 100 fluxes
(Fig. 9 in Additional File 1). There are 2 reversible and 98
irreversible reactions. Applying the present methodology,
optimal pathway for the carotenoid biosynthesis has been
found to be: Phytoene → Phytofluene → ζ - Carotene → Neu-
rosporene → Lycopene → γ - Carotene → β - Carotene → β -
Cryptoxanthin → Zeaxanthin → Antheraxanthin → V iolax-
anthin → Neoxanthin → 9' - cis - Neoxanthin → Xanthoxin
→ Abscisic aldehyde → Abscisic alcohol. The optimal path-
way is obtained for λ = 0.7 in 90 iterations, which is
shown in Fig. 4 by bold (black) arrows.

On the core carbon metabolic network (Fig. 5)
We have applied the method to analyze a simple example
that represents the skeleton network of core carbon
metabolism [15,23]. The network includes 23 reactions,
seven of which are regulated by four regulatory proteins.
The internal metabolites are A, B, C, D, E, F, O2, NADH,
ATP and the external metabolites are Carbon 1, Carbon 2,
Dext, Eext, Fext, Hext and Oxygen. This network is a highly
simplified representation of core metabolic processes
including a glycolytic pathway with carbon 1 (C1) and
carbon 2 (C2) as primary substrates, as well as a pentose
phosphate pathway and a TCA cycle, through which
amino acid H enters into the system. Fermentation path-
ways, amino acid biosynthesis, cell growth along with cor-
responding regulation (e.g. catabolite repression, aerobic/
anaerobic regulation, and carbon storage regulation) are
also included. The growth reaction is indicated by white
arrows. For further details of the pathway, one may refer
to [15,23].

Our methodology aims at obtaining the optimal meta-
bolic flux distribution within the solution space. In this
study, Rz, the biomass flux, is defined as C + F + H + 10AT
P → 1 Biomass, and needs to be maximized. Applying the

Table 1: Some possible pathways for the system in Fig. 2 (or Fig. 6)

Serial Number Some possible paths Optimal c-values Average quantity (z) of P

1 R1 → R5 → R9 → R3 c1 = 0.88, c5 = 0.80, c9 = 0.80, c3 = 0.86 51.53
2 R1 → R6 → R8 → R9 → R3 c1 = 0.88, c6 = 0.56, c8 = 0.57, c9 = 0.80, c3 = 0.86 12.22
3 R1 → R5 → R8 → R10 → R3 c1 = 0.88, c5 = 0.80, c8 = 0.57, c10 = 0.04, c3 = 0.86 24.63
4 R1 → R6 → R10 → R3 c1 = 0.88, c6 = 0.56, c10 = 0.04, c3 = 0.86 19.88
5 R1 → R7 → R10 → R3 c1 = 0.88, c7 = 0.18, c10 = 0.04, c3 = 0.86 29.41
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proposed methodology, the optimal pathway has been
found to be: A → B → C → G → C → Biomass for λ = 0.8
in 95 iterations.

Comparison with the extreme pathway analysis [11,24]
Extreme pathways are a set of generating vectors that
describe the conical steady-state solution space for flux
distributions through an entire metabolic network. These
cone-generating vectors correspond to biochemical path-
ways. The optimal metabolic pathways are calculated
using linear optimization and are then interpreted using
the extreme pathways. For details of the method, one may
refer to [11,24]. Here we demonstrate a comparative anal-
ysis of the present method with the extreme pathway anal-
ysis [11,24]. The comparative analysis has been done on
all the above mentioned pathways. Optimal pathways
obtained by extreme pathway analysis for the two syn-
thetic systems (Fig. 2, and Fig. 8 in Additional File 1) are
the same as that obtained by the present method. Simi-
larly, for pentose phosphate and glycolytic pathways in E.
coli K-12MG1655 (Figs. 10 and 11 in Additional File 1),
optimal pathways are the same as obtained by both the
methods.

For P. falciparum, an optimal pentose phosphate pathway
α - D - Glucose - 6P → β - D - Fructose - 6P → D - Xylulose -
5P → D - Glyceraldehyde - 3P as obtained by the extreme
pathway analysis was found to be different from that
obtained by the present method as shown in Fig. 12 in
Additional File 1. The glycolytic pathway in the organism
T. pallidum as obtained by the present algorithm has been
found to be different from the previously identified opti-
mal pathway by the extreme pathway analysis. For the lat-
ter case, it was found to be α - D - Glucose - 1P → α - D -
Glucose - 6P → β - D - Glucose - 6P → β - D - Fructose - 6P
→ β - D - Fructose - 1, 6P2 → Glyceraldehyde - 3P → Glycer-
ate - 1, 3P2 → Glycerate - 3P → Glycerate - 2P → Phosphoe-
nolpyruvate as shown by bold (white) arrows in Fig. 3.
Using the extreme pathway analysis we have obtained a
different carotenoid biosynthesis pathway: Phytoene → 9,

9' - Di - cis - ζ - Carotene → 7, 9, 7', 9' - Tetra - cis - lycopene
→ Lycopene → γ - Carotene → β - Carotene → β - Cryptox-
anthin → Zeaxanthin → Antheraxanthin → Violaxanthin →
9 - cis - Violaxanthin → Xanthoxin → Abscisic aldehyde →
Abscisic alcohol as shown by bold (white) arrows in Fig. 4.

For the carotenoid biosynthesis pathway, the path
obtained by the proposed method is different from the
extreme pathway analysis at the starting branch and at the
end of the branch of the optimal path.

Starting from Phytoene there are two paths to arrive at the
intermediate metabolite Lycopene. Of the two paths, the
proposed method found three metabolites, Phytofluene,
ζ-Carotene and Neurosporene while the extreme pathway
analysis identified two metabolites, 9,9'-Di-cis-ζ-Caro-
tene and 7,9,7',9'-Tetra-cis-lycopene, to reach Lycopene,
as can be seen from Fig. 4. The paths identified by the
above two methods are different till it reaches the metab-
olite Lycopene. From Lycopene both the methods follow
the same path till they arrive at the other intermediate
metabolite Violaxanthin. From Violaxanthin extreme
pathway method found one intermediate metabolite, 9-
cis-Violaxanthin to arrive at the other intermediate metab-
olite Xanthoxin. The proposed method found two inter-
mediate metabolites Neoxanthin and 9'-cis-Neoxanthin
to reach Xanthoxin. So we can conclude that from Violax-
anthin the paths obtained by the above two methods are
differnt till it arrives at the metabolite Xanthoxin. From
Xanthoxin both the methods follow the same path to
reach the target metabolite Abscisic alcohol.

Each extreme pathway of core carbon metabolism was
scaled to its maximum possible flux based on the maxi-
mum value of the uptake reactions (vmax) given in [15].
Here we have assumed that there is no restriction on the
environmental conditions and all possible inputs are
available. The environment contains carbon1 (C1), F, H,
O2 and the transport flux Tc2 is repressed in the presence of
C1. We have not taken into account the regulatory con-

Table 2: Variation of c-values and average z with the upper bound on reaction fluxes for the optimal path R1 → R5 → R9 → R3 of the 
system in Fig. 2

Serial Number Upper bound on flux value Optimal c-values Average quantity (z) of P

1 5000 c1 = 0.93, c5 = 0.83, c9 = 0.91, c3 = 0.85 6670.68
2 4000 c1 = 0.91, c5 = 0.92, c9 = 0.82, c3 = 0.98 5458.83
3 3000 c1 = 0.91, c5 = 0.85, c9 = 0.83, c3 = 0.91 4308.66
4 2000 c1 = 0.88, c5 = 0.84, c9 = 0.81, c3 = 0.86 3451.73
5 1000 c1 = 0.87, c5 = 0.82, c9 = 0.86, c3 = 0.83 2347.61
6 50 c1 = 0.84, c5 = 0.89, c9 = 0.87, c3 = 0.82 55.69
7 40 c1 = 0.94, c5 = 0.87, c9 = 0.89, c3 = 0.81 47.29
8 30 c1 = 0.89, c5 = 0.86, c9 = 0.85, c3 = 0.85 42.57
9 20 c1 = 0.86, c5 = 0.84, c9 = 0.81, c3 = 0.82 38.66
10 10 c1 = 0.98, c5 = 0.93, c9 = 0.91, c3 = 0.87 34.96
Page 5 of 16
(page number not for citation purposes)



BMC Systems Biology 2008, 2:65 http://www.biomedcentral.com/1752-0509/2/65
straints associated with regulation of gene expression, i.e.,
by repressing or activating certain genes and other envi-
ronmental conditions.. The regulatory and environmental
constraints may further constrain the allowable functions
of the network. The pathway obtained by the proposed
method is similar to pathway 32 as obtained by the
extreme pathway analysis in [23]. The article also derives
two sets of optimal pathways in terms of the highest bio-
mass yield with no byproduct secretion. The optimal

pathway with the highest yield obtained by our method is
similar to pathway 32 of group 1 [23]. A comparison of
the flux values obtained from our methodology with the
extreme pathway analysis and their percentage deviations
are demonstrated in Table 3. From the table it can be
inferred that the flux values obtained by both methods are
more or less similar in nature although some external flux
values deviate considerably. These considerable devia-
tions may be due to the following reasons.

Glycolytic Pathway in T. pallidumFigure 3
Glycolytic Pathway in T. pallidum. Glycolytic pathway in T. pallidum consisting of 13 metabolites and 25 fluxes (reversible 
reactions are shown by double arrows). The starting metabolite is α-D-Glucose-1P and the target product is phosphoe-
nolpyruvate respectively. The bold (black) arrows represent the optimal pathway obtained by the present method and the bold 
(white) arrows represent the optimal pathway obtained by the extreme pathway analysis.
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The values of vmax in Table 3 corresponding to extreme
pathway analysis were obtained by imposing certain envi-
ronmental and regulatory constraints mentioned in [23],
while the proposed method, for simplicity, does not con-
sider such constraints. Moreover, for computing an aver-
age flux value by our method, we have taken average of a
distribution of such flux values while the method of
extreme pathway analysis determines the flux value.
Finally, it may be mentioned here that we have developed
the methodology accommodating certain characteristics
of a system (i.e. within a specific metabolic system).

We did not consider the characteristics outside the system,
from which the external fluxes enter into it. However, the
method developed here has produced consistent results
that have been validated by randomizing the starting
point in generating flux vectors.

We have compared the flux values obtained by the pro-
posed method with that derived by extreme pathway anal-
ysis. The results are shown for the system in Fig. 2 and for
the core carbon metabolic network in Fig. 5. Since the pro-
posed method, unlike extreme pathway analysis, gener-
ates a number of flux values corresponding to a single
reaction, we have taken average of these values for the
reaction and used this average for comparison. Percentage
deviations between average flux values (vav) and flux val-
ues (vepa) derived by extreme pathway analysis were calcu-
lated in Table 4. It is clear from the table that the flux
values corresponding to both these methods are very
close; although, as in the case of Table 3, some considera-
ble deviations were noted mostly for external fluxes. The
reasons for such deviations for the carbon metabolic path-
way (Fig. 5) have been explained in the paragraph above.
Note that here no constraint was considered by both the
methods.

Optimal Carotenoid biosynthesis PathwayFigure 4
Optimal Carotenoid biosynthesis Pathway. The bold (black) arrows represent the optimal pathway obtained by the 
present method and the bold (white) arrows represent that found by the extreme pathway analysis.
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Biological relevance and validation
This section provides how the results obtained by the
present method as well as extreme pathway analysis are
relevant to some biological facts already observed by
other researchers. Salient features of the present method

along with true/false positive/negative scenarios are also
depicted.

Core carbon metabolic networkFigure 5
Core carbon metabolic network. A simplified core carbon metabolic network [15]. The network consists of 12 metabo-
lites and 23 reactions. The stoichiometry of the metabolic reactions are described as follows [15]: R1 : A + ATP → B; R2a : B → 
2ATP + 2NADH + C; R2b : C + 2ATP + 2NADH → B; R3 : B → F ; R4 :C → G; R5a : G → 0.8C + 2NADH; R5b : G → 0.8C + 2NADH; 
R6 : C → 2ATP + 3D; R7 : C + 4NADH → 3E; R8a : G + ATP + 2NADH → H; R8b : H → G + ATP + 2NADH; Rres :NADH + O2 → ATP; 
C → Biomass; F → Biomass; H → Biomass; 10ATP → Biomass. The stoichiometry of the transport processes are described as fol-
lows: Tc1 : Carbon1 → A; Tc2 : Carbon2 → A; Tf : Fext → F; Td : D → Dext; Te: E → Eext; Th : Hext → H; To2 : Oxygen → O2. The bio-
mass flux Rz is as follows: C + F + H + 10ATP → 1 Biomass is indicated by white arrows.
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Table 3: Comparison of the flux values obtained by the proposed method and the extreme pathway analysis for the core carbon 
metabolic network in Fig. 5

Reaction vmax vav Percentage deviation 
(Extreme path- way analysis) (Proposed method) |vav - vmax|/vav × 100%

Tc1 10.5 11.13 5.66
Tc2 10.5 11.43 8.13
Td 12 13.91 13.73
Te 12 10.47 14.61
Tf 5 7.65 34.64
Th 5 6.84 26.90
To2 15 12.63 18.76
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Relevance
Here we demonstrate how the results obtained by the
present method are biologically more relevant than those
obtained by the extreme pathway analysis.

In the carotenoid biosynthesis pathway, there are two pos-
sible paths from the initial metabolite phytoene, produc-
ing 9,9'-Di-cis-ζ-Carotene in one branch and phytofluene
in another branch. Of the two possible paths, the branch
that produces phytofluene as the intermediate metabolite
is observed in [25,26], which is the same as obtained by
our proposed method (Fig. 4). It is to be mentioned here
that the other path has been identified by the extreme
pathway analysis.

As we proceed along the path, we observe that there are 4
possible paths emerging from the intermediate metabo-
lite Neurosporene (Fig. 9 in Additional File 1). The path
that produces α-Zeacarotene and Hydroxy-neurosporene
are not biochemically feasible as they do not lead to the
target metabolite Abscisic alcohol. Of the remaining two
paths, the path producing Lycopene is obtained by the
present method (Fig. 4). The path that leads from phy-
toene to lycopene through the intermediate paths as men-
tioned above can be found in fungi [27,28]. Lycopene is
also found to be an intermediate in the biosynthesis of
other carotenoids, in some bacteria, fungi and green
plants [29]. Thus both the present and extreme pathway
analysis have correctly identified Lycopene as an interme-
diate over the other alternative β-Zeacarotene (Fig. 4).

There are 4 possible paths emerging from the intermediate
metabolite Lycopene (Fig. 9 in Additional File 1). The
paths producing δ-Carotene, 3,4-Dehydrolycopene and
Rhodopin as the intermediate metabolites are not possi-
ble as they do not lead to the final product Abscisic alco-
hol. We can reach the target metabolite Abscisic alcohol
only through the path that produces γ-carotene. There are
7 possible paths from the intermediate metabolite γ-caro-
tene (Fig. 9 in Additional File 1). The paths yielding Chlo-

robactene, 1'-Hydroxy- γ-carotene, Myxol, Deoxymyxol,
(2'S)-Deoxymyxol 2'-α-L- fucoside and 1'2'-Dihydro-γ-
carotene do not terminate to the target metabolite Absci-
sic alcohol, and hence they are not biochemically feasible.
The target metabolite can be obtained through the path
producing β-carotene. The biosynthesis pathway for β-car-
otene has been determined for fungi such as Phycomyces
blakesleeanus and Neurospora crassa [30]. β-carotene is
also synthesized by a number of bacteria, fungi, and most
green plants [30]. The path from β-carotene producing
Echinenone terminates at the end products Adonixanthin
and Astaxanthin. The other path terminates at the end
product Isorenieratene. The above mentioned two paths
are not possible as none of them yields Abscisic alcohol
that is the desired target metabolite of carotenoid biosyn-
thesis (Fig. 9 in Additional File 1). The path producing β-
Cryptoxanthin is the only feasible path as it finally leads
to the target metabolite.

From β-Cryptoxanthin there are two paths producing
Thermo-biszeaxanthin and Zeaxanthin as the two prod-
ucts. The path producing Zeaxanthin is followed as it ter-
minates to the desired end metabolite. The path from β-
carotene to Zeaxanthin can be found in Flavobacterium
Species [31]. The conversion between Zeaxanthin and
Antheraxanthin is a reversible one, and as the forward
reaction rate is greater than the reverse rate, the pathway
from Zeaxanthin to Antheraxanthin is favored. As Capsan-
thin obtained from Antheraxanthin is not the desired end
product (Fig. 9 in Additional File 1), this path is not fol-
lowed. Violaxanthin obtained from Antheraxanthin via
the reversible reaction ultimately leads to the target
metabolite Abscisic alcohol. Capsorubin is obtained from
Violaxanthin but this path is not followed as this does not
yield the desired target metabolite Abscisic alcohol. Neox-
anthin is produced from Violaxanthin. Arabidopsis is the
best-characterized plant system of carotenoid biosynthe-
sis. The path from β-carotene to Neoxanthin for xantho-
phyll biosynthesis has been observed in Arabidopsis. It
may be emphasized that this path was identified by the

Table 4: Comparison of flux values obtained by the proposed method and the extreme pathway analysis for the system in Fig. 2

Reaction Average flux value (proposed method) Flux value (Extreme pathway analysis) Percentage deviation
(vav) (vepa) |vav - vepa|/vav × 100%

R1 48.73 46.21 5.17
R2 3.596 3.129 12.98
R3 36.286 32.543 10.31
R4 7.687 6.292 18.15
R5 49.227 46.341 5.86
R6 17.86 16.001 10.41
R7 12.35 12.31 0.32
R8 14.50 13.656 5.82
R9 68.318 65.734 3.78
R10 15.263 14.814 2.94
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present method but not by the extreme pathway analysis
(Fig. 4).

Similarly, there exists a single path from Neoxanthin to 9'-
cis-Neoxanthin and from 9'-cis-Neoxanthin to Xanthoxin.
Two paths are emerging from Xanthoxin producing Absci-
sic aldehyde in one branch and Xanthoxic acid in the
other. The path leading to Xanthoxic acid is not followed
as this does not lead to the final metabolite of carotenoid
biosynthetis. The other one producing Abscisic aldehyde
is followed as it terminates to the target metabolite Absci-
sic alcohol by the subsequent reaction. Two intermediate
metabolites, 9'-cis-neoxanthin and 9-cis-violaxanthin,
have been identified in light-grown and etiolated leaves,
and in roots of a variety of species [32]. Biochemical evi-
dence has suggested the occurrence of this pathway in var-
ious eukaryotes and in archaea [33].

The existence of the sugar phosphates Glyceraldehyde-3P,
Ribulose-5P, Xylulose-5P, Fructose-6P and Glucose-6P in
the pentose-phosphate pathway (PPP) are found in [34-
36] (Figs. 10 and 12 in Additional File 1). The major path-
way for glucose-6P metabolism in E. coli in [37] is the
same as obtained from our proposed methodology (Fig.
11 in Additional File 1).

A possible biological validation
Here we highlight some of the salient features of our
method and try to argue that the results obtained thereof
might not be a mathematical artefact. The present method
maximizes the rate of production of biomass which in a
way should be consistent with the law of mass action and
subsumes the free energy minimization principle. Then
we use the stoichiometric matrix based on these two fun-
damental and model independent principles. In our
results, we are able to identify the true positive and the
true negative scenarios correctly which could be a pointer
to the fact that our method has not introduced any artefact
in its formulation. As for the intermediate scenario our
method for real systems so far has not produced any false
positive or false negative results.

Considering the pentose phosphate pathway in the organ-
ism E. coli K-12 MG1655 (Fig. 10 in Additional File 1) we
have found the path starting from the metabolite α-D-
Glucose-6P to reach the target metabolite D-Glyceralde-
hyde-3P and D-Fructose-6P. We have observed the relative
values of the components of the flux vector v that are
involved in the aforesaid resulting pathway. The value of
v6 is greater than v5, and the value of v21 is greater than v22.
This leads us to obtain the target metabolite.

Starting from any intermediate metabolite, e.g., β-D-Glu-
cose-6P, D-Glucono-1,5 lactone-6P and 6-Phospho-D-
Gluconate, we were able to reach the target metabolite D-

Glyceraldehyde-3P and D-Fructose-6P. While considering
a particular intermediate metabolite, we noted the relative
values of the components of the flux vector v. We
observed that the relative values of the components of the
flux vector v while obtaining the path from any interme-
diate metabolite to the target are of the same order of mag-
nitude as that obtained by considering the original path
from α-D-Glucose-6P to reach the target metabolite.

Moreover, we considered some other metabolite as start-
ing substrate that are not on optimal path, and found that
they did not lead to the target metabolite. For example,
starting from D-Ribose-5P, we were able to reach the
metabolite PRPP for most of the values of λ lying between
0.1 and 1.0, in steps of 0.1. For low values of λ, we could
reach the metabolite D-Erythrose-4P and D-Fructose-6P.
Thus we can conclude that any intermediate metabolite
on optimal path produces the target metabolite, and it is
independent of the starting metabolite. As desired, the
metabolite not on optimal path do not lead to the target
metabolite D-Glyceraldehyde-3P and D-Fructose-6P even
via the reverse path. Similar observations were found for
the other pathways.

We took two intermediate metabolites β-D-Glucose-6P
and D-Glucono-1,5 lactone-6P that are indeed on the
final path as identified by the present method, and we
found that in most of the cases it led to the target. This
shows that the method that we have developed is inde-
pendent of choice of the initial substrate. Then we chose
another substrate which also belongs to the path identi-
fied by us but this time the substrate could lead to various
branches, of which one would eventually lead us to the
target. We found that for certain range of values of the
parameter λ, this would always lead us to the target, pick-
ing up the correct branch that is most of the time followed
by the organism. Now for certain other ranges of the val-
ues of the parameter λ, the other branches in the pathway
were picked up. In all the cases, the relative strength of the
vector v reflects the correct strength that would drive the
path from the starting substrate to the target. We have
observed this feature for all the real life paths.

The kind of constraint that we have imposed on to the sys-
tems must have captured the essential biochemistry of the
systems. That is why the method becomes independent of
the choice of the various substrates within the conscensus
pathway and makes our methodology quite a general one
without centering around any specific model of the sys-
tem.

Discussion
The method developed in this article may be useful for
manipulating a metabolic pathway to achieve some
desired goals constituting some tasks of metabolic engi-
Page 10 of 16
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neering. Here we describe a few examples where this
method may be useful.

• Let us consider the synthetic pathway in Fig. 2 and
redraw it in Fig. 6 incorporating the enzymes e1, e2,...e10
mediating the reactions R1, R2,...R10, respectively. For this
system, we have already determined R1 → R5 → R9 → R3 as
an optimal pathway through which the amount of the
product P becomes maximum. We have also found that
the concentration of the enzymes e1, e2,...e10 that is
required to get this optimal pathway is 0.88 for e1, 0.80 for
e5, 0.80 for e9 and 0.86 for e3. For some reasons, let us say,
the concentration of the enzyme e5 becomes low (~0).
Under this situation, the amount of the target product will
also be less. On application of the present method on this
system, we would be able to identify an optimal pathway
and thereby the reason behind the situation. Then we can
make necessary arrangement to activate the correspond-
ing gene and thereby leading to the formation of the
enzyme in higher concentration.

• Consider the example of reducing the amount of acetate
in glycolytic pathway as done by Yang et al [38]. Here the
authors have proposed a method of adding a new path of
forming Acetoin for reducing the amount of acetate. How-
ever, this problem may boil down to determining an opti-
mal metabolic pathway through which the amount of
acetate is minimum. Then we can apply our method to
this problem for determining this optimal pathway and
finally inhibit the other paths but only express this opti-
mal path. This will lead to the formation of acetate to a
minimum amount. The amount of acetate will be mini-
mum if this optimal path is only expressed and the others
are inhibited.

• For the third example, let us assume there are n paths P1,
P2,...Pn starting from a given substrate to yield a given tar-
get metabolite. Also assume that out of these n pathways,
there are multiple optimal pathways P1, P2,...Pm (m <n)
through which the amount of the target metabolite
becomes maximum. Now if we want to avoid a particular
pathway, we may inhibit (by some means) the genes pro-

The corresponding enzymes of the synthetic reaction system in Fig. 2Figure 6
The corresponding enzymes of the synthetic reaction system in Fig. 2. The synthetic reaction system in Fig. 2 and 
their corresponding enzymes.
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ducing some of the enzymes catalyzing the reactions in
that pathway.

Conclusions
Here we have developed a simple method for identifying
an optimal metabolic pathway through which a metabo-
lite attains a maximum rate of growth on a given sub-
strate. The method involves formulation of the rate of
yield of a metabolite incorporating weighting coefficients
indicating the concentration levels of enzymes catalyzing
biochemical reactions in the pathway. A new constraint
incorporating these weighting coefficients has been
defined. Using the method, a set of flux vectors has been
generated, which has then been used to determine a set of
above-mentioned weighting coefficients giving rise to a
maximum rate of yield of a metabolite, starting from a
given substrate. The entire method is based on well
known flux balancing approach.

It is to be mentioned here that the extreme pathway anal-
ysis [11] does not consider the effect of enzymes catalyz-
ing the reactions in a metabolic pathway. On the other
hand, the method developed in this article involves
enzyme concentration in its formulation; thereby it is
closer to the real life situations than the extreme pathway
analysis. The other difference between the said two meth-
ods is that extreme pathway analysis finds the flux vectors
through optimization, whereas the present method gener-
ates a subset of possible flux vectors and finds an optimal
pathway in terms of weighting coefficients reflecting
enzyme concentration. Moreover, the extreme pathway
analysis considers individual reactions in the pathway in
a sequential manner, whereas the present method consid-
ers all the reactions in parallel.

It has been observed that the method though simple
enough, is able to identify the optimal pathways which
conform to the results of some earlier studies. The method
can suitably be used using reaction databases without
going into complex mathematical calculations, and with-
out using various kinetic parameters that are hard to be
estimated. Comparative analysis of the results obtained
by the present method with that of the extreme pathway
analysis shows that the present method has been able to
identify optimal pathways correctly for almost all the pen-
tose phosphate and glycolytic pathways considered here.
The present method has identified a carotenoid biosyn-
thesis pathway that is closer to some earlier investigations
than that obtained by the extreme pathway analysis. All
the optimal real life pathways have been biologically val-
idated. Finally, possible direct impact of the method on
certain problems of metabolic engineering has been
pointed out.

Here we have assumed that a large amount of substrate is
present. This assumption implies that any influx of the
substrate from the other pathways does not have any
effect on the rate of production of the corresponding
product, due to limited supply of enzymes. Moreover, for
simplicity, we have not considered any feedback inhibi-
tion on the enzyme activity. In other words, we are con-
sidering only the fraction of enzyme molecules that have
not been inactivated due to feedback inhibitions. Incor-
poration of feedback inhibitions on enzyme activity
forms a scope for further investigation.

In biochemical networks, crosstalk often occurs, which
deals with multiple inputs and overlapping outputs [39].
Here we are dealing with metabolic networks. If crosstalk
occurs in the networks under consideration then there
may be more than one disjoint sources (metabolites)
from which the target or any other intermediate metabo-
lites on the pathway under consideration are found. In
this case, we have to consider all these input metabolites
of the other networks while constructing the stoichiomet-
ric matrix and generating the flux vectors. However, this
forms a scope for further investigation.

Method for identification of metabolic pathways
In this section we describe the proposed method. First of
all, we make some assumptions based on which we
describe the method subsequently.

Assumptions
Here we assume that a large amount of substrate is
present. Thus any sudden influx of the substrate from
other pathways does not effect any change of the rate of
production of the corresponding product. This is due to
the limited availability of the enzymes in a pathway. In
other words, the ratio of enzyme concentration to sub-
strate concentration is very low. For simplicity, we have
not considered any feedback inhibition on the enzyme
activity. In other words, we are considering only the frac-
tion of enzyme molecules that have not been inactivated
due to feedback inhibitions.

System definition
A metabolic reaction network is a collection of enzymatic
reactions and transport processes. A system boundary can
be drawn around all these types of reactions that consti-
tute internal fluxes operating inside the network. The sys-
tem is closed to the passage of certain metabolites while
others are allowed to enter and/or exit the system based
on external sources and/or sinks that are operating on the
network. The existence of an external source/sink on a
metabolite necessitates the introduction of an exchange
flux, which allows a metabolite to enter or exit the system
boundary. These fluxes represent the inputs and outputs
of the system.
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Consider a metabolic network with the substrate (starting
metabolite) A and the final metabolite B (Fig. 7). Let, the
metabolite B be reached through s different paths. That is,
there are s biochemical reactions/conversions R1, R2,...Rs
in the network involving the metabolite B. Let there be n
reactions in the network, i.e., n fluxes. Some of them can
be internal fluxes and the rest are exchange fluxes. If there
are p internal and q exchange fluxes then n = p + q. The
internal and exchange fluxes are represented by v and b
respectively. That is,

Now the rate of growth of the metabolite B on the sub-
strate A, is obtained by taking algebraic sum of the
weighted fluxes of reactions R1, R2,...Rs, and is given by

Thus the term z needs to be maximized for yielding maxi-
mum rate of growth of B. Here vk is the flux of the reaction
Rk involving only the metabolite B [40]. The term ck in
[0,1] denotes the weighting factor corresponding to this
reaction Rk. ck indicates the level of concentration of the
enzyme catalyzing the reaction Rk. ck = 1 indicates that the
required amount of the enzyme catalyzing the reaction Rk
is present. On the other hand, ck → 0 indicates that suffi-
cient amount of enzyme is not present to carry out the
reaction. Higher the value of ck, higher is the concentra-

tion of the enzyme and vice-versa. The term vk is consid-
ered to be positive if the reaction Rk yields the metabolite
B, otherwise it is negative. A reversible reaction is consid-
ered as two separate reactions corresponding to forward
and backward reactions. It is to be mentioned here that
the role of ci in Eq. (1) in extreme pathway analysis [11] is
different from that in the present method. In the earlier
case, c is a unit vector, along a particular flux, whereas in
the present method, c indicates the level of concentration
of the various enzymes catalyzing the reactions in the net-
work.

Generation of flux vectors
For solving the above-mentioned maximization problem,
we require the values of the flux vectors v = [v1, v2,...,vn]T

that cannot be obtained easily as the full dynamics is not
known or becomes intrackable in most of the scenarios. In
order to overcome this situation, we now propose an algo-
rithm for generating flux vectors that satisfy approxi-
mately the quasi-steady state condition [11]. That is, we
generate those v which satisfies

S.v ≈ 0 (2)

and the inequalities in (4) and (5). Here S is the m × n sto-
ichiometric matrix [41] with m as the number of metabo-
lites and n as the number of reactions. From a reaction
database, S can be computed. Then the flux vectors v form
the null space of S. In extreme pathway analysis, the
approximately equality sign in Eq. (2) is replaced by the
strict equality sign as the system is in a steady state sce-
nario. The proposed method generates the flux vectors v
as linear combinations of the basis vectors spanning the
null space of S, and those satisfying the inequalities (4)
and (5). We cannot always guarantee (due to finite mem-
ory, and the problem of overflow or underflow for repre-
senting a numerical value) the strict equality in Eq. (2) for
the flux vectors that are generated. Thus we have consid-
ered approximate equality sign instead of strict equality.
Since in practical situations, n > m, Eq. (2) is under deter-
mined. So we proceed as follows:

Step I:

Generate basis vectors vb that form the null space of the
stoichiometric matrix S. Let the number of such basis vec-
tors be l. (This is done by using standard routines and
toolboxes of MATLAB.)

Step II:

(i) Generate l number of positive random numbers ap, p =
1, 2,...,l.

(ii) Generate a vector
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until certain inequality constraint on v is satisfied for all
its components. All the internal fluxes are non-negative
yielding [11]

vi ≥ 0, ∀i (4)

The constraints on the exchange fluxes depends on their
directions [11]. These constraints can be expressed as

αj ≤ vj ≤ βj (5)

where αj and βj are either zero, or negative and positive
infinity, respectively, based on the direction of the
exchange flux. The activity of these exchange fluxes is con-
sidered to be positive if the metabolite is exiting or being
produced by the system, and negative if the metabolite is
entering or being consumed by the system. For all metab-
olites in which a source or sink may be present, the
exchange flux can operate in a bidirectional manner and
is unconstrained. Under the existence of a source (input),
αj is set to negative infinity and βj to zero. On the other
hand, if only a sink (output) exists on the metabolite, αj is
set to zero and βj to positive infinity. If both a source and
a sink are present for the metabolite then the exchange
flux is bidirectional with αj set to negative infinity and βj
to positive infinity leaving the exchange flux uncon-
strained. For further details on these issues, one may refer
to [11].

Thus we generate a large number of flux vectors, satisfying
the inequality constraints, which form the data set. The
flux vectors along with their corresponding weighting fac-
tors are used to determine z. The optimization algorithm
searches through this generated data set, and estimates the
values of the weighting coefficients ck (Eq. (7)) on conver-
gence.

Formulation of a new constraint
Eq. (2) describes the quasi-steady state condition, which
assumes that the concentration of the enzymes catalyzing
various reactions in the network is present in the system at
the required level. In other words, the genes that produce
these enzymes need to be expressed at the required level.
For a variety of reasons, in real systems, the genes that pro-
duce these enzymes may not be expressed at the required
level. This imposes restrictions on the system, and for this
purpose, we define a new constraint as

S.(C.v) = 0 (6)

Here C is an n × n diagonal matrix whose diagonal ele-
ments are the components of the vector c. That is, if C =
[γij]n × n, then γij = δijci, where δij is the Kronecker delta. Note
that ci is the weighting factor corresponding to the enzyme
catalyzing ith reaction in the network, irrespective of
whether the reaction involves the metabolite B or not.

Thus the problem of determining a metabolic pathway
yielding maximum rate of production of a metabolite B
starting from a substrate A, boils down to a maximization
problem, where z is maximized with respect to c, subject
to satisfying the constraint given in Eq. (6).

Estimation of weighting coefficients ci
Combining Eq. (1) and Eq. (6), we can reformulate the
objective function as

y = 1/z + ΛT.(S.(C.v)) (7)

that needs to be minimized with respect to the weighting
factors ci for all i. The term Λ = [λ1, λ2,...,λm]T is the regu-
larizing parameter. For the sake of simplicity, we have
considered here λ1 = ... = λm = λ (say). Minimization of y
can be carried out in various ways. Here we have adopted
the gradient descent technique [42]. Initially, a set of ran-
dom values in [0, 1] corresponding to ci's are generated.
The ci's are then modified iteratively using the gradient
descent technique, where the amount of modification for
ci in each iteration is defined as

The term η is a small positive quantity indicating the rate
of modification. For computing the values of Δci's, we use
the following expression

Thus the modified value of ci is given by

ci(t + 1) = ci(t) + Δci, ∀i, t = 0, 1, 2,...

ci(t + 1) is the value of ci at iteration (t + 1), which is com-
puted based on the ci-value at the iteration t. Regulariza-
tion parameter λ is chosen empirically. Here we are
varying the value of λ from 0.1 to 1.0 in steps of 0.1. Using
the above mentioned method, for each value of λ, we
finally get ci-values for which y attains a minimum value.
For each value of λ, y is minimized. We choose the specific
λ-value for which the y-value is the minimum over all the
minima obtained for different values of λ. The c-values
corresponding to this minimum y are finally considered.
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The vector c corresponds to the flux vector v. That is, its ith
component ci (ci ε [0,1]) is associated with the flux vi of the
ith reaction of a metabolic network. On minimization of
y, some of the ci values will attain non-zero values in [0,1]
and the others are very close to zero. We consider a meta-
bolic path to be an optimal one, if y is minimum and the
ci-values of all the enzymes catalyzing the reactions in that
path are greater than zero. Otherwise, a low c-value (close
to zero) corresponding to an enzyme catalyzing an inter-
mediate reaction may result in an insufficient product.
This will reduce the rate of the next reactions and hence
the amount of the target metabolite. In other words, these
non-zero ci-values indicate an optimal pathway through
which the rate of yield of metabolite B, being grown on
the substrate A, becomes maximum. The major differ-
ences of the method from the existing extreme pathway
analysis [11] are as follows.

• Unlike the extreme pathway analysis, the present
method considers the presence of enzymes.

• Extreme pathway analysis finds the flux vectors upon
optimization, whereas the present method generates a set
of some possible flux vectors and finds an optimal path-
way in terms of weighting coefficients reflecting enzyme
concentration.

• Extreme pathway analysis considers individual reactions
in the pathway in a sequential manner, whereas the
present method considers all the reactions in parallel.

The value of c corresponding to an enzyme E may be esti-
mated in vitro in the following way. Let us assume the fol-
lowing enzymatic reactions

where S and P stand for substrate and product respec-
tively. The terms k1, k2 and k3 are rate constants. Let us also
assume that x mole of S can produce y mole of P. Under
this situation, assume that [Emin] is the minimum concen-
tration of the enzyme E that is required to obtain the max-
imal rate (Vmax) of product formation. Thus an estimate of
c may be taken as

c = [E]/[Emin]

where [E] is the concentration level of the enzyme E which
is required to get an optimal path. Note that the values of
Vmax, and the rate constants can be estimated in vitro [43].
Thus Emin can also be determined through [43]

Vmax = k3[Emin]

and thereby [E] using c-value obtained by our method.
On the other hand, if [E] can be determined in vitro, then
the theoretical value of c (obtained by the proposed
method) can be verified with the experimental value.
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