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Endoplasmic reticulum (ER) stress has been linked to the onset and progression of many diseases. SIL1 is an
adenine nucleotide exchange factor of the essential ER lumen chaperone HSPA5/BiP that senses ER stress
and is involved in protein folding. Mutations in the Sil1 gene have been associated with Marinesco–Sjögren
syndrome, hallmarks of which include ataxia and cerebellar atrophy. We have previously shown that loss of
SIL1 function in mouse results in ER stress, ubiquitylated protein inclusions, and degeneration of specific
Purkinje cells in the cerebellum. Here, we report that overexpression of HYOU1/ORP150, an exchange
factor that works in parallel to SIL1, prevents ER stress and rescues neurodegeneration in Sil12/2 mice,
whereas decreasing expression of HYOU1 exacerbates these phenotypes. In addition, loss of DNAJC3/
p58IPK, a co-chaperone that promotes ATP hydrolysis by BiP, ameliorates ER stress and neurodegeneration
in Sil12/2 mice. These findings suggest that alterations in the nucleotide exchange cycle of BiP cause
ER stress and neurodegeneration in Sil1-deficient mice. Our results present the first evidence of important
genetic modifiers of Marinesco–Sjögren syndrome, and provide additional pathways for therapeutic inter-
vention for this, and other ER stress-induced, diseases.

INTRODUCTION

Folding of transmembrane proteins and secreted proteins, which
account for more than one third of newly synthesized proteins,
occurs in the endoplasmic reticulum (ER) (1). HSPA5 (hereafter
referred as BiP), the major ER-localized member of the HSP70
family of molecular chaperones, reversibly binds to contiguous
segments of hydrophobic amino acids exposed in unfolded
lumenal proteins to impede aggregation and promote folding
(2). Properly folded proteins are exported out of ER, whereas
terminally misfolded proteins are targeted to degradation by
the ER-associated degradation (ERAD) pathway (3). Imbal-
ances between the capacity to fold ER proteins and the cellular
demands for ER-associated protein synthesis lead to ER stress,
which diminishes fitness (4,5).

Binding of substrates to BiP and subsequent release from
BiP is controlled by a continuous cycle of ATP hydrolysis

and exchange of ATP for ADP that is regulated by cofactors.
DNAJ domain proteins recruit substrates to ATP-bound BiP
and stimulate its ATPase activity, which in turn converts
ATP to ADP and results in high affinity, stable interactions
of BiP with unfolded substrates. To complete the protein
folding cycle, nucleotide exchange factors bind ADP-bound
BiP to catalyze the release of ADP and rebinding of ATP.
Thus, defects in the BiP ATP/ADP exchange cycle that
result in altered substrate binding or release cause accumu-
lation of unfolded proteins and ER stress (2,4).

A mutation of SIL1, a BiP co-chaperone, causes ataxia and
neurodegeneration in the spontaneous mouse mutant, woozy
(wz) (6). The majority of Purkinje cells in the wz mutant cer-
ebellum develop ubiquitylated protein inclusions and degener-
ate between 3 and 4 months of age. Mutations in Sil1 are also
associated with human Marinesco–Sjögren syndrome (MSS),
an infantile-onset disease which exhibits cerebellar ataxia,
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cataracts, mental retardation, myopathy, delayed somatic
maturation and short stature (7,8).

Sil1 encodes a BiP nucleotide exchange factor (9,10)
suggesting that the neurodegeneration caused by Sil1
mutations in both mouse and human is due to alterations in
the BiP nucleotide binding and hydrolysis cycle. Consistent
with this hypothesis, death of Purkinje neurons in Sil1-
deficient mice is preceded by signs of ER stress as revealed
by upregulation of BiP and DDIT3/CHOP, which are well-
validated markers of the mammalian ER stress response
[also known as the unfolded protein response (UPR)]
(11,12). If neurodegeneration induced by Sil1-deficiency is
indeed due to defects in the BiP ATP/ADP cycle, changes in
expression of other co-chaperones that regulate this cycle
may also modify ER stress and neurodegeneration. Specifi-
cally, loss of function of other BiP nucleotide exchange
factors may exacerbate the Sil1-deficiency phenotype. In con-
trast, decreased activities of DNAJ type co-chaperones of BiP,
which have opposing functions to SIL1 in regulating the BiP
ATP/ADP cycle, would be predicted to ameliorate the ER
stress and cell death phenotype caused by Sil1 mutations.

In addition to SIL1, an atypical HSP70 protein, HYOU1/
ORP150, also serves as a BiP nucleotide exchange factor
(13,14). In support of nucleotide exchange factor function,
partial redundancy of SIL1 and HYOU1 has been demon-
strated in yeast. Deletion of both SIL1 and the yeast Hyou1
ortholog, LHS1, results in synthetic lethality. In addition, over-
expression of SIL1 partially suppresses the severe growth phe-
notype of yeast lacking LHS1 and IRE1, the gene encoding an
upstream regulator of the UPR (15). The interchangeability of
the nucleotide exchange factor activity of Sil1p and Lhs1p is
also supported by biochemical assays (13). In mammals,
HYOU1 has been suggested to be a neuroprotective factor
against ischemia and excitotoxicity, insults that potentially
induce ER stress in neurons (16–18). Transgenic expression
of Hyou1 in neurons driven by the platelet-derived growth
factor (PDGF) promoter decreases Purkinje cell apoptosis
during cerebellar development leading to a higher number of
Purkinje cells at postnatal day 40 (19). No obvious phenotypes
of the brain or other major organs have been reported in mice
heterozygous for the Hyou1 targeted allele, whereas homo-
zygosity is embryonic or perinatal lethal (19).

Multiple ER DNAJ domain proteins have been identified.
These proteins may exist in distinct BiP complexes that func-
tion at various locations in the ER or have specific roles in the
regulation of the different functions of BiP (20–25). For
instance, yeast Sec63p binds to the translocon and together
with Kar2p, the yeast ortholog of BiP, is involved in translo-
cation of nascent peptides (26,27). DNAJB9 and DNAJC10
may be involved in ERAD, which also requires BiP (28,29).
Recent findings suggest that another ER-associated J domain
protein, DNAJC3/p58IPK, is localized to the lumen and
serves as a co-chaperone of BiP to promote protein folding
(30,31). Consistent with an important role in ER function,
Dnajc32/2 mice have mild glucose intolerance due to
defects in pancreas islet cells (32).

To test the hypothesis that altered BiP ATP/ADP cycle is the
underlying mechanism of neurodegeneration caused by Sil1
mutations, we examined the possible functional redundancy
of SIL1 and HYOU1, and genetic interactions between SIL1

and DNAJC3, in vivo. Our results demonstrate that reduction
of the gene dosage of Hyou1 aggravates the temporal onset
and the spatial specificity of the UPR and subsequent Purkinje
cell death in the Sil12/2 cerebellum. In addition, overexpres-
sion of Hyou1 in the cerebellum completely suppresses Purkinje
cell degeneration in Sil12/2 mice. These data suggest that
Hyou1 and Sil1 have partially redundant functions in neurons.
In contrast, homozygous deletion of Dnajc3 partially rescues
the Sil1 null phenotype, consistent with the opposing functions
of SIL1 and DNAJC3 in regulating the BiP ATP/ADP cycle.
These results may lead to better understanding and diagnosis
of MSS and shed light on the disease mechanisms of this, and
other ER stress-related, diseases.

RESULTS

Transgenic expression of Hyou1 in Sil12/2 mice suppresses
ER stress and Purkinje cell degeneration

Deficiency of the BiP nucleotide exchange factor, Sil1, causes
prolonged induction of the UPR indicative of ER stress, and
eventual death of most Purkinje cells in the cerebellum (6).
Interestingly, UPR is not induced in Purkinje cells in the ves-
tibulocerebellum which includes lobule X and the caudal
region of lobule IX, nor do these neurons degenerate,
suggesting that this developmentally and functionally distinct
region of the cerebellum may utilize other BiP co-chaperones
(6). To test whether survival of Sil1-deficient Purkinje cells in
these caudal lobules is compensated by HYOU1, the other
known BiP nucleotide exchange factor, we examined
expression of this protein in wild-type and Sil12/2 cerebella.
HYOU1 was highly expressed in wild-type Golgi neurons in
the granule cell layer with much lower levels of expression
in Purkinje cells (Fig. 1A, B, E, F). In contrast to the low
levels of expression in wild-type Purkinje cells, HYOU1 was
moderately upregulated by 1-month of age in many Sil12/2

Purkinje cells located outside of the vestibulocerebellum
(data not shown). In 2-month-old mice, HYOU1 upregulation
in Sil1-deficient Purkinje cells in these lobules was quite
obvious (Fig. 1C, D, G, H). Upregulation of HYOU1
expression was not observed in Sil12/2 Purkinje cells in
either lobule X or those in caudal lobule IX (Fig. 1I–L),
suggesting that HYOU1 is induced in response to ER stress.
These data suggest that UPR-mediated HYOU1 induction in
Sil1-deficient Purkinje cells is not sufficient to prevent Pur-
kinje cell death.

To test whether increased or earlier expression of HYOU1
can modulate the death of Sil12/2 Purkinje cells, we crossed
Sil12/2 mice with transgenic mice overexpressing Hyou1
under the control of the CAG promoter, an artificial promoter
composed of the chicken b-actin and minimal CMV promoters
(33). CAG-Hyou1 transgenic mice do not exhibit any obvious
brain pathology (data not shown). However, this transgene
does cause vacuolar degeneration of cardiac and skeletal
muscles, the latter of which is consistent with our observation
that Hyou1 transgenic mice could not perform on treadmill
tests for gait analysis (33,34) (data not shown). Unlike a pre-
vious study suggesting that mice overexpressing Hyou1 under
the control of a PDGF promoter had reduced apoptosis of Pur-
kinje cells resulting in 40% increase of Purkinje cell numbers
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before 40 days of age, we did not observe an increase in Purkinje
cell numbers in Tg(CAG-Hyou1) mice [þ/þ, 190+ 18
(�103); Tg-Hyou1, 180+ 10 (�103)] and the transgenic
mice do not have a visible ataxia phenotype or obvious brain
pathology (data not shown).

The CAG promoter drives expression widely. In agreement,
increased HYOU1 expression is detected in most, if not all,
cells in the transgenic cerebellum, with levels 3-fold higher
than those observed in 1-month-old wild-type and Sil12/2

cerebella (Fig. 2A). Although expression varies between Pur-
kinje cells, immunofluorescence analysis revealed higher
HYOU1 levels in these neurons in 1-month-old Sil12/2;
Tg-Hyou1 mice compared with levels in Purkinje cells of
wild-type mice or Sil12/2 mice at 1 or 2 months of age
(Fig. 2 B–G and Supplementary Material, Fig. S1). HYOU1
expression in the Purkinje cells of 2-month-old Sil12/2;
Tg-Hyou1 mice was similar to that observed at 1-month of
age, indicating that the transgene was stably expressed (data
not shown).

Figure 1. Loss of SIL1 function induces HYOU1 expression in Purkinje cells.
Cerebellar sections from 2-month-old wild-type (þ/þ, A, B, E, F, I, J) or
Sil12/2 (C, D, G, H, K, L) mice were immunostained with antibodies to
HYOU1 (red) and calbindin-D28 (Calb; green). Images from lobules II (A–
D) and lobules X (I–L) are shown. Higher magnification images of A–D
are shown in E–H, respectively. Camera exposure times are equal for
images of the same channel and magnification. Scale bar ¼ 100 mm.

Figure 2. A Hyou1transgene confers constitutively elevated expression.
(A) Western blot of cerebellar protein extracts from 1-month-old wild-type
(þ/þ), Sil12/2 and Sil12/2; Tg-Hyou1 mice, probed with an antibody
against HYOU1 and an a-tubulin antibody as loading control. (B–G) Com-
parison of HYOU1 expression in Purkinje cells from 1-month-old (B, C),
2-month-old (D, E) Sil12/2 and 1-month-old Sil12/2; Tg-Hyou1 (F, G)
mice. Camera exposure times are equal for images of the same channel.
Scale bar ¼ 50 mm.
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Analysis of 4-month-old Sil12/2; Tg-Hyou1 mice demon-
strated that overexpression of Hyou1 greatly suppressed the
ataxia and Purkinje cell death caused by Sil1-deficiency, as evi-
denced by immunostaining with an antibody against the Purkinje
cell marker, calbindin-D28 (Fig. 3A–C, and data not shown).
No obvious Purkinje cell loss was observed in adult Sil12/2;
Tg-Hyou1 mice, even those at 8 months of age, suggesting
that rescue of cell death is not transient (data not shown). To
determine if the transgene also blocks the development of ER
stress in Sil12/2 Purkinje cells, we analyzed the expression of
the ER stress-inducible proteins, BiP and CHOP (11,12).
Although BiP and CHOP were upregulated in a few Purkinje
cells in Sil12/2; Tg-Hyou1 mice, overall expression of BiP
and CHOP was lower than observed in Sil12/2 Purkinje cells,
suggesting that transgenic overexpression of Hyou1 decreases
ER stress caused by loss of SIL1 function (Fig. 3D–I and Sup-
plementary Material, Fig. S2). Consistent with the lack of
ER-stress marker upregulation, ubiquitylated protein inclusions
were not observed in Purkinje cells of 3-month-old or older
Sil12/2; Tg-Hyou1 mice, compared with Purkinje cells from 3
month old Sil12/2 mice [Supplementary Material, Fig. S2 and
data not shown; percentages of Purkinje cells harboring
inclusions: 4.7+2.2% (Sil12/2); 0% (Sil12/2; Tg-Hyou1)].

Decreased Hyou1 expression in Sil1-deficient background
aggravates ER stress and Purkinje cell death

Purkinje cells in the caudal lobules of the cerebellum neither
undergo neurodegeneration nor do they show signs of ER

stress in Sil1-deficient mice (6). Rather than projecting their
axons to form synapses on neurons of the deep cerebellar
nuclei like other Purkinje cells, these caudal Purkinje cells
synapse directly with the vestibular nuclei in the brainstem.
These differences in connectivity suggest that these neurons
may have metabolic differences, including differences in ER
protein load, which would make them less sensitive to loss
of Sil1 function. To test whether further reduction of BiP
nucleotide exchange factor activity may induce Purkinje cell
death in the caudal lobules, we crossed Sil12/2 mice to
mice heterozygous for a targeted allele of Hyou1 (17).

Sil12/2; Hyou1þ/2 mice have visible ataxia by 2 months
after birth. In agreement, treadmill tests demonstrated that
10-week-old Sil12/2; Hyou1þ/2 mice have an abnormally
wide stance that is characteristic of cerebellar dysfunction,
which is not apparent in Sil12/2 mice until 20 weeks
(Fig. 4A). By 20 weeks, Sil12/2; Hyou1þ/2 mice are extremely
ataxic and are unable to walk on the treadmill (data not shown).
In agreement with the earlier onset of ataxia in Sil12/2;
Hyou1þ/2 mice, Purkinje cells begin to show characteristics
of degenerating neurons between 4 and 6 weeks of age includ-
ing shrunken soma and dendrite retraction (Fig. 4B–E). By 2
months, most Purkinje cells have degenerated (Fig. 4F and
H). Most importantly, Purkinje cells in lobule X and caudal
lobule IX, which are resistant to loss of Sil1, also die in
Sil12/2; Hyou1þ/2 mice by 3 months of age (Fig. 4G and I).

Consistent with signs of neuron damage, elevated levels of
BiP and CHOP were observed in Purkinje cells of the rostral
lobules in Sil12/2; Hyou1þ/2 mice by 6 weeks after birth

Figure 3. Overexpression of HYOU1 in cerebella prevents Purkinje cell death and ER stress caused by loss of SIL1 function. (A–C) Immunohistochemistry
using antibody to calbindin-D28 was performed on cerebella from 4-month-old wild-type (A), Sil12/2 (B) and Sil12/2; Tg-Hyou1 (C) mice. Lobules are indi-
cated by Roman numerals (A). (D–I) Expression of Hyou1 transgene suppresses BiP upregulation caused by Sil1 deficiency. Cerebellar sections from
3-month-old wild-type (þ/þ; D, G), Sil12/2 (E, H) and Sil12/2; Tg-Hyou1 (F, I) mice were incubated with antibodies against BiP (D–F) and calbindin-D28
(Calb; G–I). Images of lobule II are shown. Camera exposure times are equal for images of the same channel. Scale bars ¼ 1 mm (A–C) and 100 mm (D–I).
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(Fig. 5 and Supplementary Material, Fig. S3). In addition, BiP
and CHOP were clearly upregulated in caudal Purkinje cells in
Sil12/2; Hyou1þ/2 mice at this time. In contrast, BiP or
CHOP expression was barely visible in Purkinje cells of
Sil12/2 littermates at this time. These results suggest that
the ER stress occurs earlier in Sil12/2; Hyou1þ/2 Purkinje
cells than in Sil12/2 neurons. In agreement with the earlier
onset of ER stress, ubiquitin-positive protein inclusions are
present in Purkinje cells of 6–8-week-old Sil12/2;
Hyou1þ/2 mice, but not until 10 weeks in Sil12/2 mice [Sup-
plementary Material, Fig. S3 and data not shown; percentages
of Purkinje cells harboring inclusions at 2 months of age: 0%
(Sil12/2); 10.7+ 7.1% (Sil12/2; Hyou1þ/2)].

Loss of Dnajc3 partially suppresses Sil1-deficiency
in Purkinje cells

The synergism of the phenotype caused by mutations in the
two exchange factors, SIL1 and HYOU1, indicates that dimin-
ished nucleotide exchange activity, which favors accumulation
of ADP-bound BiP, might be implicated in neurodegeneration.
Given its opposing role in promoting the ATPase activity of
BiP, we tested whether loss of DNAJC3 function, which
would be predicted to decrease the production of ATP-bound
BiP, might restore ER balance and ameliorate neurodegenera-
tion in Sil12/2 Purkinje cells. DNAJC3/p58IPK has been
recently identified as an ER DnaJ protein that promotes BiP
ATPase activity (30,31). Mice homozygous for a null allele
of Dnajc3 gene do not display brain pathology or ataxia
even when aged (Fig. 6A and B) (32). In contrast to Sil12/2

mice which develop ataxia between 3 and 4 months of age,
Sil12/2; Dnajc32/2 offspring did not exhibit obvious sign
of ataxia even when aged to 8 months (data not shown). In
agreement, gait analyses of 20-week-old mice demonstrated
that the rear stance width of Sil12/2; Dnajc32/2 mice were
significantly different from the stance width of Sil12/2

mice, but similar to that of wild-type and Dnajc32/2 mice
(Fig. 6A). Some signs of Purkinje cell degeneration start to
appear at 4 months of age in Sil12/2; Dnajc32/2 mice,
however, the majority of Purkinje cells still remain intact at
8 months of age (Fig. 6B–D). Although BiP is still upregu-
lated in Purkinje cells of 3-month-old Sil12/2; Dnajc32/2

mice relative to levels in wild-type neurons, its levels were
lower in most Purkinje cells than those observed in Sil12/2

neurons (Fig. 6E–J). This suggests that loss of Dnajc3 attenu-
ates the level of ER stress observed in Sil1-deficient neurons.
As expected, fewer Sil12/2; Dnajc32/2 Purkinje cells harbor
protein inclusions [Supplementary Material, Fig. S4 and data
not shown; percentages of Purkinje cells harboring inclusions
at 3 months of age: 3.5+ 0.6% (Sil12/2), 0.27+ 0.07%
(Sil12/2; Dnajc32/2)]. Taken together, these results indicate
that Dnajc3 deficiency partially rescues ER stress in Sil12/2

Purkinje cells and their subsequent degeneration.
Previously, CHOP has been reported to induce apoptosis

during prolonged ER stress (35). Deletion of Ddit3, the gene
encoding CHOP, has also been reported to reduce cell death
in multiple tissues in several disease mouse models associated
with ER stress including a neurotoxin-induced Parkinson

Figure 4. Deletion of one copy of Hyou1 accelerates Purkinje cell death
caused by loss of SIL1 function. (A) Rear stance (gait) on a treadmill test.
Mean values+SEM for the given genotypes and ages are shown. Numbers
of mice tested are noted inside the columns for each genotype. �, P , 0.05;
��, P , 0.001. (B, C, F, G) Calbindin-D28 immunohistochemistry of
4-week (B), 6-week (C), 8-week (F) or 12-week (G) old Sil12/2; Hyou1þ/2

mice. Lobules are indicated by Roman numerals (B). Scale bar ¼ 1 mm. (D,
E, H, I). Details of Purkinje cell death in lobule II (D, E, H), and lobule X
(I) at ages indicated are shown. Scale bar ¼ 100 mm.
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disease model, the demyelinating Charcot–Marie–Tooth 1B
mouse model, and a model of diabetes (36–38). We reasoned
that perhaps CHOP is also responsible for Purkinje cell death
in Sil1-deficient mice. Unexpectedly we found that Purkinje
cell expression of CHOP was very similar in Sil12/2 and
Dnajc32/2; Sil12/2 mice (Supplementary Material, Fig. S4).
Since most Purkinje cells are still alive after 8 months of age
in Dnajc32/2; Sil12/2 mice, this result suggested that
prolonged expression of CHOP may not be sufficient for the
induction of apoptosis in Purkinje cells. To further test this,
we bred Sil12/2 mice with Ddit32/2 mice. Like Sil12/2

mice, Sil12/2; Ddit32/2 mice still develop ataxia after 3
months after birth, with a nearly identical pattern of Purkinje
cell loss after 4 months of age to that observed in age-matched
Sil12/2 mice (Supplementary Material, Fig. S5). These results
suggest that CHOP is not required for ER stress-induced
Purkinje cell death in Sil12/2 mice.

Failure of ERAD may contribute to the accumulation of
ER associated protein inclusions

We next assessed the subcellular localization and protein com-
position of protein inclusions caused by loss of SIL1 function
in the presence of different genetic modifiers. In Sil12/2 Pur-
kinje cells, ubiquitylated protein inclusions are localized to ER
and the nucleus (6). Similarly, the majority of inclusions are
also localized to ER and the nucleus in Purkinje cells of
Sil12/2; Hyou1þ/2 or Sil12/2; Dnajc32/2 mice (Fig. 7).
Therefore, neither reduction of Hyou1 gene dosage, nor loss
of Dnajc3, changes the localization of the inclusions, but
rather changes the timing of protein aggregation.

Our previous studies demonstrated that protein inclusions in
Sil1-deficient Purkinje cells contain the ER chaperones BiP,
PDIA4/ERp72, HSP90B1/GRP94 and calreticulin (6). To
access protein content of the ubiquitylated inclusions in
Sil12/2; Hyou1þ/2 or Sil12/2; Dnajc32/2 Purkinje cells
we performed immunofluorescence with antibodies to ubiqui-
tin and ER chaperones. Like inclusions in Sil12/2 Purkinje
cells, BiP, ERp72, GRP94 and calreticulin were found in
protein inclusions in Purkinje cells of these mutant strains
(Fig. 7 and data not shown). In addition to ER chaperones,
we found that p97/VCP (valosin-containing protein), a cyto-
plasmic molecular chaperone, is also present in protein

inclusions when the inclusions start to appear (Fig. 7). VCP
is an AAA family protein that is essential for ERAD,
binding ubiquitylated proteins as they are translocated in a ret-
rograde fashion from the ER lumen (3). Therefore, our results
indicate that failure of ERAD may contribute to the formation
of protein inclusions when BiP nucleotide exchange factor
function is impaired.

DISCUSSION

Protein quality control in the ER plays critical roles in the
maturation of secreted and transmembrane proteins. With the
assistance of molecular chaperones located at both the cytoso-
lic and the lumenal faces of ER membrane, a delicate balance
is achieved between protein maturation and degradation. As a
result, only terminally misfolded proteins will be degraded,
whereas partially unfolded proteins are subjected to retention
in ER until being correctly folded. However, under certain
disease conditions, ER folding capacity may be reduced,
resulting in ER stress and accumulation of misfolded proteins.
The UPR can be activated to counteract ER stress, but pro-
longed ER stress often causes cell death (4,5).

BiP, an HSP70 family molecular chaperone, regulates
protein folding in the ER and the cellular response to ER
stress. Mutation of the Sil1 gene, which encodes a BiP nucleo-
tide exchange factor, causes ER stress in Purkinje cells. Our
results indicate that Sil1 and Hyou1, another known nucleotide
exchange factor for BiP, have partially redundant functions in
neurons. Overexpression of Hyou1 prevents ER stress and
degeneration of Sil12/2 Purkinje cells, whereas deletion of
one copy of Hyou1 accelerates death of Purkinje cells in the
Sil12/2 cerebellum. In addition, Purkinje cells that are nor-
mally resistant to loss of Sil1, exhibit signs of ER stress,
develop ubiquitin-positive protein inclusions, and die in
Sil12/2; Hyou1þ/2 mice. However, we did not observe any
other degenerating neurons in the brains of Sil12/2;
Hyou1þ/2 mice (other than the target-related death of
granule cells which occurs secondarily after Purkinje cell
death). Furthermore, although caudal Purkinje cells do die in
Sil12/2; Hyou1þ/2 mice, they are the last to mount an ER
stress response and degenerate. These findings suggest that
this subset of Purkinje cells is less sensitive to impaired BiP

Figure 5. Hyou1 heterozygosity aggravates ER stress in Sil12/2 Purkinje cells. BiP upregulation in lobule II (A–D) or lobule X (E–H) of cerebella from
6-week-old Sil12/2 (A, B, E, F) and Sil12/2; Hyou1þ/2 mice (C, D, G, H). Sections were subjected to immunostaining with antibodies against BiP and
calbindin-D28 (Calb). Camera exposure times are equal for images of the same channel. Scale bar ¼ 100 mm.
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chaperoning activity, and these neurons may experience lower
unfolded protein load. Although our results suggest that SIL1
and HYOU1 have partially redundant functions as BiP nucleo-
tide exchange factors in Purkinje cells, it is formally possible

that the synergism between the two reflects an indirect genetic
interaction. Moreover, although SIL1 and HYOU1 are two
alternative nucleotide exchange factors for BiP, only SIL1
has been associated with MSS (7,8,39). Since BiP has multiple
roles in ER lumen, which include assisting protein transloca-
tion and folding, sensing ER stress, and promoting ERAD,
perhaps SIL1 and HYOU1 perform BiP nucleotide exchange
factor function under different scenarios (2). Further studies
are necessary to elucidate BiP’s special requirements for
different nucleotide exchange factors and DNAJ proteins.

In contrast to the enhanced neurodegeneration observed in
Sil1-deficient Purkinje cells when Hyou1 dosage is reduced,
deletion of Dnajc3 delayed and attenuated Purkinje cell
degeneration in the Sil1 null mouse. Early studies suggested
DNAJC3 functions in the cytoplasm as a negative regulator
for the PERK (EIF2AK3)/eIF2a branch of the UPR pathway
or as a component of the preemptive ER quality control
(pQC) system (40–42). However, recent data demonstrates
that DNAJC3 is predominantly localized in the ER lumen
where it acts as a BiP co-chaperone (30,31). In agreement
with its role as a co-chaperone, Dnajc32/2 mice develop
mild diabetes. In addition, homozygous deletion of Dnajc3
aggravated the diabetic phenotype caused by the ‘Akita’
allele of insulin 2 (Ins2C96Y), which causes misfolding of the
insulin 2 protein in the ER (40). Like other DnaJ proteins,
DNAJC3 binds hydrophobic regions of unfolded protein sub-
strates, and transfers these substrates to ATP-bound BiP, acti-
vating the ATPase activity of BiP (30). The resulting
ADP-bound BiP would be predicted to bind the unfolded sub-
strate with high-affinity (2). Sil1-deficiency is predicted to
cause accumulation of the ADP-bound form of BiP, which
inefficiently releases substrate thus preventing completion of
the folding process. It is likely that deletion of Dnajc3
would slow down (but given the redundancy of DnaJ proteins,
not completely prevent) the conversion of ATP-bound BiP to
the ADP-bound form. This attenuation of BiP ATP hydrolysis
may allow time for HYOU1 to reduce the accumulation of
ADP-bound BiP and partially restore the ATP/ADP exchange
cycle and release of substrate, which in turn restores BiP’s
ability to buffer the unfolded and misfolded protein load in
the ER.

Null mutation of CHOP suppresses death of various cells
including pancreatic b-cells, dopaminergic neurons in substan-
tia nigra, and Schwann cells, in several disease models (36–
38,43). However, we observed persistent upregulation of
CHOP in Sil12/2; Dnajc32/2 Purkinje cells, although many
of these neurons survived in 1-year-old mice. Furthermore,
CHOP deletion had no apparent impact on the onset and pro-
gression of Purkinje cell death in the Sil1 mutant cerebellum.
These results suggest that unlike other cells, CHOP expression
may not be necessary or sufficient to induce cell death in
ER-stressed Purkinje cells (36–38). Perhaps Purkinje cells
are less sensitive to the effects of CHOP target genes. Alterna-
tively, CHOP expression in Purkinje cells may not activate the
full array of transcriptional target genes.

We observed that early stage protein inclusions in Sil12/2

Purkinje cells often contain VCP, an AAAþ family protein
involved in extracting ubiquitylated ERAD substrates from
ER, indicating that ERAD may be impaired in these
neurons. Since some ER lumen chaperones are also

Figure 6. Depletion of DNAJC3 activity partially suppresses Purkinje cell
death and ER stress caused by SIL1 mutation. (A) Rear stance (gait) on a
treadmill test. Mean values+SEM for the given genotypes at 20 weeks of
age are shown. Numbers of mice tested are noted inside the columns for
each genotype. �, P , 0.05. (B–D) Immunohistochemistry of cerebellar
sections from 4-month-old Dnajc32/2 (B), 4-month-old Sil12/2 (C) and
8-month-old Sil12/2; Dnajc32/2 (D) mice with an antibody against
calbindin-D28. Lobules are indicated by Roman numerals (B). (E–J)
Expression of BiP (E, G, I) and calbindin-D28 (Calb, F, H, J) in cerebellar Pur-
kinje cells of 3-month-old wild-type (þ/þ; E, F), Sil12/2 (G, H) and Sil12/2;
Dnajc32/2 (I, J) mice. Camera exposure times are equal for images of the
same channel. Scale bars ¼ 1 mm (B–D) and 100 mm (E–J).
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co-localized with the protein inclusions, our results suggest
that misfolded proteins cannot be efficiently released from
ER in the absence of SIL1 function in Purkinje cells, resulting
in accumulation and aggregation on the ER surface.

Although signs of UPR upregulation have been observed in
postmortem tissue from patients with a variety of neurodegen-
erative diseases including Alzheimer’s disease, Parkinson’s
disease, familial amyotrophic lateral sclerosis and polygluta-
mine expansion diseases, the nature of these studies makes it
difficult to ascertain whether ER stress is a cause of neuron
death or simply correlated with neuronal damage (44).
Recent reports suggest that ER stress may also underlie
motor neuron death in a mouse model of familial amyotrophic
lateral sclerosis (45,46). Here, we demonstrate a direct

relationship between the intensity of ER stress in Purkinje
cells and timing of cell death. These data provide further evi-
dence suggesting that ER stress is indeed likely the key
inducer of Purkinje cell death, and suggest that therapies
aimed at lowering ER stress may be beneficial for patients
with MSS or other neurodegenerative diseases.

MATERIAL AND METHODS

Mouse strains

The Sil12/2 mouse strain B6.Sil1Gt(pGT2TMpfa)1Slac has been
reported before and has been backcrossed onto the C57BL6/
J strain background for over 10 generations (6). These mice

Figure 7. Ubiquitin-positive protein inclusions in Purkinje cells. (A–I) ER and nuclear localization of protein inclusions. Cerebellar sections from 3-month-old
Sil12/2 (A–C), 2-month-old Sil12/2; Hyou1þ/2 (D–F) and 3-month-old Sil12/2; Dnajc32/2 (G–I) mice were immunostained with antibodies against BiP (A,
D, G) and ubiquitin (Ub; B, E, H). Merged images are shown in C, F, I. (J–L) ERAD chaperone p97/VCP partially co-localizes with ubiquitylated protein
inclusions in Sil12/2 Purkinje cells. Brain sections from 80-day-old Sil12/2 mice were subjected to immunohistochemistry with antibodies against p97/
VCP (J) and ubiquitin (Ub, K). Merged image is shown in L. Scale bar ¼ 5 mm.
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were genotyped using LZO136 (50-CACCGGATGCAGAA
AAGCCACAAT-30), LZO137 (50-GCAACTCGCCGCACA
TCTGAACTT-30), LZO487 (50-TCACCTCCTGCTCCTTCT
CATGC-30) and LZO488 (50-TGGATGTGAGAAGCCGT
GAGTGA-30). Hyou1tm1Oga, Dnajc3tm8663Wcl,
129S-Ddit3tm1Dron/J and Tg(CAG-Hyou1)Tam mice are all
maintained on a C57BL6/J background (17,32,33,47). The
Animal Care and Use Committee of The Jackson Laboratory
approved all animal protocols.

Gait analysis

Measurement of rear stance-width was made using a commer-
cially available treadmill system (Clever Sys Inc., Reston, VA,
USA) as described previously, using a treadmill speed of
20 cm/s (48). Briefly, the paws of the mice were digitally
recorded for a fixed number of frames whereas the animal
walks on clear treadmill. Videos were analyzed using interac-
tive analysis software, TreadscanTM 1.0 (Clever Sys, Inc.,
Reston, VA, USA) that precisely tracks the body and paw pos-
itions of the mice during locomotion. To measure rear stance
width, the perpendicular distance between the right and left
rear paws (measured at the midpoint pixel coordinate) was
determined while the paw is in contact with the treadmill,
i.e. during the stance phase. The speed of locomotion for ana-
lyzed strides was not different between groups (P . 0.05). An
average of 19 strides were used to calculate the rear stance
width for each mouse. Values were statistically analyzed by
paired t-tests. A Bonferroni procedure (49) was used to
adjust multiple comparisons.

Histology and immunohistochemistry

For determination of Purkinje cell numbers, neurons were
counted from cresyl violet-stained serial sagittal sections
from three mice of each genotypes as described previously
(50). To count the numbers of Purkinje cells containing ubi-
quitylated protein inclusions, six matched parasagittal sections
within 500 mm from the midline were used and three mice
were counted for each genotype. The percentages of Purkinje
cells containing inclusions were calculated as ratios of Pur-
kinje cells with inclusions and total numbers of Purkinje
cells positive for Calbindin-D28 immunofluoresence. For
immunostaining of brain sections, mice were intracardially
perfused with 4% paraformaldehyde and brains embedded in
paraffin for sagittal sectioning. For Calbindin D-28 colori-
metric staining and p97/VCP immunofluorescence, mice
were perfused with acetic acid/methanol (1:3). After antigen
retrieval, sections were incubated with antibodies against
BiP/GRP78, DDIT3/CHOP, calbindin D-28, ubiquitin and
GRP94 as previously described (6). Mouse antibody to p97/
VCP (Novus Biologicals) and purified rabbit antiserum to
HYOU1 was a used at 1:200 and 1:500 dilutions, respectively
(51). Brains from at least three mice of each genotype and age
tested were analyzed. Immunofluorescence images were
obtained with either conventional epifluorescent microscopy,
or with confocal microscopy for high magnification, and iden-
tical exposure times were used for imaging slides from differ-
ent genotypes and ages in a given experiment. Images were

processed using the same parameters of linear transformations
(brightness and contrast only) in Photoshop.

Western blot analysis

For western blot analyses, 20 mg of cerebellar extract was sub-
jected to SDS-acrylamide gel electrophoresis and transferred
to nitrocellulose according to standard protocols (52). Blots
were probed with an antibody to HYOU1 (1:2000) and
signal was detected by the ECL method (Amersham). The
results were analyzed with ImageJ (53).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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