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Abstract: Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating
signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there
are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with
complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER)
stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of
AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and
there is no effective treatment drug at present. In recent years, some studies have found that SFKs,
especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure,
function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and
development of AKI, making them promising molecular targets for the treatment of AKI.

Keywords: Src family kinases; acute kidney injury; inflammation; oxidative stress; ER stress;
autophagy; fibrosis

1. Introduction

Acute kidney injury (AKI) is defined by a rapid increase in serum creatinine (≥1.5 times
the baseline within 7 days) or a rapid decrease in urine volume (<0.5 mL/kg/h for 6 h) [1].
Regardless of the economic situation of countries and regions, AKI is a common disease
in all countries of the world, with high morbidity, high mortality, and high medical care
costs [2]. After recovery from AKI, patients still carry the risk of developing chronic
kidney disease (CKD), end-stage renal disease (ESKD), and death [3]. Apart from that, the
incidence of AKI is mounting, and the impact of AKI can cause far-reaching consequences
on long-term health, and the cost can be far heavier than before [4].

AKI is usually caused by ischemia-reperfusion injury, septicemia, and drug toxicity.
Various toxic or ischemic injuries propagate renal tubular injury, which can be mediated by
microvascular dysfunction, oxidative stress, endoplasmic reticulum stress, autophagy, im-
mune disorder [5], inflammation, and maladaptive repair [6]. Microcirculation is impaired,
resulting in an imbalance of supply and use of NO, ROS, and O2, followed by hypoxia and
oxidative stress [6]. Long-term hypoxia [7], microvascular damage, mitochondrial distur-
bance [8], and inflammation lead to the transition of AKI to CKD [6]. Maladaptive repair
terminates in kidney fibrosis, which further aggravates the outcome of renal fibrosis [9].

At present, the treatment for AKI mainly includes eliminating the etiology, actively
preventing and treating complications, and supporting treatment [10]. The treatment of
AKI is difficult because of the lack of drugs aimed at the pathogenesis and target of AKI [6].
The Src kinase family (SFKs), a non-receptor tyrosine kinase family with 11 members [11],
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is widely studied in the kidney. Recently, significant attention has been given to the field
of the role of SFKs in AKI [12,13]. Therefore, SFKs are critical for the pathogenesis of
AKI, which are expected to provide promising and new therapeutic interventions in the
near future.

2. Overview of SFKs
2.1. Introduction and Structure of SFKs

Tyrosine kinase is an enzyme that acts by phosphorylating tyrosine residues of target
proteins. Given the tyrosine kinases’ location in cells, they can be categorized as receptor
tyrosine kinases (RTK) and non-receptor tyrosine kinases. Src family kinases (SFKs) belong
to non-receptor protein tyrosine kinases, which play a vital role in multiple processes of
cell activity, such as cell growth, division, migration, and survival signaling pathways [14].

SFKs are composed of 11 members in humans, including Src, Fyn, Yes, Blk, Brk (also
known as PTK6), Frk (also known as Rak), Fgr, Hck, Lck, Srms (also called Srm), and
Lyn [11,15–17]. These kinases can be divided into two subfamilies, the SrcA subfamily (Src,
Yes, Fyn and Fgr) and the Lyn-related SrcB subfamily (Lyn, Hck, Lck and Blk) [18,19]. In
addition, there are three SFK-related kinases (the Brk family), namely Brk, Frk, and Srm [19],
which lack N-terminal myristoylation/palmitoylation sites, a structure common to all other
SFKs family members [16,19,20]. Src, Fyn and Yes are expressed in almost all cell types [21].
On the contrary, Blk, Fgr, Hck, Lck, and Lyn are mainly found in hematopoietic cells [15,22].
Srms was first found in mouse neural precursor cells [23] and is widely expressed in
normal mammalian tissue samples [15,20]. Brk is mainly expressed in epithelial cells of
the gastrointestinal tract, skin, and prostate [20,24]. Frk mainly occurs in the kidney and
liver [25,26] but is widely expressed in many tissues [25–27].

All SFKs members have similar structures (Figure 1), including an N-terminal 14-
carbon myristoyl motif, Src homology domain 4 (SH4), a unique domain, SH3 domain,
SH2 domain, SH1 (catalytic domain), and a C-terminal regulatory tail [28,29]. Among
them, the SH4 domain is a region containing from 15 to 17 amino acid residues that are
involved in anchoring proteins to membranes via myristoylation or palmitoylation [30,31].
In addition, the interaction between the SH4 domain and αF pocket in the C-terminal
domain enhances the self-inhibition mediated by SH2/SH3 domain and regulates kinase
activity [32]. Different from other domains, the amino acid sequence of the unique domain
is not conserved in SFKs [17], which facilitates each family member to interact with specific
receptors or proteins [17,30]. The SH2 domain is necessary for mediating phosphotyrosine-
dependent protein–protein interactions [33], while the SH3 domain mediates molecular
and intermolecular interactions by binding to proline-rich regions [34,35]. SH1 contains a
catalytic kinase domain, and the full catalytic activity of SFKs requires autophosphorylation
at Tyr416 (according to chicken numbering), which is activated by various transmembrane
receptor proteins (including receptor tyrosine kinase, G protein-coupled receptor, integrin,
and cytokine receptor) [36–38]. The phosphorylation of Tyr527 at C-teminal inactivates Src
kinase by inhibiting autophosphorylation of Tyr416 in the catalytic domain [11]. Tyr527 is
phosphorylated by Csk (C-terminal Src kinase) or Chk (Csk homologous kinase) [11,22]. The
interaction between phosphorylated Tyr527 and the SH2 domain is helpful in maintaining
the inactive state of SFKs [15,31]. Therefore, the dephosphorylation of phosphorylated
Tyr527 is of great importance for the activation of SFKs [39]. It is worth mentioning that
SFKs are also activated by other kinases, for example, Pyk2 and p125FAK, members of
FAK family non-receptor tyrosine kinases, which are responsible for Src activation and
recruitment [40,41].
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1 SFKs consist of several fields: the SH4 domain (in gray), a unique domain (in light blue), the SH3 
domain (in green), the SH2 domain (in orange), and the SH1 domain (in red). 
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have been implicated in the development of numerous diseases, including cancer [47], 
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Figure 1. The domain structure of Src family kinases. The chicken numbering system is displayed.
1 SFKs consist of several fields: the SH4 domain (in gray), a unique domain (in light blue), the SH3
domain (in green), the SH2 domain (in orange), and the SH1 domain (in red).

2.2. Function of SFKs in Kidney

SFKs are of great significance in mediating signal transduction by interacting with
various proteins and protein complexes [17,24]. The activation of SFKs is related to many
regulatory signals from cell surface receptors, including growth factors, cytokines and
immune cell receptors, G protein-coupled receptors, integrins, and other cell adhesion
molecules [42,43]. When activated, SFKs trigger a cascade of intracellular signal trans-
duction by phosphorylating specific tyrosine residues in other substrate proteins, such as
STAT3, NF-κB, MAPK, and AKT [42,44,45]. SFKs have been shown to regulate a variety
of cell functions, thus regulating a group of biological activities, including cell growth,
survival, cytoskeleton remodeling, proliferation, and migration [43,46]. At the same time,
SFKs have been implicated in the development of numerous diseases, including cancer [47],
lupus nephritis [48], diabetes [49], Parkinson’s disease [50], and so on. The pathological
function of SFKs in the kidney is shown in Table 1.

Table 1. The pathological function of SFKs in the kidney.

Member of
SFKs Organs/Cells Models Mechanisms References

Scr

Kidney
renal is-

chemia/reperfusion
model

Reduces renal injury
by activating STAT3,
ERK1/2, and NF-κB
signaling pathway

[12]

Kidney unilateral ureteral
obstruction

Mediates the
activation of TGF-β1

signal, NF-κB, Smad-3
epidermal growth
factor receptor and
STAT3, and EGFR

transactivation

[51–53]

Kidney unilateral ureteral
obstruction

Regulates
phosphorylation and
localization of YAP

[54]

Kidney STZ-induced type
1 diabetes

Mediates
phosphorylation of
EGFR and MAPK

[55]

Kidney diabetic db/db Induces activation of
p38 MAPK activation [56]

Kidney LPS-induced
septic AKI

Mediates NF-κB and
MAPK signaling

pathways
[57]
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Table 1. Cont.

Member of
SFKs Organs/Cells Models Mechanisms References

podocytes
HIV-associated

nephropathy
(HIVAN)

Activates of STAT3
and MAPK1, 2
Mediates cell

proliferation and
dedifferentiation of

podocytes

[58]

HK-2 hypoxia

Decreases MMP-2
activity and

aggravates renal
interstitial fibrosis

[37]

HK-2 ER stress Activates mTOR
pathway [59]

Fyn

Kidney STZ-induced type
1 diabetes

Suppresses Nrf2
expression [49]

Kidney
type 2

diabetes-induced
nephropathy

Promotes the output
of Nrf2 from nucleus [60]

Kidney obstructive fibrosis Mediates STAT3
activation [61]

Kidney lupus nephritis
Mediates ITAM

phosphorylation to
promote inflammation

[62]

Podocytes apoptosis
Activates of

Fyn-induced TRPC6
phosphorylation

[63]

NRK-52E oxidative stress Mediates degradation
of Nrf2 [64,65]

Lyn Kidney lupus nephritis
Mediates ITAMi

phosphorylation to
homeostasis

[62]

Abbreviations: STAT3: signal transducer and activator of transcription 3; NF-kB: the nuclear factor kappa B;
MAPK: mitogen-activated protein kinases; Akt: also known as protein kinase B; TGF-β1: transforming growth
factor beta1; Nrf2: nuclear factor E2-related factor 2; ITIM: immunoreceptor tyrosine-based inhibitory motif;
ITAMi: inhibitory immunoreceptor tyrosine-based activation motif; TRPC6: transient receptor potential cation
channel C6; ERK1/2: extracellular signal-regulated kinases 1 and 2; mTOR: mechanistic target of rapamycin; ER:
endoplasmic reticulum; NRK-52E: renal proximal tubular cells; HK-2: human proximal tubular cells.

SFKs are instrumental to the pathogenesis of kidney diseases and might be a promising
target when it comes to the treatment of acute kidney injury. From this perspective, we pay
more attention to the role and mechanism of SFKs in acute kidney injury.

3. The Pathophysiological Role of SFKs in AKI
3.1. Inflammation

Inflammation is a key factor in the occurrence and development of AKI, and it is
also the core of the progression from AKI to CKD [66,67]. Changes in protein folding
and mitochondrial function affect the innate immune response and ultimately lead to
inflammation activation [6]. Of note, various cells, such as monocytes, macrophages,
dendritic cells, and T cells [66,68], are involved in the development of AKI. Additionally,
PRRs (Pattern recognition receptors), such as TLR (Toll-like receptor) and NLR (Nod-like
receptor), can trigger activation of multiple kinases such as c-Jun N-terminal kinase (JNK),
mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which result
in the release of pro-inflammatory cytokines and chemokines, leading to the loss of function
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and apoptosis [66,69]. PRRs recognize conserved microbial structural units or pathogen-
related molecular patterns (PAMPs), such as lipopolysaccharide (LPS), lipoteichoic acid,
and porin [70] to orchestrate host defense against infection. PAMPs may directly interact
with TLR and NLR expressed in renal parenchymal cells and resident immune cells [70,71]
to induce inflammation in AKI.

Cytokine cascade reaction is first initiated by T cells, and then the release of cytokines
by T cells triggers the activation of other immune cells, thus amplifying the cascade
reaction [72]. Src, as a protein tyrosine kinase, can regulate NF-κB p65 and MAPKs, and is
a vital molecule in the interrelated inflammatory cascade of kidneys in LPS-induced acute
kidney injury [57]. Fisetin can inhibit this pathway, and its activation in the kidney of septic
AKI mice shows anti-inflammatory and anti-apoptosis effects [57]. Similarly, another study
suggests that Fisetin inhibits the macrophage-mediated inflammatory response by directly
blocking Src and Syk [73]. The expression of inflammatory factors requires the activation of
transcription factors [74]. The activation of NF-kB and STAT3 is of great significance for
the occurrence and development of diseases such as AKI and acute pancreatitis [74–76].
It is suggested that Src may promote renal inflammation by activating STAT3 and NF-κB
signaling pathways, and PP1 inhibits the expression of monocyte chemoattractant protein-
1 in I/R-induced AKI and reduces macrophage infiltration [12]. Fyn aggravates renal
fibrosis by promoting STAT3 phosphorylation, which indicates that Fyn can promote renal
inflammation and fibrosis in the middle stage [61].

In our latest report, it was pointed out that Lyn can inhibit the activation of the NLRP3
inflammasome by phosphorylating NLRP3 in Tyr 918 and then promote its ubiquitination
and proteasome-mediated degradation [77]. Consistent with this view, Lyn deficiency
exacerbates lung inflammation induced by LPS, suggesting that Lyn plays a protective
role in the acute lung injury model. However, the specific mechanism is unknown [78].
Some studies have found that Lyn can improve airway inflammation by inhibiting IL-13-
induced NF-κB activity in airway epithelial cells in allergic inflammatory diseases [79]. Lyn
overexpression decreases the phosphorylation of PI3K and Akt and inhibits ER stress in the
lung, both of which could weaken the activation of NF-κB [79]. Moreover, Lyn negatively
regulates the abnormal inflammatory response induced by Pseudomonas infection through
SHIP-1 and IL-6/STAT3 signaling pathways [80].

The Signal-regulatory protein alpha (SIRPα) is an immune receptor mainly expressed
on bone marrow leukocytes [81]. Interestingly, it has been found that, besides Lyn, SRC
family kinase recruits SHP-1 by phosphorylating SIRPα, and SHP-1 controls the pro-
inflammatory activation and expression of macrophages by inhibiting PI3K/AKT2 sig-
naling cascade [81]. This study provides new insight into whether SFKs coordinate a
fine-tuned synergistic regulation system through SIRPα to control the dynamic balance of
inflammation.

In addition, many studies have clarified the role of SFKs in lupus nephritis. Studies
have shown that Lyn and Fyn may be related to lupus nephritis, and mice lacking Lyn and
Fyn exhibit severe kidney disease [48]. However, in the research of Sanae Ben Mkaddem
et al., it was found that Fyn and Lyn may play different roles in maintaining homeostasis
and inflammation in vivo. By phosphorylating SHP-1 on different residues, Lyn and Fyn
show opposite regulatory effects on the ITAM receptor [62] (Figure 2).

3.2. Oxidative Stress

Reactive oxygen species (ROS) is produced during mitochondrial metabolism [82].
Low levels of ROS regulates cell signals, but excessive ROS induces oxidative stress
(OS) [83]. Src family kinase inhibitor PP2 can improve oxidative stress in LPS-induced
acute kidney injury [13]. ROS directly oxidizes c-Src and promotes the autophosphoryla-
tion of Tyr416, which leads to the enhancement of Src kinase activity [36,84]. Meanwhile,
ROS production is also abolished with Src inhibition administration [85,86]. ROS-induced
oxidative stress can activate the downstream Src/ERK1/2 signaling pathway, and Src
and its downstream effector ERK1/2 are one of the most important upstream signals of
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apoptosis [87]. Orientin inhibits H2O2-induced apoptosis of PC12 cells by inhibiting ROS-
mediated Src-MAPK/AKT signal transduction [88]. Src mediates the activation of STAT3
in vascular smooth muscle cells stimulated by Ang II, which increases ROS production and
induces oxidative stress [89].
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Figure 2. Src family kinases and inflammation. Src activates STAT3, NF-κB, and MAPK signaling
to promote inflammation, while Lyn kinase inhibits the activation of STAT3, NF-κB, and PI3K/Akt
pathways to alleviate inflammation. Abbreviations: ROS: reactive oxygen species; ERK: extracellular
signal-regulated kinase; NLRP3: pyrin domain-containing 3 protein; SHP-1: Src homology 2 domain-
containing protein tyrosine phosphatase 1; PI3K: phosphatidylinositol 3-kinase; AKT: also known as
protein kinase B (PKB).

The Nuclear factor-E2-related factor 2 (Nrf2) is a transcription factor that plays a
pivotal role in modulating antioxidant reactions [90]. Fyn is a negative regulator of Nrf2.
Phosphorylated Fyn accumulates in the nucleus and activates the phosphorylation of Nrf2,
which leads to the nuclear output, ubiquitination, and degradation of Nrf2, and then causes
oxidative damage [91–93]. Pan and colleagues revealed that triptolide (TP) activates the
GSK-3 β/Fyn pathway, promotes the cytoplasmic localization of Nrf2, and increases its
subsequent degradation by the ubiquitin-proteasome pathway, which causes oxidative
damage [64]. A recent study illustrated that the transcriptional function of Nrf2 activated by
sulforaphane (SFN) is mediated by AMPKα2 through the Akt/GSK3β/Fyn pathway [60].
After SFN-induced AMPKα2 activation, AMPKα2 triggers Akt/GSK-3β phosphorylation
and, as a consequence, prevents Fyn from entering the nucleus to output Nrf2, which leads
to an increase in nuclear Nrf2 accumulation, thus weakening oxidative stress in type 2
diabetes [60]. In human lymphocytes, Green barley (GB) alleviates H2O2-induced oxidative
stress by activating the Lyn/PI3K/Akt pathway [94] (Figure 3).
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pathway activation under ROS stimuli, thus promotes oxidative stress and apoptosis. Fyn promotes
oxidative stress mainly by Nrf2. On the contrary, the activation of Lyn alleviates oxidative stress
through the PI3K/Akt pathway. Abbreviations: GSK-3β: glycogen synthase kinase-3beta.

3.3. ER Stress and Apoptosis

Endoplasmic reticulum (ER) stress is a physiological or pathological state that leads to
the accumulation of unfolded or misfolded proteins in ER and plays an important role in
maintaining protein homeostasis [59]. When endothelial or epithelial cells are stimulated,
endoplasmic reticulum stress and subsequent unfolded protein response (UPR) can be
induced. UPR may be adaptive and promote cell survival, or if endoplasmic reticulum
stress is severe or long-term, it may lead to autophagy or cell apoptosis [6,95–97].

There are three transmembrane endoplasmic reticulum stress sensors: ERN1/IRE1
(endoplasmic reticulum to nucleus signaling 1), EIF2AK3/PERK (eukaryotic translation ini-
tiation factor 2-alpha kinase 3), and ATF6 (activating transcription factor 6) [98]. ERN1/IRE1
regulates XBP1 (X-box binding protein 1) processing and MAPK8/JNK1 (mitogen-activated
protein kinase 8) activation, respectively [99–101]. Translocation of ATF6 to Golgi apparatus
can drive the expression of endoplasmic reticulum chaperone protein and transcription
factors XBP1 and CHOP [102]. Transcription factor CHOP is regarded as a prominent part
of ER stress-induced apoptosis [102]. Active PERK can also directly or indirectly activate
Nrf2 and transcription factor 4 (ATF4) [98]. The mechanistic target of rapamycin complex
1 (mTORC1) acts as a sensor and integrator for growth factors, amino acids, misfolded
proteins in the ER, and the pressure-associated kinase eIF2 kinase [103]. mTORC1 mediates
ER stress-induced apoptosis [104]. mTORC1 plays a key role in the pathogenesis of kidney
disease.

Studies have shown that ROS activates upstream c-Src kinase and downstream mTOR
to regulate endoplasmic reticulum stress in human proximal tubular cell line HK-2 [59].
Endothelial-mesenchymal transition (EndMT) is related to the development of fibrosis. ER
stress-induced EndMT is mediated by Src kinase [105]. Under ER stress, Src is recruited to
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form a complex with IRE1α, which leads to the relocation of ER lumen chaperone protein
on the cell surface [106]. In a murine model of renal ischemia/reperfusion and cisplatin-
induced acute renal failure, Src kinase mediated apoptosis of renal tubular epithelial cells
by activating ERK1/2 [12,107].

Overexpression of Fyn can activate the mTORC1 and IRE1α-JNK pathways at the
same time, thus enhancing cell death induced by endoplasmic reticulum stress [108]. H2S
improves the Akt/GSK-3 β/Fyn signal activated by ROS, thus increasing Nrf2 expression,
which leads to the exertion of 20S proteasome function and further ameliorates uranium-
induced ER stress-mediated kidney cell apoptosis [65].

The early phosphorylation of Akt may mediate the activation of mTORC1 by ER
stress [79]. Overexpression of Lyn decreases the phosphorylation of PI3K and Akt and
inhibits the activity of NF-κB, thus weakening endoplasmic reticulum stress [79]. This
study also found that the levels of BIP and CHOP in mice with overexpression of Lyn
decrease significantly [79] (Figure 4).
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mediating mTORC and ERK1/2 and also interact with IRE1α to cause oxidative stress. Lyn activation
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enzyme 1alpha.

3.4. Autophagy

Autophagy is a defense mechanism against environmental stress, which is essential
for cells to adapt to stress and maintain normal body balance [5]. It can eliminate damaged
organelles and protein aggregates and maintain cell homeostasis [109,110]. However, exces-
sive or insufficient autophagy also exerts damage to cells [5]. Numerous studies have shown
that autophagy protects cells from cell death in AKI through various mechanisms [111].

Mitochondrial breakage and severe oxidative stress also engage in inducing au-
tophagy [112]. Amino acids regulate autophagy by activating mTORC1 [113]. Src in-
hibits autophagy by promoting the dissociation of GATOR1 from Rags and mediating
the recruitment and activation of mTORC1 induced by amino acids on the lysosomal sur-
face [114]. Oxidative stress induced by NADPH oxidase 2 (Nox2) stimulates the activation
of Src kinase and then inhibits mTOR-dependent autophagy through PI3K/Akt/mTOR
pathway [115]. ER stress is involved in inducing autophagy [99]. Soo Young Moon et al.
found that ER stress by tunicamycin (TM) and toxic carotene (TG) induced EMT through
autophagy by activating c-Src kinase in renal tubular epithelial cells [116].

AMP-dependent protein kinase (AMPK) also plays a key role in autophagy [117].
Studies have shown that Fyn gene deletion increases AMPK activity depending on LKB1
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regulation [118,119]. Consistent with this view, A study has found that Fyn inhibits AMPK
through the LKB1 and PIKE-A pathways [120]. Recent reports have suggested that inflam-
matory factor TNF-α activates Fyn kinase, and Fyn specifically phosphorylates AMPKα on
Y436, inhibiting AMPK activity and thus inhibiting autophagy [121]. Fyn inhibits AMPK
activation and increases mTORC1 activity, but recent studies have shown that Fyn can also
regulate autophagy through the AMPK/mTORC1 independent pathway [122,123]. Fyn
inhibits macroautophagy by reducing Vps34 protein level in a STAT3-dependent manner
and then reducing Vps34/p150/Beclin1/Atg14 complex [122].

The positive regulation between Lyn and autophagy has been reported [124,125],
but little research has been done. Lyn was found to promote cell survival by promoting
autophagy in nutrient-deficient glioblastoma cells [124]. Lyn may act as a bridge between
TLR2 and autophagy after Pseudomonas aeruginosa infection [125]. TLR2 initiates phago-
cytosis and activates Lyn, which promotes the recruitment of LC3, regulates autophagy
through Rab and cofilin, and mediates the fusion of lysosomes with autophagy containing
Pseudomonas aeruginosa to promote autophagy [125]. Contrary to the above studies, Lyn
kinase inhibits apoptosis and autophagy through the PI3K/AKT signaling pathway in
melanoma cells [126]. Whether the difference between the two studies is due to the different
roles of Lyn in different cells is unknown and needs further study, but other studies suggest
that it is possible for Lyn to play a positive role in autophagy (Figure 5).
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Figure 5. Src family kinases and autophagy. Src and Fyn inhibit autophagy through mTORC. Fyn
also reduces autophagy by inhibiting AMPK phosphorylation. Lyn may have a two-sided effect on
autophagy. Abbreviations: GATOR1: gap activity toward rags 1; Rags: Ras-related GTPases; LKB1:
liver kinase B1; LC3: light chain 3.

3.5. Fibrosis

As we all know, severe kidney injury, even mild acute injury with persistent inflam-
mation, is likely to develop into renal fibrosis [6,127,128]. Therefore, this topic has attracted
wide attention. Unfortunately, the exact mechanism of CKD progression after AKI is still
unknown, but now, emerging evidence shows that maladjustment repair is the main cause
of renal fibrosis and AKI-induced CKD [4]. This is the result of the interaction of cell death,
endothelial dysfunction, senescence of renal tubular epithelial cells, and inflammatory
process [9]. The hypothesis of endothelial-interstitial transition (EndMT) and epithelial-
interstitial transition (EMT) has been put forward, and it is believed that they are involved
in renal fibrosis [4,9,129,130]. Renal fibrosis is characterized by the accumulation of extra-
cellular matrix (ECM) due to activation and proliferation of myofibroblasts, which leads to
kidney damage [9].
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Emerging evidence about the role of Src kinase in renal fibrosis has been reported in
recent years [38], but the underlying mechanisms remain not fully understood. Previous
studies demonstrated that severe AKI causes proximal tubular epithelium cells to produce
and secrete fibrotic factors, such as transforming growth factor β (TGF β) and connective
tissue growth factor (CTGF) [131,132]. TGF-β 1 is one of the most important fibrotic factors
in renal fibrosis, which can induce myofibroblast transformation [133] and EMT to increase
extracellular matrix [134]. Src is activated during the development of renal fibrosis induced
by UUO injury, which leads to TGF-β 1-induced activation and proliferation of renal
interstitial fibroblasts and accumulation of ECM [51]. Src kinase inhibitors prevent the renal
epithelial cell cycle from arresting and ameliorating kidney fibrosis after UUO injury [51].
In accordance with this view, Chen et al. found that Src kinases induce the phosphorylation
and activation of epidermal growth factor receptor (EGFR), leading to TGF-β 1-mediated
fibrosis [52]. In addition, during the early stage of renal interstitial fibrosis, the activity of
matrix metalloproteinase-2 (MMP-2) is increased, which promotes the interstitial transition
of renal tubular epithelial cells, and leads to the production of ECM [135,136]. It is found
that renal hypoxia can activate Src and reduce MMP-2 activity, which further aggravates
renal interstitial fibrosis [37]. In NRK-52E cells and senile male Fisher rats, Src kinase
inhibitor PP2 is able to suppress the up-regulation of matrix metalloproteinase (MMP)-7
and reduce the expression of collagen Col1a2, which attenuates collagen deposition in the
kidney [137]. Apart from PP2, tamoxifen may also be beneficial in the treatment of renal
fibrosis by inhibiting Src kinase [138]. In the latest research report, dasatinib alleviates renal
fibrosis by inhibiting Src, c-Abl, STAT-3, and NF-κ B signaling in the UUO-induced renal
fibrosis model [53].

Moreover, Na/K-ATPase binds to Src to form a complex that keeps Src inactive, which
is essential in the pathogenesis of renal injury and fibrosis [139,140]. As a derivative
peptide of Na/K-ATPase, pNaKtide also inhibits the activity of Src [140,141], leading to
the decrease of myofibroblast accumulation and ECM deposition, the down-regulation of
TGF-β1 expression, and the improvement of renal fibrosis [140]. KIM et al. demonstrated
that the Farnesol X receptor (FXR) plays a key role in preventing fibrosis as the excitation of
FXR inhibits the activity of Src [54]. It is found that FXR can regulate renal fibrosis through
the FXR-Src-YAP pathway [54]. These studies confirm the notion that Src is indispensable
in the process of renal fibrosis.

Recent studies found that Fyn, a member of the SFKs family, is also engaged in
mediating kidney fibrosis, and the expression of Fyn is up-regulated in the UUO-induced
renal fibrosis mouse model [61]. Src family kinase inhibitors (SU6656 and PP2) reduce the
deposition of ECM protein stimulated by TGF-β. The expression of E-cadherin is decreased
in the UUO-induced model in Fyn-/-mice [61]. Interestingly, unlike PP1 inhibiting Src to
block Smad3 and STAT3 signaling pathways [51], Fyn-mediated renal fibrosis is mediated
by the non-Smad signaling pathway, that is, caused by activation of STAT3, and Smad3
and AMPK signaling transduction are not essential in this process [61]. Inhibition of Fyn
restrains EGFR and Akt signaling, which indicates that the lack of Fyn may be related to
these mechanisms independent of the STAT3 cascade [61].

Wei et al. showed that Hck is also a key SFKs member involved in renal fibrosis [142].
In renal tubular cells, overexpression of Hck activates TGF-β/Smad signaling, while dasa-
tinib treatment in UUO kidney of mice reduces phosphorylation of Smad3 after inhibiting
Hck [142]. In addition, in the animal models of lupus nephritis and folic acid nephropa-
thy, it is found that dasatinib administration reduces the expression of fibrosis markers
such as Col1a1, fibronectin, and vimentin, which further attenuates the progression of
fibrosis [142] (Figure 6).
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4. Targeting SFKs for AKI

Today, the approved drugs for treating AKI are still very limited. In view of the
possible role of SFKs in AKI, a large number of studies are exploring the strategies of SFKs
small molecule inhibitors for AKI. The effects of SFKs inhibitors on the pathophysiology of
AKI are summarized in Table 2.

Table 2. Effect of targeting SFKs inhibitors on the pathophysiology of AKI.

Compounds Targeted SFKs Effects Reference

PP2

Src/Fyn Improves mitochondrial dysfunction
and renal injury induced by LPS, [13]

Src Reduces collagen deposition and
improves fibrosis in kidney [137]

KF-1607 Src
Inhibits renal inflammation and

oxidative stress, prevents
tubulointerstitial fibrosis

[143]

PP1

Src Relieves renal injury in mouse model
of renal ischemia/reperfusion (I/R) [12]

Src

Reduces the expression of VCAM-1 in
human mesangial cells (HRMC)
treated with LPS and alleviates

monocyte adhesion and
inflammatory reaction

[85]
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Table 2. Cont.

Compounds Targeted SFKs Effects Reference

Src Reduces the damage and death of
renal cells induced by cisplatin [144]

Src
Inhibits apoptosis after cisplatin

treatment by Src/ERK
signaling pathway

[145]

Src

Inhibits the activation and
proliferation of renal interstitial

fibroblasts, regulates the expression of
cyclin, and improves fibrosis

[51]

dasatinib Src/lck/Hck/c-Abl

Decreases inflammatory macrophage
infiltration and renal oxidative stress,
reduces renal expression of α-SMA

and fibronectin, and improves fibrosis

[53,142,146]

nintedanib Src/Lck/Lyn Inhibits inflammation and
renal fibrosis [147,148]

For LPS-induced AKI, PP2 treatment is effective as it reduces inflammatory and oxida-
tive stress [13]. At the same time, mitochondrial biogenesis is improved [13]. Additionally,
PP2 is a sort of cure for renal fibrosis, as many studies have proved that PP2 can inhibit
Src to treat renal fibrosis. [51,54,137]. KF-1607, a newly synthesized Src kinase inhibitor
with low toxicity, has a similar effect compared to PP2 and can inhibit renal inflammation
and oxidative stress and prevent the development of tubulointerstitial fibrosis in UUO
mice [143].

PP1 can inhibit the phosphorylation of Src kinase as it is a highly selective Src kinase
family inhibitor [149]. PP1 treatment inhibits the phosphorylation of NF-κB and STAT3,
and it also suppresses the expression of neutrophil gelatinase-related lipid transport protein
and macrophage infiltration in the kidney [12]. In addition, PP1 reduces the apoptosis
of damaged kidneys by inhibiting ERK1/2 phosphorylation and maintains the integrity
of adhesion and tight junctions in renal epithelial cells [12]. In human mesangial cells
(HRMC), LPS induces VCAM-1 expression through c-Src, and increases monocyte adhesion
and inflammatory reaction, while PP1 disturbs this process [85]. PP1 and PP2 mitigate
the activation of PKC δ induced by cisplatin, thus relieving renal cell injury and the
nephrotoxicity of cisplatin [144]. Pretreatment with PP1 inhibitor significantly inhibits
caspase-3 activation induced by cisplatin and improves cell morphology and apoptosis in
an Src/ERK-dependent manner [145].

Dasatinib is a novel multi-target inhibitor that can effectively inhibit Abl and SFKs [150].
Dasatinib can not only block the cytotoxicity of T cells but also quickly and completely
shut down the release of inflammatory factors such as IL-6, TNF-α, and IL-1β [146]. More
importantly, dasatinib also quickly prevents the activation of cytokine release signals in
T cells [146]. In addition, in the UUO model, dasatinib treatment decreases the expres-
sion of inflammatory markers (CCL3, CCL5, TNF α, IL-1 β, and MCP-1) and inflamma-
tory macrophage infiltration [53,142], down-regulates renal expression of α-SMA and
fibronectin [53], and alleviates renal oxidative stress, inflammation and fibrosis [53,142]. All
the studies suggested the notion that dasatinib elicits anti-inflammation and anti-fibrotic
potency in animal models.

Nintedanib is a triple kinase inhibitor that has been widely studied in pulmonary
fibrosis and has been approved for the treatment of idiopathic pulmonary fibrosis [15]. Liu
et al. recently studied the role of nintedanib in renal fibrosis and found that nintedanib
inhibits the phosphorylation of Src, Lck, and Lyn of SFKs [147]. It suppresses inflammatory
reaction and macrophage infiltration, restrains the activation of renal interstitial fibroblasts,
reduces the deposition of ECM in the kidney, and even reverses renal fibrosis [147]. They
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also indicated that the combination of nintedanib with gefitinib in the UUO model of mice
exerts greater anti-fibrosis effects [148].

Src is the most studied kinase in SFKs, while other members, including Fyn and Lyn
kinases, are hardly studied in AKI, so other members may have a broad research space.
However, some studies have found that both total Fyn and phosphorylated Fyn increase in
LPS-induced AKI [67], but the specific mechanism is unknown.

5. Conclusions

Acute kidney injury is the main culprit of death. Oxidative stress, inflammation,
endoplasmic reticulum stress, autophagy, apoptosis, and fibrosis are vital pathogenesis of
AKI and AKI progression to CKD.

SFKs are considered the essential mediator in modulating signal transduction. Specific
inhibitors of SFKs have proven to be available in in vitro and in animal models, and the
application of small molecule inhibitors targeting these kinases is expected to achieve the
therapeutic effect of AKI. This paper mainly summarizes the functions of SFKs members
Src, Fyn, and Lyn, but the details require further study. First, the role of SFKs in renal
pathophysiology has aroused great interest, but its role in AKI has not been clarified
completely. Secondly, from the current research, it is found that Src and Fyn generally play
an active role in the pathogenesis related to AKI in kidney and other diseases, while Lyn
kinase, contrary to Src and Fyn, plays a negative role in inflammation, oxidative stress,
autophagy, and apoptosis, and can alleviate inflammation and apoptosis and promote
autophagy (Figure 7). However, whether they have opposite mechanisms in the same
disease needs further study.
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6. Future Perspectives

At present, there are still three obstacles to determining the role of SFKs in AKI. First, 11
SFK members have been identified so far, but only some of them, such as Src, Fyn, and Lyn,
have been discussed regarding their role in kidney diseases. Second, multiple members
of SFKs are expressed in specific cells or tissues and play their different roles. Therefore,
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silencing a single kinase may not be enough to prevent the influence of pathophysiological
development. Third, SFKs inhibitors do not target a specific member of kinase, so it is
difficult to clarify the role of a single member of SFKs in specific diseases. Therefore,
future research should be conducted to elucidate the role of SFKs by using highly selective
inhibitors and gene knockout techniques. In addition, the analysis of the expression profile
of SFKs in renal biopsy tissues will also help to clarify the role of SFKs in AKI. Although
the exact mechanism of SFKs in AKI remains to be clarified, SFKs may become a potentially
new therapeutic target for AKI.
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202103050563 and 202104022248, and the Reform of Higher Education of Central South University
(2020), Grant number 2020jy172.
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