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Abstract: Over the last decade, imaging as a detection mode for cell based assays has opened a new world of 

opportunities to measure “phenotypic endpoints” in both current and developing biological models. These “high content” 

methods combine multiple measurements of cell physiology, whether it comes from sub-cellular compartments, multi-

cellular structures, or model organisms. The resulting multifaceted data can be used to derive new insights into complex 

phenomena from cell differentiation to compound pharmacology and toxicity. Exploring the major application areas 

through review of the growing compendium of literature provides evidence that this technology is having a tangible 
impact on drug discovery and the life sciences. 
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INTRODUCTION 

 High Content Screening (HCS) is the application of 
automated microscopy and image analysis to both drug 
discovery and cell biology. This technique has grown from 
an interesting proposition, to a useful technology, and onto a 
valuable utility over the last decade. This paper reports on 
observations of peer reviewed journal articles using HCS as 
a key component of the research and attempts to offer a 
glimpse at how widely adopted the technology has been in 
several important areas of life science research. 

 Predictably, early papers were focused on HCS as a 
novel technology. As the technology has gained wider 
acceptance and use, however, the focus of papers has shifted 
back to the biology being studied, with HCS becoming one 
of the tools to deliver “supportive biological context” to 
whatever new entity or idea is being proposed. In my mind, 
this trend is one of the hallmarks of true technology adoption 
and a good indication that HCS is here to stay. 

 It is interesting to note that, although most of scientific 
articles citing the use of HCS fall along the categories of cell 
signaling, oncology, neurobiology, in vitro toxicology, and 
target validation (i.e. RNAi), an increasing number of papers 
describe very novel applications. Adoption beyond the now 
“standard” uses for HCS shows the flexibility of the 
technology to expand the breadth of addressable biological 
processes including cardiac failure [1], gap junctions [2], 
immunosupression [3], osteoporosis [4], phagocytosis [5], 
autophagy [6], centrosome function [7], fungal pathogenesis 
[8], retinal repair [9], circadian rhythms [10], and screening 
in yeast [11] just to name a few. 

 As with any emerging technology, HCS is being 
compared to current assay methods. In many instances HCS 
provides significant benefits over existing approaches or at 
least is seen as complementary, providing additional data 
that can be used to make scientific conclusions. In recent 
papers comparing HCS approaches to a standard Enzyme - 
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Linked ImmunoSorbent Assay (ELISA), for example, it is 
noted that the ability to see what is going on at individual 
cell resolution makes the measurements more accurate and 
reliable [12, 13]. 

 Liu et al., explain how ELISA and HCS provide 
synergistic outputs that help determine the complex 
pharmacology of the compounds they are evaluating. “It is 
clear that the readout from the Neurofilament (NF) ELISA is 
a measure of neuronal survival…on the other hand, the 
Cellomics ArrayScan platform, as represented in this study, 
is meant to evaluate a compound’s ability to increase total 
neurite outgrowth…the utility of both assay platforms would 
enable the investigator to identify compounds with multiple 
cellular activities, such as FK506” [14]. 

 Agler et al., cite subcellular location of protein/protein 
interaction as an advantage of HCS over second signal 
assays. The ability of HCS to identify only a defined subset 
of cells in the well enables transient transfection to be used 
for robust screening instead of the forced use of “stable 
clones” where over-expression can lead to aberrant 
physiology and toxicity. “HCS assays provide other 
information unavailable from fluorescence polarization (FP) 
and reporter assays, such as subcellular localization where 
protein-protein interactions occur. Within this assay triage 
strategy, the HCS translocation assay provides an 
inexpensive assay format compared to purchasing 
commercially available reagents for FP and reporter assays” 
[15]. 

 HCS used to replace difficult assays is on the rise where 
the advantage might be sensitivity over existing methods, 
increased throughput, increased safety, and/or decreased 
cost. Baniecki et al., who developed HCS to identify new 
anti-malarial drugs, state, “we are able to detect as little as 
one individual parasite in our image-based DAPI P. 
falciparum growth assay compared to a uniform well readout 
of 0.25% parasites observed in the DAPI P. falciparum 
growth assay and [

3
H]hypoxanthine assay - significantly 

greater sensitivity and reliability” [16]. Johnson et al., at the 
Center for Disease Control (CDC), developed a rapid, high 
throughput vaccinia virus neutralization assay [17] utilizing  
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HCS to replace assays that are “laborious, particularly for 
large numbers of test sample and take up to 48-72 hours for 
plaque formation…analysis of results takes additional time 
and may be subjective since the plaques are counted 
manually”. The HCS assay, based on detecting viral 
infection with GFP, “has the potential to replace plaque 
reduction neutralization titer (PRNT) as a lab-standard 
clinical sample neutralization assay due to the speed and 
reliability with which data is produced. In the event of an 
orthopoxvirus outbreak, the speed and high throughput 
nature of the assay may prove extremely valuable”. 

 Historically, HCS has its origins in drug discovery, 
initially providing novel secondary assay formats, selectivity 
screens, and cytotoxicity profiling using the multi-parameter 
and individual cell attributes of the approach. “High content, 
in context, and with correlation” describes the data coming 
from the current HCS platforms [18], but understanding the 
value and utility of what that data represents is only now 
becoming obvious in the literature. In a brilliant example, 
Young et al., elegantly show how powerful the application 
of multi-faceted HCS data can be in their recent paper that 
integrates HCS and ligand-target prediction to identify 
pharmacological mechanisms of action [19]. Using cell cycle 
permutation as the model, a series of image-based 
cytological features were collected. A thirty-six-feature 
subset was selected, defining six factors (nuclear size, 
replication, mitosis, nuclear morphology, EdU texture, and 
nuclear ellipticity). A library of 6,547 compounds was 
profiled. “The responses grouped active compounds into 
seven major categories of phenotypic effects. We then 
explore how phenotypic profiles of active compounds 
compare with chemical structure and predicted target 
profiles. The resulting structure-activity relationships are 
richer than would be possible with a single data type, and 
they allow us to infer mechanisms of action for some 
compounds.” 

HCS AND CELL SIGNALING 

 In the drug discovery process, understanding how 
environmental triggers cue a particular set of biological 
process cascades holds the key to therapeutic control. Cell 
signaling, therefore, is at the root of most target-specific 
attempts to create drugs. In an academic setting, there is a 
similar need to understand how newly discovered proteins 
map into and across various pathways. Therefore, it is not 
surprising to find that many of the peer reviewed journal 
articles citing the use of HCS are reporting on some aspect 
of cell signaling. From the initial HCS paper on NFkB 
translocation [20] a decade ago many signaling molecule 
activities have been quantitated including STAT [21, 22], 
wnd/fzd [23], akt [24], NFAT [25], p38 [26], TGF-beta [27] 
and Smad2/3 [28, 29]

 
making up signaling networks from 

inflammation [30] to G-Protein coupled receptors [31-33]. 

HCS AND ONCOLOGY 

 HCS found an initial foothold in oncology research, due 
to the early applications for measuring apoptosis [34-38] and 
proliferation [39-41]. Assays for cell cycle [42-44], 
transformation [45] and migration [46-48] followed. At one 
point we developed a motility assay algorithm and reagent 
kit that is used to access metastatic potential [49-51]

.
 Being 

able to see the individual cell responses verses a “population 

average” has led to a better understanding of how anti-cancer 
compounds might differentially effect cancerous cells 
compared to normal cells and has been used to determine the 
function of cancer biomarkers [52]. Anti-cancer compounds 
identified utilizing HCS have started moving into clinical 
trials [53]. 

 As HCS technology continued to develop, additional 
applications in oncology research began to emerge. The 
study of angiogenesis, for example, can now be routinely 
performed by stimulating endothelial cells to undergo 
angiogenic transformation in a microplate well [54, 55]. The 
phenotype of tube formation is striking in the sense that a 
multitude of cells are signaling each other and working in 
unison to create an extremely specific multicellular structure 
that has many implications on various disease states, 
depending on the particular focus. Stimulating 
neovascularization of a damaged organ or wound would be 
considered beneficial while inhibiting the neovascularization 
of a solid tumor or retina (wet form of macular degeneration) 
would also be therapeutic. The key here is to be able to 
accurately capture, measure, and report on the phenotypes by 
individually assessing a number of attributes. In the case of 
angiogenic tube formation, being able to measure tube size 
and shape, connectedness, number of nodes, number of cells 
in a tube, and even target activation in the cells in a tube 
allow the researcher to discriminate between compound 
activities. Another area of interest in oncology using HCS is 
the evaluation of anti-cancer compounds through the 
quantitation of cytoskeletal rearrangement, specifically 
looking at microtubule assembly/disassembly [56, 57]. 

 A good example of HCS adoption is the NCI Institute for 
Chemical Genomics. They have developed and implemented 
HCS assays for nuclear foci formation, cell morphology 
changes and protein translocations. “Because such 
measurements are done at the cellular level rather than 
averaged over a well, the signal-to-noise ratio is considerably 
higher; each well, in essence, serves as its own set of data 
points” [58]. Using HCS they have been able to identify 
novel cell division modulators with different modes of action 
than the microtubule disruption of classic antimitotic 
compounds, secramine, an actin polymerization inhibitor 
reducing metastasis, and several modulators of NFAT and 
FOX01a nuclear translocation. 

HCS AND NEUROBIOLOGY 

 Very early in the development of HCS we recognized the 
potential of imaging in the quantitation of neuronal 
morphology and were the first to create a product to monitor 
neurite outgrowth. Over the years we have evolved the 
algorithmic approaches a number of times, responding to the 
feedback from multiple users screening for stimulation of 
neurite outgrowth [59-62] and neuronal protection [63-65] 
with the resulting calculated feature set allowing the 
extraction of many attributes of neurons and neuronal sub-
populations in both primary cells and standard cell lines. 

 More striking is the application of HCS to the study of a 
wide variety of neurological disease states, whether it is a 
basic understanding of the underlying biology, the creation 
of new models, or the screening of molecules for therapeutic 
intervention. Examples include Alzheimer Disease [66], 
Parkinson’s Disease [67, 68], Huntington Disease [69, 70], 
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Amyotrophic Lateral Sclerosis [71] and brain cancer [72] 
with more articles appearing each year. 

HCS AND IN VITRO TOXICOLOGY 

 All HCS assays can be considered “tox” assays on some 
level, since they measure a cell’s physiological responses to 
stimulus, whether it be environmental or chemical. From 
relatively simple measures of acute cytotoxicity, such as cell 
counting and cell rounding, to more specific measures of 
organelle health [73, 74], HCS can be applied to many 
situations, often as a multi-parameter assay where cross 
correlation of multiple endpoints can help define subtle toxic 
states. 

 It is clear that HCS has found a strong foothold in drug 
discovery in the area of cytotoxicity [75]. However, uses of 
HCS beyond straight cytotoxicity [76], where the evaluation 
at the cell level is predictive for downstream toxic effects in 
whole organisms (like us) is an important area of growth for 
automated imaging in drug discovery, since the increased 
capacity for getting critical data at the right time can mean 
the gain/loss of billions of dollars. Initial applications 
include assays for micronucleus induction [77, 78] to assess 
genotoxicity, phospholipidosis [79] for liver lipidosis, and 
developmental neurotoxicity [80]. Moving forward there is 
great potential in using HCS to set up new models for 
toxicity [81] including the use of model organisms like 
zebrafish and worms. 

 One of the most exciting results showing the potential of 
a multi-parameter imaging approach to in vitro toxicology is 
in the area of drug-induced liver injury where Xu et al., have 
developed a testing strategy around a panel of phenotypes 
that are directly linked to hepatotoxicity [82]. “When applied 
to over 300 drugs and chemicals including many that caused 
rare and idiosyncratic liver toxicity in humans, our testing 
strategy has a true-positive rate of 50-60% and an 
exceptionally low false-positive rate of 0-5%” 

 In another retrospective study of hepatotoxic compounds, 
O’Brien et al. [83]. compared the “standard 7” biochemical 
cytotoxicity assays used in the industry to a single, 4-dye 
component, multi-parameter HCS assay. The HCS assay 
showed a much higher sensitivity (93% vs <25%) and 
specificity (98% vs ~90%) than the best combination of the 
"standard 7" biochemical assays. These studies are being 
confirmed across the pharmaceutical industry [84]. 

HCS AND TARGET VALIDATION 

 The target validation area of early drug discovery, and to 
a large extent all basic research, is focused on identifying  
new components in the cell biology puzzle and validating 
their various functions. On the basic research side, validation 
adds to the understanding of the big picture. On the drug 
discovery side, validation provides the foundation to develop 
assays that reflect disease states so that molecules that 
perturb the disease state can be identified. Ultimate success 
in this area requires both relevant biological models and 
physiologically accurate environmental conditions. The 
relatively recent technological advances of using stem cells 
and RNAi to create cell models are a natural fit for 
phenotypic quantitation. Whether it is tracking the 
development of a differentiating population of stem cells en  
 

Table 1. Key Application Areas of HCS and Example 

References 
 

Application  

Area 
Example References 

NFkB 20 

STAT 21,22 

Wnd/fzd 23 

akt 24 

NFAT 25,58 

P38 26 

TGF-beta 27,29 

Smad2/3 28,29 

GPCR 31-33,100 

Glucocorticoid receptor 15 

FOXO1a 58 

Cell  

Signaling 

yeast 11 

Proliferation 12,39-41,90 

Phosphorylation 13 

Phagocytosis 5 

Autophagy 6 

Gap junction induction 2 

Mitochondrial health 73,74,82-84 

Nuclear morphology 19,83,84,88 

Apoptosis 34-38,65 

Membrane permeability 82-84 

Cell cycle 19,42-44,58,86,99 

Motility/migration 46-51 

Cytoskeletal rearrangement 7,33,56,57 

Neurite outgrowth 9,14,59-65,72,80 

Cell  

Physiology 

Transformation 45 

Micronucleus induction 77,78 

Phospholipidosis 79 

Neurotoxicity 80 

Organelle health 73,74,82,84 

In Vitro  

Toxicology 

Hepatotoxicity 82-84 

Cardiac failure 1 

Circadian rhythms 10 

Immunosupression 3 

Osteoporosis 4 

Fungal pathogenesis 8 

Virus neutralization 17 

Parasite infection 16 

Angiogenesis 54,55 

Alzheimer’s Disease 66 

Parkinson’s Disease 67,68 

Huntington’s Disease 69,70 

Organism  

Physiology 

Amyotrophic Lateral Sclerosis 71 

shRNA interference library 86 

siRNA interference library 87-90 

Stem cell self-renewal 91,92,98 

Target  

Validation 

Stem cell differentiation 94-96,98 
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route to becoming muscle cells, or assessing the outcome of 
knocking out proliferation signals for neurite outgrowth, 
HCS can be applied. In a recent review of RNA interference 
based screening, Perrimon comments, “Perhaps the most 
significant advances in RNAi HTS will come from high 
content screening. Cell-based HCS that rely on cellular 
phenotypes are becoming one of the preferred methods in 
RNAi HTS because they generate data sets that are rich in 
information…the use of primary cells offers ample 
opportunities to carry out cell morphology screens in a 
biologically relevant context” [85]. 

 Moffat et al. developed a screen based on high content 
imaging to identify genes required for mitotic progression 
and applied it to 5000 unique short hairpin RNA (shRNA) 
expressing lentiviruses targeting 1028 human genes [86]. 
The screen identified ~ 100 (new) candidate regulators of 
proliferation. Similar studies using HCS to monitor 
phenotypic endpoints have been done using short interfering 
RNA (siRNA) libraries [87-90]. 

 On the stem cell front, HCS has been used to help 
identify components of the regulatory machinery involved in 
stem cell self-renewal [91, 92] and differentiation [93], 
primarily through the quantitation of pluripotency markers 
like Oct-4 in either embryonic stem cells [94, 95] or lines 
derived from adult tissues [96]. Downstream tracking of cell 
fate using various differentiation state biomarkers has also 
been done [97]. The unique ability of HCS to provide spatial 
information about cell /cell relationships is illustrated by 
Peerani et al., where the heterogeneous microenvironments 
(niches) in the organization of human embryonic stem cell 
(hESC) cultures influence hESC fate [98]. By evaluating 
niche size and cell composition against localized secretion of 
differentiation inducing and inhibiting factors (via siRNA 
knock down) they discovered, “for the first time, a role for 
Smad1 in the integration of spatial information and in the 
niche-size-dependent control of hESC self-renewal and 
differentiation.” 

FUTURE DIRECTIONS AND OUTLOOK 

 It is clear from the published literature cited above that 
HCS has moved beyond the “proving the technology” phase 
and is now entering the “broad adoption” phase where the 
needs of an ever increasing user base will drive the 
technology to be more cost effective, easy to use, and robust. 
Development of new reagents [99] and micro-environments, 
combined with continued application of autofluorescent 
proteins [100] will open the door to even more ways to 
quantify cellular behavior. A focus on the productivity 
metrics of HCS, both in creating the information (i.e. assay 
prep automation, reagent kits, algorithms) and understanding 
it (i.e. data management, visualization, mining) will 
supplement the detection platforms, allowing more routine 
generation of HCS data as part of decision support in the life 
sciences. While the core applications of HCS will evolve to 
mass use, technology development will progress toward 
expanding biological data relevance through use of multi-
cellular assemblies, tissues, organs, and organisms. An 
additional trend to incorporate “cellomics” with genomics 
and proteomics technologies will provide an unprecedented 
picture of cell functions. 

 The outlook for HCS is very bright, considering that 
many countries are proposing moratoriums to reduce animal 
testing [101, 102] in the “not-to-distant” future. The 
development of in vitro cell based assay tools like HCS 
could not be more timely. As someone who has participated 
in developing this technology from its inception, I can 
honestly say, due to the passion and dedication of “highly 
productive users”, HCS is taking its place as a powerful tool 
to help weave the “fabric of scientific knowledge” for years 
to come. 
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