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Abstract

We present a new approach to the study of the immune system that combines techniques of systems biology with
information provided by data-driven prediction methods. To this end, we have extended an agent-based simulator of the
immune response, C-IMMSIM, such that it represents pathogens, as well as lymphocytes receptors, by means of their amino
acid sequences and makes use of bioinformatics methods for T and B cell epitope prediction. This is a key step for the
simulation of the immune response, because it determines immunogenicity. The binding of the epitope, which is the
immunogenic part of an invading pathogen, together with activation and cooperation from T helper cells, is required to
trigger an immune response in the affected host. To determine a pathogen’s epitopes, we use existing prediction methods.
In addition, we propose a novel method, which uses Miyazawa and Jernigan protein–protein potential measurements, for
assessing molecular binding in the context of immune complexes. We benchmark the resulting model by simulating a
classical immunization experiment that reproduces the development of immune memory. We also investigate the role of
major histocompatibility complex (MHC) haplotype heterozygosity and homozygosity with respect to the influenza virus
and show that there is an advantage to heterozygosity. Finally, we investigate the emergence of one or more dominating
clones of lymphocytes in the situation of chronic exposure to the same immunogenic molecule and show that high affinity
clones proliferate more than any other. These results show that the simulator produces dynamics that are stable and
consistent with basic immunological knowledge. We believe that the combination of genomic information and simulation
of the dynamics of the immune system, in one single tool, can offer new perspectives for a better understanding of the
immune system.
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Introduction

The immune system, due to its very complex nature, is one of

the most challenging topics in biology. Its study often relies on in

vivo or in vitro animal models, mathematical models, or computa-

tional (in silico) models. Recent advances in the field of

bioinformatics have provided a number of techniques for

processing and integrating the explosion of data that has been

produced during the rise of genomics, which has also improved our

ability to predict the molecular specificities of the immune system

(for a review see e.g., [1]). A number of mathematical models

based on either differential equations or interacting discrete entities

(agents) have also been proposed to describe various aspects of the

immune system. However, most of the existing simulation-based

approaches resort to oversimplified models of molecular interac-

tions, because detailed quantitative data, needed for a more

realistic representation, were not always available.

The goal of the present work is to present a novel approach for

the study of the immune system, combining a mesoscopic scale

simulator of the immune system [2] with a set of machine learning

techniques for molecular-level predictions of major histocompat-

ibility complex–peptide binding interactions [3–6], linear B cell

epitope discovery, as well as a more general protein–protein

potential estimation [7]. More specifically, the computational

model belongs to an agent-based class, whereas the prediction of

epitopes relies on machine learning techniques, such as Neural

Networks (NN).

The paper is organized as follows: After an introduction to the

fundamental mathematics required for modeling the immune

system, we present results of simulations whose aim is to test the

correctness the new tool. We concludes the paper with a

perspective on the future of this work. Finally, the materials and

methods section describes the bioinformatics tools used for

predicting the interactions among the entities involved in the

immune response, including a description of how they are

incorporated into the mesoscopic C-IMMSIM simulator.

In silico models of the immune system
The immune system can be viewed as a classic system of

coupled components, with birth, death, and interaction elements.

The most common modeling approach utilizes systems of either

Ordinary or Partial Differential Equations (ODE and PDE,
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respectively) that directly describe the evolution of global

quantities or populations over time [8]. In immunology, these

quantities could be, for instance, the total concentration of viral

particles or cell counts. ODE- and PDE-based models enable a

model to use well-established analytical and numerical techniques,

but they potentially oversimplify the system: an entire population

of discrete entities is described by a single continuous variable.

Mathematical models based on differential equations have proved

very useful. The study of the evolution of HIV into AIDS, for

instance, has been modeled with the purpose of predicting the

effects of specific treatments [9–12], and predicting certain aspects

of disease progression [13–23].

Each entity (e.g., a cell) is individually represented by an agent,

and the interactions among agents are defined by a set of rules that

can have stochastic components. The rules reflect the current

knowledge in immunology, but they can also be defined ad hoc to

test new hypotheses regarding the operation of the immune

system.

One of the first attempts to define a detailed agent-based model

of immunological mechanisms was the work of Celada and Seiden

[2,24,25]. Their goal was to capture the dynamics of the immune

system, as much as possible, and to perform experiments in silico.

Along similar lines, a study of the thymus has been carried out

[26]. This approach provided important insights into the

regulation of positive and negative selection and into the dynamics

of the production of the TCR repertoire in the thymus. More

recently, we have developed specialized versions of the Celada-

Seiden model to study HIV-1 infection, EBV infection, hypersen-

sitivity reactions, and cancer immunoprevention (described,

respectively, in [27–30]). Recentely, another implementation of

the same model has been used to study cross reactivity and

heterologous memory [31].

C-IMMSIM, the simulator that implements our version of the

Celada-Seiden model, is a flexible tool that can be used for the study

of a number of different immunological processes. The original

model used bit strings to represent the receptors of biological entities.

Related works
Recently, there has been renewed interest in modeling the

immune system by means of agent-based models.

Simmune [32] aims at being a flexible platform for the

simulation of any immunological process. It is more of a modeling

technique and a language for the description of models than a

specific model. Simmune is based on a particular representation of

particle interactions that can be used to create detailed models of

the immune system. The particles live on a mesh, and their states

are updated at discrete time-steps so that both time and space are

discrete. Particles in Simmune can be in different states.

Transitions among the states are probabilistic events triggered

by the exchange of messenger particles having a limited range. The

messenger field intensities are calculated by the integration of

reaction-diffusion equations and typically include an activation

threshold. A major advantage of Simmune is that it models both

direct intercellular interactions (such as those between an antigen

and a B cell) and interactions mediated by molecular messengers

(such as lymphokines). It also supports spatial compartmentaliza-

tion and communication conduits.

The Basic Immune Simulator (Bis) [33] is an agent-based model

created to study the interactions among the cells of the innate and

adaptive immune systems. Bis simulates basic cell types, mediators,

and antibodies, and consists of three virtual spaces representing

parenchymal tissue, secondary lymphoid tissue, and the lymphat-

ic/humoral circulation. Bis translates mechanistic cellular and

molecular knowledge regarding the innate and adaptive immune

response and reproduces the immune system’s complex behavioral

patterns. It has been used both as an educational tool to

demonstrate the emergence of those patterns and as a research

tool to systematically identify potential targets for more effective

treatment strategies for diseases processes, including hypersensi-

tivity reactions, autoimmunity, and cancer.

Simisys [34] is a cellular automata-based method that allows the

simulation of tens of thousands of cells. Both innate and adaptive

components of the immune system are represented. Specifically,

macrophages, dendritic cells, neutrophils, natural killer cells, B

cells, T helper cells, complement proteins, and pathogenic bacteria

are present in the model.

Bit string models of immune diversity
A fundamental task of the immune system is to recognize and

bind antigens by means of cell receptors. The binding mechanism

is based on physical–chemical processes (short-range non-covalent

interactions, hydrogen bonding, van der Waals interactions) [8].

The features that determine the binding among molecules [35]

may be represented by a shape-space. Under the assumption that the

shape-space can be described by means of K parameters, a point

in this K-dimensional space specifies the generalized shape of a

binding region. Oster and Perelson estimated that in order to be

complete, the receptor repertoire should fulfill the following

conditions: i) each receptor should recognize a set of related

epitopes, each of which differs slightly in shape; ii) the repertoire

size should be on the order of 1016 or larger; iii) at least one subset

of the repertoire should be distributed randomly throughout the

shape-space. Later, Farmer and co-workers [36] introduced the

idea of using binary strings to represent the generalized shape of a

receptor. To determine the degree of affinity between bit-strings, it

is possible to resort to different string-matching criteria. For

instance, by using a key–lock analogy, two binary strings have a

high affinity if they complement each other, that is, when the two

strings are lined up, every ‘‘0’’ in one string corresponds to a ‘‘1’’ in

the other, and conversely. The bit string representation of antigen

and cell receptor diversity was then adopted by a number of other

authors [37–39], and has been the basis for the description of all

molecular interactions in earlier implementations of the Celada-

Seiden model.

Previous version of C-ImmSim
The C-IMMSIM model of the immune system response has been

quite extensively described in [27,40]. C-ImmSim was imple-

mented in ANSI C language. In short, it consists of a three-

dimensional (3D) stochastic cellular automaton in which the major

classes of cells of both the lymphoid (T helper lymphocytes (Th),

cytotoxic T lymphocytes (CTL), B lymphocytes, and antibody-

producer plasma cells, PLB) and the myeloid lineage (macrophag-

es (Mw) and dendritic cells (DC)) are represented. All these entities

interact with each other according to a set of rules that describe

the different phases of the recognition and response processes of

the immune system against a pathogen.

C-IMMSIM can be classified as a bit-string polyclonal lattice

model. Bit-string refers to the way in which the molecules are

represented, polyclonal indicates that the lymphocytes have

genetic variation in their receptors, and lattice signifies that a

discrete lattice is used to represent the space.

The model mainly represents a portion of a tertiary organ such

as a lymph node, tonsil, or spleen. Tertiary organs are sites in

which antigens are presented to immune cells. C-IMMSIM

simultaneously simulates three compartments that represent three

separate anatomical regions found in mammals: (i) the bone

marrow, where hematopoietic stem cells are simulated, which
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produce new lymphoid and myeloid cells; (ii) the thymus, where

naı̈ve T cells are selected to avoid auto-reactivity; and (iii) a tertiary

lymphatic organ, such as a lymph node. The tertiary organ is the

only compartment that is described geometrically, because it is

mapped onto a 3D lattice. All interactions among cells and

molecules take place on a lattice-site during each time step. The

diffusion of entities at each time step models the physical spreading

of molecules in the lymphatic organ.

A set of self peptides is used to define the ‘‘self’’ at the beginning

of the simulation. Non-self is defined as everything else. Potential

pathogens as well as cell receptors and MHC molecules (the HLA

or Human Leukocyte Antigen), are represented as binary strings.

In the model, all cells are considered ‘active’ or ‘resting’. This

means that naı̈ve cells are not taken into account. Hence, all cells

reaching the tertiary organ (the simulation space) are already

mature. T-lymphocytes are exceptions, because they undergo

thymic selection before entering circulation. The lymphocytes

generated in the bone marrow have a high diversity with respect to

their receptors, due to alternative splicing, which is somatic

rearrangement of noncontiguous genomic V, J, and C regions,

and sometimes hypermutation. We represent this phenomenon by

assigning random bit-string receptors to every lymphocyte.

C-IMMSIM incorporates the following working hypothesis or

theories: i) the diversity of specific elements [41–43]; ii) antigen

processing and presentation [44–47]; iii) MHC restriction [48]; iv)

cell–cell cooperation [49,50]; v) maturation of the response and

memory [51,52]; vi) clonal selection by antigen affinity ([53]); vii)

thymus education of T lymphocytes (clonal deletion theory, [54]);

viii) hypermutation of antibodies; ix) Hayflick limit (T cell

replicative senescence [55–58]); x) Ag dose-induced tolerance

(anergy) in B cells [59,60].

xi) T cell anergy [61];

xii) Matzinger’s danger signals [62];

xiii) Idiotypic Network theory [63]. Further information can be

found in the literature.

Results

In the remainder of this section, we describe some numerical

experiments that were designed with the goal of assessing the

soundness of the simulator. The average execution time was

around three hours on a 2.4 GHz Opteron processor. In terms of

memory consumption, the simulation of a 10 microliter volume

requires 1 GB of RAM.

Immunization experiment
In this experiment, we reproduce the typical immunization

process by injecting an immunogenic protein at two subsequent

instants in time. The actual AA string used as an antigenic

molecule is the gag molecule from HIV-1.

The antigen is injected at time zero, then again six months (of

simulated time) later. The system develops a typical primary and

secondary immune response with a significant increase in memory

lymphocytes, as shown in Figure 1. Panel (a) and panel (b) show,

respectively, the cell counts of B and T helper lymphocytes in a

cubic millimeter. The immunological memory is developed during

the first response. Therefore, the second response is much more

rapid, as can be seen in the inset plot of panel (c), which shows the

time the immune system takes to clear the antigen. The same

panel also shows the humoral response in terms of antibody titers

(arbitrary scale). In summary, the dynamics are consistent with a

realistic immunization process, because they show a faster

secondary response due to the development of long-lasting

memory.

Immunodominance or affinity maturation
In this experiment, we test the emergence of one or more

dominating clones of lymphocytes in the situation of chronic

exposure to the same immunogenic molecule. In other words, we

check if the system reproduces the phenomenon of affinity

maturation. To mimic chronic exposure to a pathogen, we

repeatedly inject a certain amount of the HIV/gag protein (for

example) throughout the simulation period.

The system responds by mounting a specific immune response

from the beginning of exposure. Then, as the simulation proceeds,

higher affinity clones overtake the original clones with respect to

expression levels, eventually proliferating at higher levels than any

other. This is shown in Figure 2, in which the lymphocyte T helper

count for the top-ranked clones is shown alongside the specific

TCRs. Note, in particular, that the dashed line corresponds to the

first emerging clone, and the continuous line shows a later-

appearing clone with a better affinity that overcomes the first

clone. In the inset plot of the same figure, we show the Simpson

index D~
P

i (ni=N)2, where N~
P

i ni and ni is the count of the

clone with specificity i. The increase of the index D over time

indicates the emergence of a dominating clone (i.e., the bigger the

value of D, the lower the diversity).

Homozygote vs heterozygote
There are reasons to believe that the ‘‘time to AIDS’’ in HIV-

infected patients is related to the haplotype homozygosity [64].

Individuals that bear a higher diversity in their MHC have slower

progression to AIDS than those with lower diversity. In the

analysis carried out by Carrington [64], individuals carrying

heterozygosity for HLA-A, HLA-B, or HLA-C each showed a

longer AIDS-free period compared to their homozygote locus

counterparts. Here, we simulate the situation and compare the

time to clear a given antigen (not specifically the HIV-1) for

individuals with full heterozygosity and individuals with homozy-

gosity for their MHC loci. The heterozygote haplotype is a full

heterozygote, meaning that we allow all possible loci to be

different. The homozygotes bear one A- allele, one B- allele, and

one DR- allele. The following set of MHCs have been used,

following the article by Hoof et al., in which MHC alleles are

ranked based on observed viremia levels in HIV-I-infected patients

[65]: homozygote genotype: A�0201, B�5304, DRB3�0302;

heterozygote genotype: A�0201, A�0301, B�5304,B�5309,

DRB3�0302,DRB5�0202.

The antigen used encompassed all proteins from the Flu

influenza A serotype H1N1 (genome id: HU13275) in the flu

genome database (www.flugenome.org). For demonstration pur-

poses, we assume that the virus does not mutate. The results of

simulations, shown in Figure 3, indeed show that the speed of

antigen clearance is faster for simulations with a heterozygote

haplotype. It is also worth noting that the immune effort calculated

as the number of cells (both CTLs and CD4z T-cells) during the

immune response is higher for the homozygote-type, consistent

with the fact that the homozygote immune response is poorer and,

therefore, allows the virus to grow to higher numbers before it is

cleared. The opposite situation holds for the heterozygote immune

system, which optimally clears the virus faster and with less effort.

Discussion

We have presented an integrated multi-level model that

describes the immune system response at the mesoscopic level

and, at the same time, takes into account the recognition

mechanisms among molecules by means of prediction tools based,

in part, on well known techniques for epitope discovery.

Computational Bioinformatics
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We have tested the simulator in typical immunization

experiments, in which the immune system develops memory.

We have shown that the system develops affinity maturation

against ‘‘chronic’’ antigenic peptides, and we have also shown that

heterozygosity helps the immune system to cope with the diversity

of pathogens. These results show that the simulator produces

dynamics that are consistent with previous versions of C-IMMSIM.

Additionally, the simulation extends those results by using AA

strings, adding a considerable quantity of information. This feature

precisely describes the added value of a tool of this kind.

The novelty and the power of our approach lie in the use of a

combination of two levels of description to study the immune

response by means of computer simulation. The first level is a

mesoscopic agent-based model representing cooperating cells that

mount an immune response. The second level is a set of molecular

binding prediction methods that are used to compute the binding

affinity of the molecules represented in the agent-based model.

The combination of these tools allows us to perform in silico

immunization experiments with specific real-world proteins and

could help to speed up drug design or clinically oriented research.

The system also provides a framework for testing various

prediction methods, because the two levels of description,

molecular interactions and cellular interactions, have purposefully

been kept separate in the computer code. This implies that a novel

method for predicting B cell epitopes could, for example, be easily

inserted into the simulator with minimal programming effort, and

the consequences could be immediately analyzed by looking at the

resulting immune dynamics.

Further work will focus on optimizing the procedures and

finding better algorithms for prediction of B cell epitopes. The

Miyazawa-Kernigan potential, which we have used to predict the

binding affinity between generic AA strings, can also be replaced

with a more accurate prediction method, should one become

available. The proposed architecture has been developed with

consideration for the issue of upgradability and modularity so that

new prediction methods can be easily inserted and used.

Figure 1. Simulation of an immunization experiment. B cell (panel a) and CD4z T cell (panel b) population during a typical immunization
experiment. An immunogenic molecule is injected at time zero and after six months. In both plots, the total number of lymphocytes along with the
immune memory compartment are shown. Panel (c) shows that the secondary response eliminates the antigen on a shorter timescale due to the
presence of memory cells ready to react.
doi:10.1371/journal.pone.0009862.g001
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To conclude, we believe this tool has the potential to ‘‘grow’’ by

acquiring precision, becoming a more and more useful prediction

tool in immunological research, in which in vivo or in vitro studies of

drugs and their effects on the immune response are too difficult or

expensive (either in terms of money or time) to carry out. For

example, it is possible to investigate why one particular epitope of

a given antigen is more immunogenic than another. Does the

uptake by the APCs determine this quality due to differences in

presentation on MHCs, or to differences in ligation through

immuno receptors? It is also possible to combine this kind of

analysis with simulations of different types of pathogenic behavior

and to study the cross-reactivity in the development of the flu

vaccine to select for the best combination of known viral peptides

to be used in order to achieve better protection. These are just a

few possible works that we are planning to pursue in the near

future.

Materials and Methods

At the molecular level, a key step for the simulation of the

immune response is the prediction of immunogenicity. Only the

immunogenic parts of an invading pathogen will trigger an

immune response in the affected host. Those parts are called

epitopes and are pathogen-dependent.

Molecular binding
In the specific context of the pathogen-induced immune

response, one distinguishes between B cell and T cell epitopes. B

cell epitopes are recognized by immunoglobulins, also known as

antibodies. The immunogenic parts are often located on the

surface of pathogenic proteins, because they have to be accessible

for binding. The epitopes mostly consist of discontinuous blocks of

the antigen sequence, i.e., sequence segments that are distantly

separated in the protein sequence and are brought into proximity

upon folding into tertiary or quaternary structures. The binding of

a B cell epitope to a B cell receptor (BCR, an immunoglobulin

covalently attached to the B cell surface) augmented by T helper

cell induction triggers the differentiation of naı̈ve B cells into

antibody-secreting plasma cells that make up the humoral immune

response. T cells can be divided into T helper cells (TH) and

cytotoxic T lymphocytes (CTL or TC). T helper cells act as

mediators between antigen presenting cells (APC) and plasma

cells, and, therefore, assume a central role in the immune

Figure 3. Immune response over 500 different simulations. Panel (a) shows the distribution of the time to clear the antigen in five hundred
simulations with different random seeds. Panels (b), (c), and (d) show that the immune effort calculated as the maximum number of cells (both CTLs,
CD4z T-cells) during the immune response, is higher for the homozygote type.
doi:10.1371/journal.pone.0009862.g003

Figure 2. The T helper lymphocyte count for the most
representative clones that are involved in the immune
response, e.g., those that are antigen-specific. In the inset of
the same panel, we plot the Simpson index.
doi:10.1371/journal.pone.0009862.g002
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response. CTLs kill infected host cells by means of cytotoxic

effector molecules that are released upon recognition of a complex

on the surface of the infected cells. The complex consists of an

epitope and an MHC class I molecule.

CTL epitopes are generated from cytosolic proteins. These

peptides result from the antigen processing pathway that involves

degradation by the proteasome, transport into the endoplasmic

reticulum via the transporter associated with antigen processing

(TAP), and presentation by MHC class I molecules. This

processing takes place in all cells containing a nucleus. The

MHC class II molecules, on the other hand, are produced only by

APCs, which include dendritic cells, macrophages, and B cells.

Epitope binding to MHC class II molecules are generated from

internalized proteins that are degraded in acidified endocytic

vesicles.

Prediction methods
The immune system recognizes pathogens by means of their

epitopes. As such, a protein belonging to a pathogen can be seen as

a collection of parts that are either epitopes or non-epitopes. The

binding strength of an epitope to a cell’s receptor is one of the

factors that determines the activation and strength of the immune

response. For the last several years, we have developed

computational methods that can predict T cell epitopes [3,4,6]

or B cell epitopes [66,67] in protein sequences. Although the

neural networks for MHC prediction, developed in [3,4,6], seem

to outperform other networks and methods [68,69], it should be

noted that these methods are not perfect. They cannot always

provide the same level of accuracy as experimentally-generated

data across all MHC alleles. Moreover, we assume that a peptide

bound on the surface of an MHC molecule always triggers the

immune system, which is not necessarily the case [70].

By implementing protein sequence-based representations for

both the host and the pathogen, we may obtain a patient-specific

genomic model capable of making specific predictions for different

host/antigen genotype combinations.

Until now, C-IMMSIM worked by using algorithms that represent

the biological complexity using bit strings. If protein sequences

rather than bit strings are used, different methods, such as Neural

Networks, are needed to predict binding. The switch from bits to

amino acids (AA) requires new algorithms to compute the affinity

among strings. Because C-IMMSIM is an agent-based model, every

agent (e.g., any cell), along with its interactions, is individually

simulated. This level of representation produces millions of

bindings in a typical simulation. For this reason, we developed a

new, fast Position Specific Scoring Matrix (PSSM)-based method, with

minimal sacrifices with respect to the prediction of performance.

To assess the predicting power of the matrices, a large set of

quantitative peptide MHC binding data were downloaded from

the IEDB database [71]. The dataset consists of 6,533 peptides

and covers 33 HLA- A and HLA-B human alleles. The PSSMs

were calculated as described above, using the original NetMHC-

pan method trained only on human data. None of the peptides in

the evaluation set were included in the training set. For each allele,

the predictive performance of the corresponding PSSM was

evaluated in terms of the Pearson’s correlation between the log-

transformed [72] IC50 value and the summed PSSM prediction

score. Although the NetMHCPan method almost systematically

outperforms the PSSM, the use of the latter in C-IMMSIM is

justified by the gain in computational speed.

The matrix method we employ has, on average, a Pearson’s

correlation coefficient of 0.56 with respect to experimental data,

whereas the original NN performance was 0.62 (see Table 1) [73].

One of the major requirements for the integration of the

prediction methods with an agent-based simulator is the

development of tools that calculate the stability of molecular

complexes.

Because there is no general method that can be used to predict

if, for example, a TCR will interact with any given MHC–peptide

complex, we have used the Miyazawa-Jernigan residue–residue

potential [74] to score the strength of the interaction.

In the following sections, we present the implementation and

combination of each of these processes. For a better understand-

ing, it is important to consider that each lymphocyte in the

simulation bears a receptor (called BCR for B cells, TCR

for both THs and CTLs), and APCs contain a definition of

HLA class I and II molecules with which they are equipped.

Moreover, interactions among cells can be either nonspecific (e.g.,

macrophages engulfing antigens) or specific. Specific interactions

must be accounted for when antibodies meet antigens or when

T-cells interact with other cells presenting foreign peptides on their

MHC.

An antigen is defined by a part or by the entire proteome, i.e., a

set of protein sequences imported via one or more FASTA files

(http://www.proteomecommons.org/data/fasta/fasta.jsp).

We make use of the following definitions. Let V be the

set of AA symbols, that is, V~fA,R,N,D,C,Q,E,G,H,I ,L,K,M,
F ,P,S,T ,W ,Y ,Vg. EVE~20 indicates the number of elements in

V. Let a~½a1,a2, . . . ,al(a)� (where ai[V) represent a contiguous

stretch of AAs, where l(a) indicates the length of the sequence and

ak the kth AA in the sequence.

In the following, we use p to indicate peptides, whereas we use

eB, eI , and eII to indicate epitopes for B cells, CTLs, and TH cells,

respectively.

Table 1. Comparison of the predictive performance of the
PSSM and NetMHCpan methods.

Allele N PSSM NetMHCpan

A0101 446 0.705 0.789

A0201 442 0.641 0.724

A0301 329 0.584 0.638

A1101 217 0.646 0.684

A2301 329 0.553 0.568

A2402 367 0.519 0.527

A2403 111 0.592 0.653

A2601 428 0.747 0.821

A2902 329 0.500 0.520

A3002 329 0.539 0.473

A3101 224 0.629 0.759

A3301 224 0.561 0.700

A6801 224 0.632 0.780

B0801 119 0.481 0.543

B1501 114 0.336 0.424

B3901 106 0.445 0.508

B4001 230 0.679 0.733

B5801 102 0.389 0.435

Average 6533 0.560 0.620

The columns give the allele name, number of peptide data points N , and the
performance of the PSSM and NetMHCpan methods, respectively.
doi:10.1371/journal.pone.0009862.t001
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Class I epitopes
Class I-type epitopes are linear sequences of 8 to 11 amino acids

that are processed from any protein of the pathogen via the

process described in section. Each MHC class I molecule, whose

total number surpasses the thousands of alleles to date [5], is

characterized by a specific binding motif that is possible to

‘‘decode’’. For the vast majority, the motif length is nine AAs long

(Figure 4). Class I T cell epitope prediction methods rely on

machine learning techniques. In previous work, we showed that

quantitative NNs, which had been trained to predict binding

versus non-binding peptides, are superior to the conventional NNs

[72]. Furthermore, quantitative NNs allow the straightforward

application of a query by committee (QBC) principle, in which

particularly information-rich peptides can be identified and

subsequently tested experimentally. Iterative training based on

QBC-selected peptides considerably increases the sensitivity

without compromising the efficiency of the predictions [75].

Because we want to handle generic proteins, the portions of a

protein that trigger an immune response must be identified. To this

purpose, we use the binding motif matrices generated from the NN

methods described in [5]. In short, we rank a set of one million

randomly selected natural peptides from the human genome using

the NN method; the top one percent of the peptides flagged as

binders are used to generate a binding motif, i.e., a 9 by 20 matrix.

The matrix is calculated using sequence weights, and is corrected for

low counts [4,76]. The average score of the low-scoring binders in

the top one percent is set as a threshold value for the matrix. This

threshold is then used to discriminate between epitopes and non

epitopes as follows.

The propensity is calculated as 2 log2 (P=Q), where P is the

probability of finding a given AA at a given position, and Q is the

probability of finding that AA in any protein in general. These

propensities are computed for each of the nine positions on a

potential epitope, and give the propensity for each of the 20 AAs.

Each matrix represents an approximation of the underlying NN,

but the matrix representation is computationally much faster than

the computation of the NN directly. Each row of the matrix

represents a position in the 9-mer, and the columns correspond to

the scores for that specific AA (an example is given in Table 2).

For a given 9-mer p~½a1,a2, . . . ,a9�, ai[V, the sum of the

values at each position in the scoring matrix gives a score. That is,

let fBI
i,aj
g with i~1, . . . ,9 and aj[V,j~1, . . . ,EVE, be the matrix

of a specific class I MHC allele. The score of a generic 9-mer

peptide p is given by

~SS(p)~
X9

i~1

BI
i,ai
: ð1Þ

MHC class I peptide detection
We next describe how the scoring matrices for alleles are used in

the simulation. For an antigenic molecule Ag~½a1,a2, . . . ,al�, (we

assume l§9), all possible peptides of the protein are found by

taking a sliding window of length 9, that is, all possible 9-mers are

fp1,p2, . . . ,pl{8g~f½a1, . . . ,a9�,½a2, . . . ,a10�, . . . ,½al{8, . . . ,al�g:

For each 9-mer pk,k~1, . . . ,l{8, eq(1) computes the score of the

peptide ~SS(pk). Of all possible 9-mers, those for which ~SS(p)§H
BI ,

where H
BI is the allele-specific threshold, are considered epitopes.

Hence, the epitope profile is

ŜS(p1),ŜS(p2), . . . ,ŜS(pl{8), Vi~1, . . . ,l{8,

ŜS(pi)~
~SS(pi){H

BI if ~SS(pi)§H
BI ,

0 otherwise:

( ð2Þ

Note that 0ƒnƒl{8, that is, n can also be zero, meaning that

no epitopes are found in the antigen AA sequence. The threshold

HBI is computed as follows: for the set of peptides used to compute

the matrix for each allele, the matrix predictions for binding

affinity are calculated. Next, we extract the 1% strongest binders,

i.e., those with a high affinity for the MHC. Some of these 1%

have a lower binding affinity than others. We consider the 10

weakest binders of this subset to have a low-end binding affinity,

and we average these binding scores to get HBI . We assume that in

a random set of peptides, around 1% have a binding affinity below

500 nM for the MHC and are considered binders [72,77]. An

example is provided in Figure 4.

Class II epitopes
Class II-type epitopes are presented only on the surface of

APCs. For MHC class II epitope detection, we resort to the same

methodology used for class I. It is known that class II epitopes

have lengths that vary by up to 30 AA [78,79]. An analysis of all

known class II human binders from the EPIMHC database reveals

that the average class II epitope is 16 residues +4:2 in length

(note that the total number of epitopes found to bind human

MHCs was 2503 as of March 2008) [78]. Still, the binding core of

the peptides presented by the MHC can be reduced to a 9-mer

with flanking regions of variable length as demonstrated by

Nielsen [80]. This means that MHC class II epitope detection

can rely on the same principles as class I epitope detection. To

this end, in analogy to section, we created a set of matrices, BII,

able to score any given 9-mer for each allele covered by the NN

method.

Figure 4. Three-dimensional representation of an MHC class I
molecule (in green) complexed with a peptide (in red). The
structure has accession number 1OGA in the Protein Data Bank (www.
pbd.org).
doi:10.1371/journal.pone.0009862.g004
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MHC class II peptide prediction
Formally, we compute the score for each possible 9-mer

pk~½ak, . . . ,a8zk� with k~1, . . . ,l{8 of the antigen AA string

Ag~½a1,a2, . . . ,al� in a manner similar to that described in eq(1).

That is, we compute the epitope profile as

Vk~1, . . . ,l{8, ŜS(pk)~ŜS(½ak, . . . ,a8zk�)~
X8

j~0

BII
kzj,akzj

:ð3Þ

Then, we compile the potential epitopes (meaning that they will be

checked for actual binding with the MHC class II), which are the

9-mers scoring above a certain threshold H
BII ,

Vk~1, . . . ,l{8, S(pk)~
ŜS(pk) if ŜS(pk)§H

BII ,

0 otherwise

(
ð4Þ

into a list of class II epitopes. We call these AA strings epitopes,

indicated by e1
II , . . . ,en

II . Note that, once again, 0ƒnƒl{8.

The threshold H
BII is computed in the same fashion as H

BI .

MHC class II binding prediction is problematic. The 9-mers

form only the core of the binding peptide, the variability in alleles

is much wider than in class I alleles, and the available prediction

methods do not match the prediction capabilities of MHC class I

predictors [69]. To remedy these problems, we focused on a

limited set of MHC class II alleles for which good predictions exist,

and selected those available in the TEPITOPE method [81].

B cell epitope
The prediction of discontinuous B cell epitopes is still a major

challenge in vaccine design, and is difficult for two reasons: first,

available data on discontinuous epitopes in different antigens is

scarce compared to the available data on linear epitopes; second,

few antigens are completely annotated with respect to multiple

discontinuous epitopes in a single antigen. The presence of epitopes

that are not annotated in the data set increases the difficulties

associated with assessing the performance of prediction algorithms.

Due to these difficulties, the majority of prediction tools

available for B cell epitopes are based on linear prediction

methods. These are limited to continuous stretches of protein

sequences that may, in the end, be combined to form one or

several conformational epitopes.

Most tools available for the prediction of linear B cell epitopes

use propensity scale methods. These methods assign a propensity

value to each AA in the queried protein sequence based on

knowledge of the AAs physical and chemical properties. Propensity

scales have been developed based on antigenicity, hydrophilicity,

inverted hydrophobicity, accessibility, and secondary structure. As

part of the development of a new prediction method for linear B

cell epitopes, we tested all such scales for their ability to predict B

cell epitopes in an annotated data set taken from Pellequer et al.

[82]. It turns out that the propensity scales of Parker (based on

hydrophilicity) [83]. and Levitt (based on the secondary structure)

show better performance compared to other scales.

For the present work, we decided to use the Parker

hydrophilicity method rather than the BepiPred method because

the former is simpler and the performance gain using BepiPred is

marginal [66].

B cell epitope detection
The Parker propensity scale [83] is used to find B cell epitopes

in a generic antigenic sequence. The Parker propensity scale of AA

a[V is indicated by P(a)[R (see Table 3).

Table 2. Scoring matrix for allele A*0301.

Position 1 2 3 4 5 6 7 8 9

A 0.9 20.9 0.9 0.8 20.5 0.1 20.1 0.1 25.7

R 2.2 26.8 20.8 0.7 0.4 20.2 20.9 20.3 20.1

N 22.9 24.7 0.9 0.5 20.7 0.9 21.0 0.1 25.4

D 26.7 27.3 22.0 20.6 21.3 21.6 22.6 21.8 26.0

C 23.2 26.2 22.7 21.4 22.7 22.4 22.6 24.6 28.1

Q 21.6 0.3 21.5 0.6 0.5 0.4 21.4 20.4 24.0

E 25.5 26.7 23.1 20.1 20.2 21.2 22.8 0.3 24.5

G 20.1 25.6 21.2 20.5 21.2 20.8 20.3 20.6 26.8

H 0.2 27.1 20.8 20.2 20.2 0.1 21.4 20.2 23.5

I 1.0 2.3 20.4 21.2 20.4 0.5 0.4 21.0 27.5

L 0.0 3.0 1.0 20.8 20.3 0.4 1.4 0.6 27.3

K 2.5 26.1 0.0 0.8 0.5 20.8 21.3 0.1 7.4

M 1.1 3.1 1.6 20.5 0.5 20.2 1.2 21.8 26.4

F 21.8 23.4 2.4 0.3 0.3 0.4 1.5 1.3 26.6

P 25.6 27.1 24.2 0.3 0.5 0.6 20.1 1.0 26.2

S 0.9 1.2 0.8 1.2 1.2 1.3 1.6 0.7 25.4

T 20.3 2.3 22.2 0.1 0.3 0.2 0.4 0.2 25.9

W 27.1 27.1 0.6 20.6 0.9 20.2 0.9 20.4 26.6

Y 21.7 25.1 2.8 0.3 1.2 0.1 0.2 2.0 3.1

V 0.3 1.8 22.2 21.5 0.1 20.3 20.4 21.3 27.3

Ba,i is the matrix entry corresponding to i position (columns), a AA (row). Positive numbers indicate that the given AA is favored (often seen) at that position and
negative ones that it is not favorable (unlikely).
doi:10.1371/journal.pone.0009862.t002
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To calculate the propensity of an AA ak, we use the average of

the propensities of the AAs in a window ranging from position

k{3 to kz3. This smoothing window size has been shown to give

more accurate B cell epitope predictions [66] because B cell

epitopes are generally larger than a single AA. Let

Ag~½a1, . . . ,al� be the antigenic sequence. We compute the

score with a smoothing window of seven AA, meaning that we

consider three residues on either side of the AA in question. We

then create a score profile for the sequence, ŜSk~ŜS(ak),
k~1, . . . ,l, as follows:

ŜS1~
1

4
(P(a1)zP(a2)zP(a3)zP(a4)),

ŜS2~
1

5
(P(a1)zP(a2)zP(a3)zP(a4)zP(a5)),

ŜS3~
1

6
(P(a1)zP(a2)zP(a3)zP(a4)zP(a5)zP(a6)),

ŜSj~
1

7

X3

k~{3

P(ajzk), j~4, . . . ,l{3,

ŜSl{2~
1

6
(P(al{5)zP(al{4)zP(al{3)zP(al{2)

zP(al{1)zP(al)),

ŜSl{1~
1

5
(P(al{4)zP(al{3)zP(al{2)zP(al{1)zP(al)),

ŜSl~
1

4
(P(al{3)zP(al{2)zP(al{1)zP(al)):

The profile is used to discriminate between residues that are likely

to be part of an epitope and those that are not. We use a minimum

score threshold Hparker

Vi~1, . . . ,l, Si~
ŜSi if ŜSi§Hparker,

0 otherwise,

(

where Hparker is 0.7. This value gives the best correlation between

predicted and real epitopes in the dataset used in [66]. Finally, we

label only contiguous regions of AAs, with profiles above the

threshold and lengths that are at least four, as possible B cell

epitopes. We call e1
B, . . . ,en

B, 0ƒnƒl the B cell epitopes found.

Combined model
The simulation of the full sequence of system events, from

antigenic injection to the immune response, proceeds via antigen

recognition by lymphocyte receptors.

The contact potential of Miyazawa and Jernigan
There are no prediction tools available for describing specific

binding among BCRs, antigen epitopes, TCRs, and generic

MHC-peptides (both class I and class II). Therefore, we had to

define, in C-IMMSIM, a generic contact potential among AA

sequences to be used in those cases.

The work performed by Miyazawa and Jernigan on protein

energy potentials [84] provides us with a method for assessing

the chances of direct interactions among proteins in the

simulation. The protein–protein potential concept was derived

from the analysis of 3D structures in which the relative position

of AAs were determined. The contact potential matrix

estimated by Miyazawa and Jernigan reflects the entropy

between two residues. A low entropy means that the pair of

residues has low energy and, therefore, that interaction is

possible.

The contact potential defined between two AA strings is, thus,

based on the Miyazawa-Jernigan score. In the simulation, this

measure is used both when a BCR meets an antigen and when a

TCR meets an MHC-peptide complex. For the case of BCR, we

use a mean field approach, meaning that we assess the potential of

the whole BCR against the B cell epitope.

Let fMa,bg, with a,b[V, be the matrix found in [84]. If e1 is a

BCR and e2 is a B cell epitope, then we use the following formula:

M̂M(e1,e2)~
Xl(e1)

j~1

Xl(e2)

k~1

M
e1
j

,e2
k
: ð5Þ

For T-cell recognition, the procedure is different because it

requires the definition of a class of specific contact matrices CI and

CII for class I and class II, respectively.

We precomputed the contact matrices from known protein 3D

structures found in the Protein Data Bank (www.pdb.org) taking

residues that i) are within a distance of 5 Å and, ii) show contacts

between the MHC-epitope complex and the two chains (heavy

and light) of a bound TCR. The distance of 5 Å was selected

because most crystal structures with experimentally verified B cell

epitopes show that the residues on the antibody in contact with an

epitope lie within a 5 Å radius. We extend the use of this value to

the minimum distance needed between residues for molecular

interaction. By using the solved structures, it is possible to

Table 3. Parker’s propensity scale (from [83]).

a [ V R D E K S N Q G P T

P(a) 0.87 2.46 1.86 1.26 1.50 1.64 1.37 1.28 0.3 1.15

A H C M V I L Y F W

0.03 0.30 0.11 21.41 21.27 22.45 22.87 20.78 22.78 23.00

For each AA a[V, the propensity is indicated by P(a)[R.
doi:10.1371/journal.pone.0009862.t003
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determine which residues on a TCR bind to the MHC and

peptide, and which should be considered to be in the MHC–

peptide complex. The contact matrix derived for class I binding is

represented in Figure 5.

Therefore, if e1 is a TCR, e2 is a MHC-peptide complex, and

CI , CII are the contact matrices used for class I and class II

respectively, the binding affinity between the residues is

M̂M(e1,e2)~
Xl(e1)

j~1

Xl(e2)

k~1

(M
e1
j

,e2
k

:C
fI ;IIg
e1
j

,e2
k

): ð6Þ

Now, in order to determine effective thresholds for the

interaction strengths defined above, in eq(5) and eq(6), we

observed that, given two randomly chosen AA strings a[Vn and

b[Vm, (n and m also taken at random), the score M̂M(a,b) follows a

Gaussian distribution with average mM̂M~mM̂M (n,m) and standard

deviation sM̂M~sM̂M (n,m). Therefore, we pre-estimated those

values of m and s for a wide range of n and m, and we defined

the normalized score as follows:

M
0
(e1,e2)~

mM̂M{M̂M(e1,e2)

sM̂M

:

(Note that M̂M is negative.)

Next, we select those with a normalized score above threshold

HMJ as potential binders (i.e., positive probability), i.e.,

M(e1,e2)~
M ’(e1,e2) if M ’(e1,e2)§HMJ,

0 otherwise:

(
ð7Þ

The threshold value of HMJ determines the number of reactive

clones and was estimated to 0.075 so that in a typical

immunization experiment, antigen clearance is obtained in a time

frame of a few days. We use M(e1,e2) of eq(7) as the probability to

decide if e1 binds e2.

Putting all parts together: The simulation of immune
recognition

The simulation follows the same procedure as in the original bit-

string version [40], with the significant difference being that antigen

recognition and binding rely on the epitope prediction methods

described above. In the new model, we represent pathogens at the

protein level by their AA sequences, which means that we implicitly

account for only transcribed DNA. The host’s genotype is defined

by a set of four MHC class I and class II alleles.

The space volume is populated with an initial number of

entities. Lymphocytes are generated with a random AA receptor of

length 48 for BCRs and 32 for TCRs.

The sequence of events culminating in the immune response

(either humoral, cytotoxic, or both) is described in the following.

1. The Ag represented by one or more AA strings is injected;

N the B cell epitopes e1
B, . . . ,en

B are probed. Here we use the

method described in section;

N for each MHC of class I and II, the T-cell epitopes

ŜS(p1), . . . ,ŜS(pn) are found and scored (see section and

section);

2. Phagocytosis by antigen processing cells;

N Mw s and DCs perform unspecific phagocytosis of Ag;

N B cells must recognize, with their B cell receptor BCR, at

least one epitope of the Ag. Phagocytosis happens with a

probability p defined as follows:

– Given the precomputed B cell epitopes e1, . . . ,en, we

calculate, for a B cell receptor BCR, the score

ŜS(ei
B)~M(BCR,ei

B) by means of the MJ method, and

normalize those scores as described in eq(7) to get

S(e1
B), . . . ,S(en

B).
Finally, the probability that a B cell will recognize

at least one of the epitopes is calculated as

p~1{Pn
i~1 (1{S(ei

B)), that is, the probability for the

BCR to match at least one epitope of the antigen;

3. Antigen digestion by APCs. Once an APC (Mw, DC, and B

cell) has internalized the antigen, it is processed as follows:

N Because the epitopes e1
II , . . . ,en

II have been determined as

described in section, we can randomly select. This selection

is performed by means of the random wheel selection procedure:

draw a number u between 0 and 1 with a uniform

probability distribution and select r if S(er{1
II )ƒuvS(er

II ).
One epitope er

II , with a probability that is given by the

normalized score S(er
II );

Figure 5. The contact matrix used for class I presentation and
TCR binding. Labels on the axis represent positions on the peptide-
MHC complex that are in contact with the TCR chains a and b. The
matrix was derived using the structure indexed under the reference
1OGA in the PDB database. Labels on the columns report the position
indices for the residues in the two TCR chains as they are numbered in
the PDB file (chains E and D respectively). Rows: Labels report the
position indices for the MHC residues and the peptide (chains A and C,
respectively, in the structure file). A blue dot means that the pair of
residues in the row/column are within 5 Å distance, and are considered
to be in contact. Otherwise, they are not. In the program, this matrix is
coded with ones (blue dot) and zeros (no dot).
doi:10.1371/journal.pone.0009862.g005
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N Analogously to the endocytotic digestion, endogenous

digestion takes place in cells that are infected by a virus. In

this case, the epitopes e1
I , . . . ,em

I are found by using the

method described in section;

Building the MHCI-peptide sequence: each infected

cell bears a set of two A and two B alleles.

This implies that each protein from the pathogen is processed

at most four times during the discovery process for class I

epitopes. After processing the antigen protein, each cell

presents, on its surface, one randomly chosen epitope with a

probability that is proportional to the score of that epitope

divided by the sum of scores of all found epitopes. This choice

reflects the competition for MHC molecules among the

protein fragments produced by the proteasome. Inside a single

infected cell, antigen peptides are processed so that they bind

one MHC class I molecule. Because we allow cells to display

only one MHC peptide molecule per time step on their

surface, we have to choose the display protein from within the

haplotype (i.e., the four available, two A- and two B- alleles).

This is performed by random selection at each time step. The

procedure computes the epitope profile ŜS(e1
I ), . . . ,ŜS(el{8

I ) as

described in eq(2), then normalizes it as follows:

Vi~1, . . . ,l{8 S(ei
I )~

ŜS(ei
I )Pl{8

j~1 ŜS(e
j
I )
: ð8Þ

The normalized profile is used to select, from the probability

distribution S(ei
I ), the epitope er

I to be presented on the

surface of the cell.

This complex is then used to compute the matching score

against the cytotoxic T cell receptor (see section).

4. The APC shows the MHCIIpep (the complex formed by an

MHC class II and a nine AA-long peptide) on its surface for

TH-TCR recognition. This recognition makes use of the score

defined in eq(7);

5. Humoral response

N Stimulated B cells start cloning and differentiating into long-

lived memory cells and antibody-producing plasma cells;

N Plasma cells secrete antibodies;

N Antibodies bind antigens’ epitopes;

– to compute the affinity between antibodies and the

antigen, we follow the same procedure as the one applied

for antigen recognition by B cells, (section and section);

– an immunocomplex is formed by the combination of an

antibody and an antigen;

6. Cytotoxic response;

N For infected cells showing MHCIpep (a complex formed by

an MHC class I and a 9-mer) on their surface, recognition of

CTLs via their TRC is performed using the Miyazawa-

Jernigan potential between the MHCIpep and the TCR.

The normalized score (eq(7) in section) is used as the

probability of binding;

N Upon successful recognition (i.e., binding), cytotoxic cells kill

virus-bearing cells and start cloning.

Thymus education of T lymphocytes
As mentioned, we filter randomly created T cell receptors by

means of a procedure that mimics the positive and negative

selection of immature thymocytes in the thymus gland. This

reflects the clonal deletion theory proposed by Burnet, according to

which self-reactive lymphoid cells are destroyed during the

development of the immune system to prevent autoimmunity.

In C-IMMSIM, the thymus is modeled as a two-layer filter (see

Figure 6), and the same procedure for detecting antigen peptides is

used to differentiate self peptides from proteins that represent the

self. This process allows T-cells to develop self tolerance (in the

negative selection) while eliminating useless cells (positive selec-

tion). The self is defined by specifying a random set of naturally

occurring 9-mers extracted from the human proteome. These

peptides are the same as those that have been used to compute the

matrices for the different MHC molecules.

In practice, we allow a T cell to enter circulation (i.e., to reach a

secondary organ as a mature thymocyte) with a probability given

by the product of the probability of being positively selected and

the probability of being negatively selected,

Pr(TCR is selected)~Prz:Pr{, ð9Þ

with

Prz~1{ P
nmhc

j~1
(1{M(TCR,MHCpep)), ð10Þ

where M(:,:) is the Miyazawa-Jernigan contact potential calcu-

lated as in eq(7), the only difference being that residues in contact

with the MHC and the TCR are taken into account, because there

is no peptide attached to the MHC at this stage.

Negative selection is performed according to the following

procedure: for each MHCj (j~1, . . . ,nmhc) and for each self AA

string selfk (k~1, . . . ,nself ),

N compute the sequence profile of the selfk with respect to the

MHCj , as described in section and section, according to

whether the T is a helper or a cytotoxic T cell;

N randomly choose a peptide and create an MHCpep string;

N compute the Miyazawa-Jernigan contact potential

M(TCR,MHCpep).

Finally, the probability that a T cell survives negative selection is

Pr{~ P
j,k

(1{M(TCR,MHCpep))

� �ThymEff

, ð11Þ

where the MHC molecule is composed of MHCj and the chosen

peptide of the selfk. The exponent ThymEff is required because

we treat the thymus as if it were composed of ThymEff sub-layers

(by simulating multiple encounters with each thymic cell receptor).

Parameters of the model
The simulator accepts, as input, the definition of the antigen AA

sequence (in the form of a FASTA file), the matrices defining the

binding motifs for the haplotype (four matrices for class I, two

HLA-A and two HLA-B, as well as two matrices for class II, as

explained in section and section), and other variables that are in

part derived from the literature and in part are free parameters

used to tune the system. Most of the parameters of this version of

C-IMMSIM are the same with respect to the previous bit-string

version. The parameters are described in http://www.iac.cnr.it/

filippo/parameter-page.html. The main difference consists in the

fact that, now, all clonotypic receptors, peptides, and epitopes are
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Figure 7. The overall architecture of the simulation tool. The definition of HLAs is given by means of the precomputed matrices, as described
in sections and. Moreover, we select the pathogen as a collection of peptides from a database of FASTA files. The output of the simulator consists of a
set of ASCII or binary files describing the state of the system at each time step. From the files, various statistics can be extracted.
doi:10.1371/journal.pone.0009862.g007

Figure 6. The two-layer filter realized by the thymus to eliminate auto-reactive T lymphocytes. T-cells develop self tolerance during
negative selection, whereas they are eliminated as useless during positive selection.
doi:10.1371/journal.pone.0009862.g006
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represented by strings of AAs. Moreover, the definition of the

HLAs is now given in terms of affinity matrices rather than in bit-

strings..

In the following experiments the self is given as a random set of

naturally occurring 9-mers extracted from the human proteome.

Since we are not focusing on studying th emergence of

autoimmunity diseases, we arbitrarily take nself = 50 and Thy-

mEff = 5.

As output, the simulator produces a set of files corresponding to

population data (both total number of lymphocytes and the

division between clonotypes, cytokines, and antibody concentra-

tions per lattice point) plus Logo files [85] of lymphocytes at

certain time steps.

The overall architecture is depicted in Figure 7.
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