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Key points

� The first indirect (I) corticospinal volley from stimulation of the motor cortex consists of two
parts: one that originates from infragranular layer 5 and a subsequent part with a delay of
0.6 ms to which supragranular layers contribute.

� Non-invasive probing of these two parts was performed in humans using a refined electro-
physiological method involving transcranial magnetic stimulation and peripheral nerve
stimulation.

� Activity modulation of these two parts during a sensorimotor discrimination task was
consistent with previous results in monkeys obtained with laminar recordings.

Abstract Circuits in superficial and deep layers play distinct roles in cortical computation, but
current methods to study them in humans are limited. Here, we developed a novel approach for
non-invasive assessment of layer-specific activity in the human motor cortex. We first conducted
brain slice and in vivo experiments on monkey motor cortex to investigate the output timing from
layer 5 (including corticospinal neurons) following extracellular stimulation. Neuron responses
contained cyclical waves. The first wave was composed of two parts: the earliest part originated only
from stimulation of layer 5; after 0.6 ms, stimuli to superficial layers 2/3 could also contribute.
In healthy humans we then assessed different parts of the first corticospinal volley elicited by
transcranial magnetic stimulation (TMS), by interacting TMS with stimulation of the median
nerve generating an H-reflex. By adjusting the delay between stimuli, we could assess the earliest
volley evoked by TMS, and the part 0.6 ms later. Measurements were made while subjects
performed a visuo-motor discrimination task, which has been previously shown in monkey to
modulate superficial motor cortical cells selectively depending on task difficulty. We showed a
similar selective modulation of the later part of the TMS volley, as expected if this part of the volley
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is sensitive to superficial cortical excitability. We conclude that it is possible to segregate different
cortical circuits which may refer to different motor cortex layers in humans, by exploiting small
time differences in the corticospinal volleys evoked by non-invasive stimulation.

(Received 15 February 2019; accepted after revision 1 May 2019; first published online 2 May 2019)
Corresponding author S. Baker: Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Newcastle
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Introduction

Many modern approaches in the neurosciences aim
to understand the brain at the level of functional
microcircuits (Arber & Costa, 2018), which are sets
of interconnected neurons defined by their anatomical,
morphological and genetic characteristics. In the primary
motor cortex (M1), circuits located in different layers
appear to play different roles, reflecting their distinct
anatomical connections. Circuits within supragranular
layers appear crucial for processing task-relevant sensory
information (Thura & Cisek, 2014, 2016) and for learning
(Peters et al. 2014, 2017b; Chen et al. 2015). By contrast,
activity in infragranular layer 5 is correlated with the
prevention and production of movement (Ebbesen &
Brecht, 2017; Peters et al. 2017a; Soteropoulos, 2018).
The study of M1 laminar circuits typically requires
experiments in animal preparations. Previous attempts to
resolve different cortical layers have used high-resolution
functional imaging in humans (Huber et al. 2017), but this
requires measurements close to the maximal achievable
spatial resolution and is governed by the sluggish BOLD
response, making the method unsuitable for measuring
rapid task-related changes.

In this paper, we report the development of an
electrophysiological approach offering the possibility of
segregating different motor cortex circuits and layers in
human M1. We begin with in vitro recordings from
slices of M1 from macaque monkeys, a species with
very similar circuits for neural control of movement to
humans. These single cell recordings revealed a small
temporal shift in the trans-synaptic activation of layer
5 neurons following stimulation of deep versus super-
ficial layers. We then confirmed in vivo that this activation
time difference involves layer 5 corticospinal neurons; the
resultant descending corticospinal volley was thus subtly
delayed following stimulation of superficial compared to
deep layers. The time scales (0.6 ms) of this difference
are so small as to have no functional relevance, but the
observation opens the intriguing possibility of inferring
excitability changes of different circuits with non-invasive
methods in humans.

In humans, various methods exist to measure
descending corticospinal volleys induced by transcranial
magnetic stimulation (TMS) over M1. Some patient
groups have epidural electrodes implanted over the

cervical spinal cord. In these patients, it is possible to
record corticospinal volleys directly (Di Lazzaro et al. 2008,
2018), but the invasive nature of the method makes it
unsuitable for more general usage in healthy volunteers. A
non-invasive alternative is to interact a conditioning TMS
pulse with a peripheral nerve test stimulus (PNS) which
elicits a Hoffman (H)-reflex (Nielsen et al. 1993; Taube
et al. 2011, 2015; Leukel et al. 2012, 2015; Niemann et al.
2018; Wiegel et al. 2018). By changing the time interval
between conditioning and test stimulus, a characteristic
repetitive pattern of facilitation of the H-reflex is observed
reflecting the repetitive descending volleys generated
by the conditioning stimulus. This approach has the
advantage of assessing the descending volleys with a very
high temporal resolution, as the time interval between
stimuli can be set with arbitrary precision. In the pre-
sent study, we investigated whether this non-invasive
approach may offer the possibility of probing different
M1 microcircuits. Two different parts of the first cortico-
spinal volley evoked by TMS were assessed: the earliest part
of the first volley, and that 0.6 ms later. We hypothesized
that the earliest part of the first volley originates from
trans-synaptic activation of fast conducting corticospinal
output neurons in layer 5b by nearby cells within the same
lamina (Nielsen et al. 1993, 1995; Nielsen & Petersen, 1995;
Di Lazzaro et al. 2012, 2018). According to our results in
the macaque monkey, 0.6 ms later there is the opportunity
for superficial layer neurons to contribute to the activation
of the corticospinal cells.

To test this hypothesis, we chose a task paradigm
which has previously been demonstrated to modulate
M1 in a layer-selective manner. Chandrasekaran et al.
(2017) recorded from neurons across different layers in
monkey, while the animals were required to discriminate
and respond to a visual stimulus displayed with varying
levels of stimulus difficulty. Early during discrimination,
neurons in superficial layers were more active for stimuli
of low compared to high difficulty. By contrast, activity
in lower layers (including layer 5) was unaffected by
stimulus difficulty at this time. We therefore predicted
that in humans performing this discrimination task, the
earliest part of the first corticospinal volley evoked by TMS
would be unaffected by stimulus difficulty, whereas the
part 0.6 ms later would be greater when the subject was
presented with an easy compared to a difficult stimulus.
Our results are in good agreement with these predictions,
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and thus our approach potentially offers the opportunity
for non-invasive layer-specific assessment of M1 function
in human subjects.

Methods

Monkey in vitro experiments

All experimental procedures were carried out under the
authority of personal and project licenses issued by the UK
Home Office, were approved by the Animal Welfare and
Ethical Review Board of Newcastle University (reference
no. 423/15) and conform to regulations described in
Grundy (2015). In vitro results were obtained from
further analysis of layer 5 neurons obtained from a pre-
vious published study (Xu & Baker, 2018), in which full
details of methods are given. Twelve female and six male
rhesus macaques (Macaca mulatta) aged between 4 and 9
years were used. Animals were obtained from the Health
Protection Agency UK and MRC Centre for Macaques UK.
Food and water were given ad libitum until 12 h prior to
surgery, when animals were fasted. All animal experiments
were terminal.

Animals were initially sedated with intramuscular
injection of ketamine (10 mg/kg) before general
anaesthesia induction with either I.V. propofol (4 mg/kg)
or inhaled sevoflurane (2.5% inhaled in O2). Animals
were subsequently ventilated with 2.5–3.5% sevoflurane
or desflurane in pure oxygen. Doses of I.V. buprenorphine
(20 μg/kg) and meloxicam (0.3 mg/kg) were then given
before head fixation into a stereotaxic frame. A continuous
infusion of I.V. methylprednisolone (5.4 mg/kg/h) was
given to prevent cerebral oedema and I.V. Hartman’s
solution (10 ml/kg/h) to maintain circulating volume. The
animal’s pulse oximetry, heart rate, and blood pressure
were continuously monitored in order to gauge depth of
anaesthesia. Core and peripheral temperatures were also
measured, and body temperature maintained with both
a heat blanket and a warm air circulation system. Tissue
from the precentral gyrus of the primary motor cortex was
removed via bilateral craniotomies after dousing exposed
cortex with ice cold sucrose Ringer (concentrations in
mM: 252 sucrose, 3 KCl, 1.25 NaH2PO4, 1 MgSO4, 1.2
CaCl2, 10 glucose, 24 NaHCO3, temperature 0–4°C). The
medial border of the block of tissue was the sagittal fissure.
The lateral border was approximately 2 cm lateral to the
sagittal fissure. The anterior border was approximately
1 cm anterior to the central sulcus. The posterior border
was just posterior to the central sulcus to include a
small part of the primary somatosensory cortex for the
purpose of orienting the brain slice. Brain tissue was
sliced parasagitally at 450 μm thickness using a VF-300
vibrating blade microtome (Precisionary Instruments
LLC, Greenville, NC, USA) in ice cold sucrose Ringer
solution. Slices were then transferred to and held in
an interface chamber at room temperature containing

artificial cerebrospinal fluid (ACSF, same constituents
as sucrose Ringer solution apart from sucrose being
replaced by 126 mM NaCl) bubbled with 95% O2 and
5% CO2. After M1 tissue removal animals were killed by
transcardiac perfusion with ice-cold Ringer solution and
exsanguinated through the right atrium, as part of tissue
collection for other unrelated experiments.

In vitro recordings were carried out in an interface
recording chamber (model BSC-ZT, Harvard Apparatus,
Cambridge, UK) whilst superperfused with ACSF. Intra-
cellular recording electrodes were pulled from borosilicate
glass capillaries on a model P-1000 Flaming–Brown
puller (Sutter Instruments, Novato, CA, USA). Electrodes
were filled with 2 M potassium acetate and 2% biocytin
(Sigma-Aldrich, Gillingham, UK) to achieve impedance
between 100 and 150 M�. After recording, cells were
filled with biocytin using repetitive current pulses
(alternating 0.5 s-long positive and negative square
wave current injections at 0.2 nA for at least 20 min)
and subsequently fixed in 4% paraformaldehyde and
stained using a standard Vectastain ABC kit (Vector
Laboratories, Peterborough, UK). Voltage recordings
and current injections were carried out using a BA-03X
bridge amplifier (NPI Electronic, Tamm, Germany) with
×10 gain and low-pass filter set to 10 kHz. Capacitance
transients were compensated for and bridge balance was
checked and corrected regularly. Custom-made software
(Collins & Baker, 2014) was used to move recording
electrodes mounted on piezoelectric motors (NanoPZ
Ultra-High resolution actuator, Newport Corporation,
Irvine, CA, USA). The software also monitored electrode
voltage readings and injected currents through the
recording electrodes (0.2–1 nA, 1 s in duration) via
the digital and analog input–output functions of USB
National Instruments data-acquisition device (USB-6356
X-series, National Instruments, Austin, TX, USA). Data
were captured using a Micro1401 interface (digitized
at 25 kHz) and Spike2 software (Cambridge Electronic
Design, Cambridge, UK).

Extracellular stimulation was delivered using a 16
parallel shank electrode (100 μm between contacts, A1x16
series from NeuroNexus, Ann Arboru, MI, USA) placed
on the slice such that the row of shanks was perpendicular
to the slice cortical surface and the first contact rested on
the cortical surface. Stimuli delivered through the most
superficial four contacts were deemed to be to layers 1 and
2 and those delivered through the 10th to 13th contacts
were deemed to be to layer 5 according to prior histological
studies (Matelli et al. 1985; Shepherd, 1998; Lacroix et al.
2004). Recording electrodes were targeted to layer 5 by
aligning with the 12th contact of the stimulating electrode
away from the cortical surface (and placed approximately
0.5 mm lateral to it). Biphasic stimuli (0.1 ms per phase,
20–100 μA, cathode leading, no time separation between
phases) were delivered with an interstimulus interval
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of 100 ms through each contact in a pseudo-random
order using a custom-made relay circuit and an iso-
lated stimulator (model 2100, A-M Systems, Ontario,
Canada). Stimulus strength was typically increased from
20 μA (up to 100 μA) until either excitatory postsynaptic
potentials (EPSPs) and/or action potentials were elicited
by stimulating at least one electrode contact. Typically,
100–200 stimuli were delivered per stimulus site.

Monkey in vivo experiments

One monkey was used in an in vivo experiment under
anaesthesia to verify and extend the in vitro results.
Anaesthesia induction was carried out with intramuscular
ketamine (10 mg/kg) followed by I.V. propofol (4 mg/kg).
Maintenance anaesthesia was established with sevoflurane
(2.5% inhaled in O2) and alfentanil (0.2 μg/kg/min,
I.V. infusion). Methylprednisolone (5.4 mg/kg/h I.V.)
was given to prevent cerebral oedema. The animal was
intubated and ventilated via a tracheostomy and a bilateral
pneumothorax made to improve recording stability.
Once all surgery was completed (see below), anaesthesia
switched to I.V. infusions of ketamine (6 mg/kg/h) and
midazolam (0.5 mg/kg/h), and the inhaled sevoflurane
was gradually reduced to zero, as we have found that
this regimen better preserves neuronal excitability. Neuro-
muscular block was achieved via atracurium (1.5 mg/kg
loading dose followed by 0.75 mg/kg/h I.V.). Fluid
balance was maintained by infusion of Hartman’s solution
(volume to bring total infusion rate to 10 ml/kg/h
including drug solutions).

Continuous monitoring was carried out on the
following parameters: heart rate, respiratory rate, end
tidal CO2, inspired/expired sevoflurane, pulse oximetry,
rectal and skin temperature, central arterial and venous
blood pressure (via cannulae introduced through the neck
vessels), and urinary output via a urinary catheter.

A craniotomy was made over the right M1 and a
laminectomy was made to expose the left first thoracic
spinal segment. A single shank 16-contact electrode
(150 μm between contacts, model A1x16 from Neuro-
Nexus) was inserted into M1 in the precentral gyrus
(18 mm lateral to midline in the hand representation)
perpendicular to the cortical surface such that the most
superficial contact was flush with the cortical surface.
Stimulus current (0.2 ms, biphasic) was delivered through
each contact in a pseudorandom order using a custom
relay circuit and isolated stimulator, as described above.
Five blocks of stimulus trials were carried out, each
with at least 100 trials per stimulus contact. Each block
used a different stimulus intensity (2, 2.5, 3, 4 or 5 mA
in a randomized order) with an interstimulus interval
of 100 ms. Spinal volleys were recorded using a pair
of ball electrodes placed over the dorsum of the left

spinal cord using an NL824 amplifier (gain 10k, bandpass
30 Hz to 10 kHz) and a Neurolog amplifier/filter system
(Digitimer Ltd, Welwyn Garden City, UK). Data were
captured at 25 kHz sampling rate using a Micro1401 inter-
face and Spike2 software (Cambridge Electronic Design,
Cambridge, UK).

At the end of the experiment the animal was given an
overdose of I.V. propofol, and killed by exanguination and
transcardiac perfusion with paraformaldehyde.

Data analysis and statistics

For the in vitro recordings, neuronal input resistance and
membrane time constants were measured and found to be
in accordance with those previously published for primate
and non-primate pyramidal neurons (Connors et al. 1982;
McCormick et al. 1985; Nowak et al. 2003; Chang &
Luebke, 2007; Luebke & Chang, 2007). Input resistance
was calculated from averaged small voltage deflections
(<10 mV) to injections of hyperpolarizing current (1 s
duration). Membrane time constants were calculated by
measuring the gradient of the logarithm of the initial part
of this voltage deflection.

Spikes were discriminated using Spike2 software and
spike times were aligned by the peak of the intracellular
action potential. In neurons where no action potentials
were evoked, the size of the EPSP was measured by taking
the difference between the peak mean voltage response
evoked by a given stimulus contact and the mean voltage
near the end of the trial (70 ms post stimulus). In neurons
where action potentials were evoked, peri-stimulus time
histograms (PSTHs) were compiled from spike times in
the first 10 ms post-stimulus and the bin heights were
normalized by dividing by the number of trials. These
normalized PSTHs were averaged across all available cells.

To reveal high-frequency oscillatory patterns in these
population PSTHs more clearly, they were digitally band-
pass filtered (400–2000 Hz), and the latency of the first
peak in the filtered PSTH measured. We needed to test
whether the latency of this first peak was significantly
different between responses to superficial and deep
stimuli. This was achieved by a Monte Carlo analysis as
follows. The individual cell PSTHs from superficial and
deep stimulation were randomly shuffled and arbitrarily
assigned to two groups. These were averaged and high pass
filtered as above, the first peak latency measured, and the
difference between the latency in each group calculated.
This was repeated 1000 times; the peak latency difference
from the original data was compared with the distribution
of the shuffled data, and used to estimate a P value for the
Monte Carlo test.

All analysis was carried out using custom scripts written
in the MATLAB environment (The MathWorks Inc.,
Natick, MA, USA).
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Human experiments

Subjects. 27 healthy participants with no contra-
indications to TMS (Rossini et al. 2015) participated in two
experiments (experiment 1: n = 13: 6 males and 7 females;
24 ± 2.4 years of age; experiment 2: n = 14: 9 males and
5 females; 25 ± 2 years of age). Five individuals (4 males,
1 female) participated in both experiments. All sub-
jects were right-handed according to the Edinburgh
Questionnaire (Oldfield, 1971) and gave written informed
consent to the procedures; the study was performed in
accordance with the Declaration of Helsinki (latest revision
in Fortaleza, Brazil) and approved by the local ethics
committee in Freiburg (approval number 423/15).

Electromyography. Surface electromyogram (EMG)
(EISA; Pfitec Biomedical Systems, Endingen, Germany)
was recorded from the right flexor carpi radialis (FCR)
and extensor carpi radialis muscles using bipolar
surface electrodes (Blue Sensor P; Ambu, Bad Nauheim,
Germany) placed 2 cm apart over the muscle belly. A
ground electrode was placed at the caput ulnae. Impedance
was below 5 k�. EMG signals were pre-amplified (×100),
further amplified (×2), bandpass filtered (10–1300 Hz)
and sampled at 10 kHz.

Peripheral nerve stimulation. H-reflexes were elicited
with a constant current stimulator (DS7A; Digitimer)
by stimulating the median nerve approximately 1–3 cm
proximal to the elbow joint. Stimuli consisted of square
wave pulses of 0.2 ms duration. The electrode arrangement
was bipolar: a graphite-coated rubber pad of 5 cm × 5 cm
was used as anode and was fixed proximal to the olecranon.
A custom-made round pad (1 cm diameter) was used as
the cathode and moved stepwise to detect the optimum
position for eliciting H-reflexes in the FCR. The optimum
was defined as the site where low stimulation intensity
(5–30 mA, monophasic pulse) elicited a consistent FCR
H-reflex with minimal M-wave, and no H-reflex in the
antagonist extensor carpi radialis. After the optimum site
was found, a self-adhesive cathode (Blue Sensor P; Ambu)
was fixed at this site.

TMS. Single-pulse TMS was applied over the contralateral
M1 wrist area using a Magstim 2002 stimulator with
a BiStim unit (Magstim, Whitland, UK) and a 50 mm
figure-of-eight coil. The handle of the coil was mounted
on a stand that was positioned on top of the subject chair
(Manfrotto Magic Arm; Lino Manfrotto, Cassola, Italy).
TMS navigation (Brainsight 2; Rogue Research, Montreal,
Canada) was used to monitor the position of the coil
relative to the scalp to ensure that the set coil position
remained the same throughout all stimuli.

The optimum site for evoking motor-evoked potentials
(MEPs) was determined by a mapping procedure. The coil

was held tangentially on the scalp at an angle of �45° to
the mid-sagittal plane with the handle pointing laterally
and posteriorly (inducing a PA directed current).

Resting motor threshold (RMT) was determined as
the minimum stimulator output (as a percentage of the
maximum stimulator output) required to evoke MEPs of
�50 μV in at least three out of five consecutive trials
applied at the same intensity (Rossini et al. 1994).

Conditioning of the H-reflex by TMS. The objective of
the conditioning technique is to promote coincidence
at the spinal level of TMS-evoked corticospinal volleys
with afferent volleys elicited by PNS (Fig. 1A). As shown
schematically in Fig. 1B, the median nerve stimulus alone
recruits a fraction of the motoneuron pool (cells shaded
in green), generating an H-reflex. If TMS is delivered so
that the fastest descending corticospinal volley (blue arrow
in Fig. 1B) reaches the motoneurons at the same time as
the afferent input, more motoneurons may be discharged
(‘0 ms’ in Fig. 1B), leading to a larger, facilitated H-reflex.
Less negative delay between TMS and PNS allows more
and more of the corticospinal volleys (orange arrow in
Fig. 1B) to influence the H-reflex (see example in Fig. 1C
and D). The consecutive arrival of corticospinal volleys at
the spinal level leads to temporal summation, resulting in
a progressive increase of the H-reflex.

For all measurements, electrical stimulation intensity
was adjusted to evoke H-reflexes of 15–25% of the
maximum M-wave (Mmax) (Crone et al. 1990), on the
upward part of the H-reflex/M-wave recruitment curve.
TMS was applied with an intensity of 120% of RMT,
according to a recent study in which early indirect
(I) volleys but no direct (D) waves could be evoked
with intensities slightly above threshold using a 50-mm
figure-of-eight coil (Niemann et al. 2018). Stimuli were
given at a repetition period of 5.5 s, to avoid post-activation
depression of the H-reflex (Crone & Nielsen, 1989).

A two-step procedure (rough followed by fine search)
was performed to determine the time of coincident arrival
of the fastest conducted peripheral and descending volleys
(Fig. 1E, F). In the first step (rough search, Fig. 1E),
delays between TMS and PNS were tested from −5 to
−2 ms in steps of 0.5 ms, with 15 trials being recorded
at each delay; in addition, 15 trials were recorded with
PNS delivered alone. Note that negative delays indicate
that TMS was triggered after PNS. Stimuli were delivered
in 15 blocks. Each block consisted of eight trials testing all
delays and an unconditioned H-reflex in a randomized
order. Paired Student’s t tests were used to determine
the first delay (starting with the most negative delay)
where the conditioned reflex was significantly different
from the unconditioned reflex (P < 0.05, uncorrected for
multiple comparisons); this time was taken as our initial
estimate of the earliest facilitation of the H-reflex. In order
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Figure 1. Conditioning of the FCR H-reflex with TMS
A, schematic representation of the experimental set-up. B, principle of conditioning an H-reflex evoked by PNS
with TMS. TMS and PNS were applied together, so that TMS-triggered volleys and the afferent volleys from PNS
coincided at the spinal motoneurons. This leads to an increased recruitment of spinal motoneurons (middle part)
and a corresponding increase in the size of the electromyographic response in the flexor carpi radialis (FCR) H-reflex
(lower part). We tested three different delays between TMS and PNS. At EFD −0.5 ms, the fastest conducting
volley from TMS will not yet have arrived at spinal motoneurons at the time when the fastest conducting afferent
volley from PNS arrives (blue and orange arrow). At EFD 0 ms, the fastest conducting corticospinal volley arrive
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to be accepted as the earliest facilitation, we required
that the two subsequent less negative delays were also
significantly higher than the unconditioned H-reflexes.
This criterion improved the robustness of the selection
procedure, making it unlikely that the earliest facilitation
was wrongly determined because of outliers caused by
natural variability of the electrophysiological responses.

In the second step (fine search) of the selection
procedure, we tested again different delays between TMS
and PNS in steps of 0.1 ms in the time interval between
the early facilitation of the first step and 1 ms later (11
steps in total) (Fig. 1F). The same analysis was performed
as in the first step of the procedure, allowing the earliest
facilitation to be determined with 0.1 ms precision. The
earliest facilitation resulting from the second analysis was
designated the early facilitation delay (EFD) 0 ms. The
distribution of the delays corresponding to EFD 0 ms
across our subject population is illustrated in Fig. 1G.

Dot motion discrimination task. The task was a variant
of the classical random dot motion discrimination task
(Britten et al. 1992). Subjects reported the net direction of
motion (left or right) in a random dot kinematogram by
making wrist flexion and extension movements. The visual
stimuli were generated using MATLAB and presented with
75 Hz frame rate on a 21-inch LCD monitor with 800×600
pixels resolution positioned 40 cm away from the subject.
We used the same algorithm and parameters as in a pre-
vious study in monkeys (Peixoto et al. 2018). The subjects
used a robotic manipulandum, which tracked the wrist
position and plotted it as a cursor on a computer screen,
and made their choices by placing the cursor in a left or
right target that was displayed on the screen. A trial began
with the wrist in the neutral position, corresponding to the
cursor in the screen centre between the two yellow targets; a
visual fixation spot was superimposed on the cursor. After
a fixation time of 800 ms, the random dot kinematogram
was displayed for 1 s. After a waiting period (between 400
and 900 ms), the fixation dot disappeared and the sub-
jects moved to indicate their decision. Upon completion
of the movement, the correct target turned green, and the
incorrect one red (Fig. 2A). The subjects were rewarded
if they hit the correct target with a 1 eurocent payment,

paid as a total sum earnt at the end of the experiment. The
robotic manipulandum then pushed the wrist back to the
neutral position, and a new trial started 1.5–2 s later.

The random dot kinematograms were presented with
two levels of difficulty, referring to the motion coherence
of the visual cue. The difficulties were continually adjusted
to yield 55% correct responses with the difficult (low
coherence) cues, and 80% with easy (high coherence) cues.

Electrophysiological probing during the dot motion
discrimination task. In two experiments, probing was
performed at the onset of the visual cue and 400 ms
afterwards (experiment 1), and 400 ms after visual cue
onset and 300 ms after the onset of the waiting period
(experiment 2, Fig. 2B). Testing was split across two
separate experiments in this way to avoid subject fatigue, as
if conducted in a single session, completing the dot motion
discrimination task alone would have taken more than 2 h.
We recorded conditioned H-reflexes at time intervals EFD
0 ms and EFD +0.6 ms and also recorded unconditioned
test H-reflexes in both experiments. Stimuli were applied
in every trial. The delay between subsequent stimuli
was always 5.5 s to avoid changes in post-activation
depression of the H-reflex (Crone & Nielsen, 1989). All
conditions were inter-mixed and pseudo-randomized.
Twenty trials were recorded for each condition.

Data analysis and statistics. Root-mean-squared (RMS)
values of the initial 0.5 ms from H-reflex onset were
calculated from the unrectified FCR EMG as described
in Wiegel et al. (2018). The H-reflex onset was visually
determined in each subject based on the plot of super-
imposed test H-reflexes from all trials. Before calculating
RMS values, in each trial we corrected for offsets of the
baseline EMG by setting the value at H-reflex onset to
zero. The reaction time was defined as the time inter-
val between the fixation point offset and an increase
(>4 standard deviations above the baseline mean) in the
rectified EMG activity of the responding muscle. Mean
background EMG activity of 50 ms prior stimulation
was calculated in every trial. Trials in which background
EMG activity exceeded the mean pre-stimulation EMG
activity of all trials recorded during the initial delay

at the same time at the spinal motoneurons as the fastest conducting afferent volley from PNS. At EFD +0.6 ms,
subsequent volleys (orange arrow) arrive at the same time as the fastest afferent volley. C, mean traces of the
unconditioned H-reflex and of the conditioned H-reflex at intervals EFD −0.5 ms, EFD 0 ms and EFD +0.6 ms. The
yellow rectangle illustrates the 0.5 ms time window from H-reflex onset used to quantify the H-reflex facilitation.
D, expanded view showing this time window in more detail. E, EFD 0 ms was determined by a two-step procedure
in each individual: we first tested delays between the application of TMS and the application of PNS from −5 ms
to −2 ms, in steps of 0.5 ms (negative delays indicate that TMS was triggered after PNS). EFD 0 ms in this example
was at a delay of −3.5 ms; conditioned H-reflexes at this delay and at the subsequent delays were higher than
unconditioned test H-reflexes. The grey rectangle illustrates the time window tested in the second step of the
procedure, shown in F. F, delays from −4.5 ms to −3.5 ms were again tested to denote EFD 0 ms in 0.1 ms
steps (∗P < 0.05). G, the histogram illustrates the distribution of delays across all subjects between TMS and PNS
indicating EFD 0 ms. [Colour figure can be viewed at wileyonlinelibrary.com]
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identification procedure (resting condition) by more than
2 standard deviations were excluded from further analyses,
ensuring that the results cannot be biased by even slight
modulations of the background EMG. This procedure
resulted in the exclusion of 6.6 ± 10.3 trials per subject
(mean ± SD across all subjects). One subject (experiment
2) was excluded due to increased pre-stimulation EMG
activity in all trials.

H-reflex facilitation was calculated as the percentage
change of conditioned H-reflexes compared to unconditi-
oned test H-reflexes (conditioned H-reflex/uncond-
itioned test H-reflex × 100%). Cue-related H-reflex
modulation for each stimulation timing (dot onset, 400 ms
after dot onset, 300 ms after delay onset) and delay
condition (EFD 0 ms and EFD 0.6 ms) was calculated as
the percentage change of H-reflex facilitation for easy cue
trials compared to difficult cue trials (H-reflex facilitation
easy cue/H-reflex facilitation difficult cue × 100%).

All datasets showed normality and homogeneity, tested
by the Kolmogorov–Smirnov test and the Levene’s test,
respectively. Unpaired Student’s t tests were performed
when comparing results of experiment 1 and experiment 2;
paired Student’s t tests were performed for all other a priori
and post hoc analyses. For conditioned H-reflexes recorded
during the dot motion discrimination task, pre-planned
comparisons were performed for flexion and extension
cues, for experiment 1 and experiment 2 separately. The
level of significance was set to P < 0.05 for all tests and
adjusted for multiple comparisons with the Bonferroni
correction. Note that raw P-values are presented, and
statements about the significance are made in the
text.

Mean values and standard error of the mean (SEM)
are reported. Data were statistically analysed with SPSS
Statistics 24.0 software (IBM Corp., Armonk, NY, USA).

Results

Stimulation of superficial and deep cortical layers in
monkey elicits small time differences in activation of
deep layer neurons

Of 56 cells recorded from layer 5, four were filled with
biocytin and successfully reconstructed histologically. All
of these neurons were pyramidal cells (Fig. 3A); as
their electrophysiological properties matched the other
(unreconstructed) cells in our dataset, we concluded that
the vast majority of our recordings were likely to be from
pyramidal neurons.

Stimulation with the 16-contact probe electrode
sometimes generated a subthreshold compound EPSP
in the recorded layer 5 cell, and on other occasions the
EPSP exceeded spike threshold and generated one or more
action potentials; examples of these two possibilities are
illustrated in Fig. 3B. We analysed cells with or without
spike responses separately.

Figure 3C illustrates a grand average of all intracellular
recordings with a subthreshold EPSP following cortical
stimulation either nearby in layer 5 or in the more super-
ficial layer 2/3 (32 cells). This average makes it clear that
there was a small temporal shift (2.4 ms) in the EPSP
peak between the two stimulation sites. The first derivative
of the averaged EPSP waveform (Fig. 3C inset) clearly
shows that layer 5 stimuli produce EPSPs with a higher
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Figure 2. Dot motion discrimination task
A, the display presented to the subject during task performance. B, the sequence of events in the dot motion
discrimination task, showing the three points at which stimulation was delivered (dotted lines). [Colour figure can
be viewed at wileyonlinelibrary.com]
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rise rate. Additionally, layer 1 and 2 stimuli produce
EPSPs with an inflexion point at �6 ms, suggesting a
later second excitatory input from another set of synapses.
Figure 3D presents measures of these responses made
from individual cells. While there was no difference in the
EPSP amplitude elicited by superficial and deep stimuli,
the EPSP peak time was significantly later for superficial
stimulation (difference between mean peaks is 2.0 ms,
P < 0.05, paired t test, Fig. 3D). This implies that EPSPs
generated from superficial stimuli (that likely activate
apical dendrites) will reach spiking threshold at the soma
later than those from the deep stimuli (which likely activate
basal dendrites). This corresponds to differing EPSP rise
times elicited from synapses at different distances to the
soma (Rall, 1967; Sjostrom & Hausser, 2006). The faster

rise time of EPSPs evoked from layer 5 is better illustrated
with the first time derivative of the averaged EPSP wave-
form (inset Fig. 3C). The EPSP onset is superimposed onto
the capacitive decay of the stimulus artefact which pre-
cludes precise measurements of onset times. However, the
EPSPs evoked from layer 5 probably have a slightly earlier
onset latency, and therefore the observed initial inflexion
appears higher and earlier. There is also a later inflexion
point at �5 ms in the layer 1 and 2 evoked EPSP suggesting
a later excitatory input from another set of synapses.

Our recordings also included cells which responded to
the cortical microstimulation with spikes (24 cells); this
allowed us to check whether the temporal shift in synaptic
potentials shown in Fig. 3D translated into an altered
timing of evoked spikes (i.e. if superficial stimuli evoke
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C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



2984 A. Kurz and others J Physiol 597.12

spikes that occur later than deep stimuli). Figure 4A pre-
sents averaged normalized peri-stimulus time histograms,
compiled separately for superficial and deep stimuli, for
all spiking cells. The PSTH bin heights in Fig. 4A were
calculated by dividing by the number of stimuli for each
neuron, then averaging across all neurons. Pooling across
all cells mimics the population response from M1 to a
single stimulus that activates either the superficial or the
deep cortical layers. It is apparent that the first response
peak also occurs slightly later for superficial stimulation.
The quasi-population response from layer 5 in Fig. 4A
will generate downstream spinal volleys in vivo. In order
to simulate what the spinal field potential might look like
from this population response, the PSTHs were digitally
bandpass filtered in Fig. 4B to simulate the filtering carried
out by tissue (Telenczuk et al. 2011). These traces show a
striking similarity to the timing of repetitive descending
corticospinal volleys (I volleys) reported in both humans
and animals following electrical and magnetic stimulation
of the cortex (Patton & Amassian, 1954; Burke et al.
1993; Edgley et al. 1997; Ziemann & Rothwell, 2000; Di
Lazzaro & Rothwell, 2014; Cirillo & Perez, 2015). However,
importantly for the current study, the first peak (open
arrows in Fig. 4B) was 0.6 ms later following superficial
compared to deep stimulation (P < 0.001, Monte Carlo
test, see Methods). By contrast, the second peak (filled
arrow, Fig. 4B) was largely overlapping in time between
the two stimulation locations.

Time-shifted activation from deep and superficial
layer stimulation can also be observed in descending
corticospinal volleys in vivo

Our in vitro recordings provide fine-grain access to single
cell discharge and its underlying synaptic mechanisms. As

all cells were in layer 5, it is reasonable to expect that at least
some of them projected to the corticospinal tract, but it was
not possible to identify projection targets with certainty.
We therefore checked in an anesthetized intact monkey
whether the small time shift in activation which we
observed in vitro translated to a time shift in the descending
corticospinal volley. Figure 5A presents a recording from
the dorsal surface of the first segment of the thoracic spinal
cord following cortical stimulation through a silicon probe
with 16 equally spaced contacts. A direct (D) volley was
elicited at short latency after the stimulus, with similar
timing from the deepest and shallowest stimulation site.
This presumably reflects some direct stimulus spread to the
large, highly excitable corticospinal cells, including from
the most superficial stimuli. It is well known that even
electrical stimulation to the cortical surface can generate a
D volley (Patton & Amassian, 1953). By contrast, the first
indirect volley (I1) was clearly later from the most super-
ficial stimulation. Latency measurements at all depths
are presented in Fig. 5B and C. While the D volley
latency remained relatively constant independent of depth
(P = 0.77, one-way ANOVA), the I1 volley appeared
around 0.5 ms later for the most superficial stimulation
compared to deep stimuli (P < 0.01, one-way ANOVA),
which closely matches the time disparity of 0.6 ms between
superficial and deep stimulus-evoked spikes in the in vitro
experiment. The cortical layers were estimated according
to depth of electrode contact using previously published
measurements of cortical layer depths for the macaque
M1 (Shepherd, 1998). There was no significant difference
in latencies across the five different stimulus intensities
tested (2–5 mA) for all stimulus depths (P = 0.17, one-way
ANOVA). The interval between D and I1 waves is around
1.4–2 ms, which closely matches the value of �1.5 ms
reported previously (Kernell & Chien-Ping, 1967).
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In humans, only the later part of the first
corticospinal volley is modulated by cue difficulty
during visual perception

In the dot motion discrimination task, the random
dot kinematograms were presented with two levels of
difficulty, referring to the motion coherence of the visual
cue. The difficulties were continually adjusted to yield 55%
correct responses with the difficult (low coherence) cues,
and 80% with easy (high coherence). As subjects slowly
became better at making the discrimination, motion
coherence was continuously reduced throughout a testing
session (see example in Fig. 6A). Coherence was decreased
by 7 ± 2% and 7 ± 4% for easy and difficult cues,
respectively (mean ± SD across all subjects).

In both experiments, there were significant differences
in response accuracy (experiment 1: P < 0.01; experiment
2: P < 0.01) and motion coherence (experiment 1:
P < 0.01; experiment 2: P < 0.01) between easy and
difficult cues (Fig. 6B and C). The reaction time, measured
from the fixation point offset to the start of the EMG
activity in FCR for flexion movements, was significantly
shorter for trials with easy cues (experiment 1: 173 ±
11 ms; experiment 2: 218 ± 20 ms) compared to trials
with difficult cues (experiment 1: 226 ± 13 ms, P < 0.01;
experiment 2: 247 ± 17 ms, P < 0.01; Fig. 6D and E).
Comparing behavioural results between experiment 1 and
experiment 2 yielded no significant difference in response
accuracy (easy cue: P = 0.2; difficult cue: P = 0.32), motion
coherence (easy cue: P = 0.21; difficult cue: P = 0.37) or
reaction time (easy cue: P = 0.08; difficult cue: P = 0.33).

Using single unit recordings in monkeys,
Chandrasekaran et al. (2017) demonstrated that the
firing rate of neurons in superficial layers during early
discrimination of a visual cue was dependent on the
stimulus difficulty, with lower difficulty stimuli associated
with higher neuronal activity. According to these results
in monkeys, we expected to find a similar modulation

during early discrimination for the late part of the I1
volley (EFD +0.6 ms) in humans, i.e. higher conditioned
H-reflexes with low stimulus difficulty compared to
those with high stimulus difficulty. No such changes were
expected for the early part of the I1 volley (EFD 0 ms),
which should depend on activity of deep layer neurons.

To test this hypothesis, we probed H-reflex facilitation
at the onset of the visual cue (tested in experiment 1),
at 400 ms after cue onset (corresponding to the early
discrimination phase according to Chandrasekaran et al.
(2017), tested in experiment 1 and experiment 2), and at
300 ms after delay onset (tested in experiment 2).

Figure 7 shows the results. From all recorded trials, only
trials were analysed where the cues instructed a flexion
movement, because H-reflexes in the flexor muscle FCR
were measured (Fig. 7A). Probing at visual cue onset
yielded no differences in H-reflex facilitation between easy
and difficult cues, for both EFD 0 ms and EFD +0.6 ms
(EFD 0 ms: P = 0.68; EFD +0.6 ms: P = 0.61; left plot
of Fig. 7A). At 400 ms after cue onset (middle two plots
of Fig. 7A), for EFD 0 ms there was again no difference
in H-reflex facilitation between easy and difficult cues
(experiment 1: P = 0.56; experiment 2: P = 0.15).
However, at EFD +0.6 ms, there was a robust difference,
with greater H-reflex facilitation with easy compared to
difficult cues (P < 0.01 in both experiments 1 and 2). At
300 ms after delay onset (right plot in Fig. 7A), there were
no cue-related differences for EFD +0.6 ms (P = 0.25).
Differences for EFD 0 ms (P = 0.026) were not significant
after post hoc (Bonferroni) correction.

In both experiment 1 and experiment 2, cue difficulty
significantly influenced conditioned H-reflexes at EFD
+0.6 ms when probing took place 400 ms after visual
cue onset; the conditioned H-reflexes were larger for
easy than for difficult cues. We wondered whether the
conditioned H-reflex was also influenced by the movement
outcome (correctness of the choice). Therefore, all trials
with cues instructing a flexion movement were selected.
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Correct (flexion) responses were compared with incorrect
(extension) responses. This analysis yielded no effect of
movement outcome (experiment 1: P = 0.24; experiment
2: P = 0.13).

Finally, we analysed trials where the visual cues
instructed an extension movement (Fig. 7B). This was
of interest, because H-reflex recordings were made from
the FCR muscle. Analysing responses for instructed
extension movements therefore allowed us to assess
whether differences were widespread, or only seen if the
recorded muscle was cued to move. In fact, for cued
extension movements there were no differences in H-reflex
facilitation between easy and difficult cues for both 0 ms
and +0.6 ms EFD, at each of the tested task epochs

(experiment 1 cue onset: EFD 0 ms, P = 0.69; EFD
+0.6 ms, P = 0.04; experiment 1 400 ms after cue onset:
EFD 0 ms, P = 0.61; EFD +0.6 ms, P = 0.72; experiment
2 400 ms after the cue onset: EFD 0 ms, P = 0.93; EFD
+0.6 ms, P = 0.26; experiment 2 300 ms after the delay
onset: EFD 0 ms, P = 0.41; EFD +0.6 ms, P = 0.61). Thus,
the reflex modulations with cue difficulty appear to be
effector specific.

Discussion

In this study, we used direct recordings in monkey
to propose that non-selective stimulation of the cortex
generates a first indirect (I1) descending corticospinal
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volley composed of two distinct parts. The earliest part
of the I1 volley appears to originate from stimulation of
layer 5 neurons, which transynaptically activate adjacent
corticospinal neurons via their basal proximal dendrites
that reside in layer 5. Around 0.6 ms later, further cortico-
spinal neurons can be recruited into the I1 volley by inputs
from superficial dendrites in layers 2/3; the additional
delay reflecting the slower EPSP rise time probably reflects
the more distal location of these synaptic inputs on the
corticospinal cell dendritic tree. However previous TMS
and TES studies have not shown a bifid I1, which implies
that the latencies of action potentials in the I1 spinal volley
do not have a bimodal distribution. This is supported by

the fact that in our monkey in vivo study in Fig. 5C, the I1
latency is not bimodal but has a gradual transition from
long to short as stimulus depth increases. TMS is likely to
activate all layers simultaneously and will therefore elicit
action potentials at all of the latencies show in Fig. 5C. This
could be due to the synapse-to-soma distances overlapping
in the apical and basal dendritic trees.

Taken alone, this observation is of purely academic
interest. Such small differences in the latency of activation
after a highly artificial stimulus likely have no relevance
for motor performance. However, when joined with a
non-invasive approach in humans, these observations
open the possibility of measuring excitability changes
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of different cortical circuits and potentially dissociating
layers in a straightforward way.

TMS in humans is likely to activate all layers in the
motor cortex simultaneously (Di Lazzaro et al. 2008,
2012; Di Lazzaro & Ziemann, 2013). According to our
in vitro findings, it might be expected that the I1 volley
from TMS should display a double-peaked appearance,
because stimulation at different layers excites cortico-
spinal neurons with different delays. However, previous
TMS and TES studies do not show bifid I1 waveforms
(Edgley et al. 1990; Di Lazzaro et al. 2008, 2018). In fact,
our in vivo monkey results revealed a gradual, not step,
transition from long to short I1 latency as the stimulus
depth increased (Fig. 5C). As TMS excites a wide area of
cortex, the precise conduction times to the spinal cord will
differ depending on the exact location of the cortical site
activated; this dispersion will also act to smooth out any
notch in the I1 waveform. It is thus perhaps unsurprising
that reported I1 volleys following non-invasive stimuli
show a single peak.

In the human experiments H-reflexes were used to
dissect the early and late parts of the I1 (EFD 0 ms and EFD
+0.6 ms). In the early phase of visual discrimination, we
found a selective and cue-related modulation of the late
part. This is in line with previous monkey experiments and
supports the idea that excitability changes of early and late
parts of I1 likely reflect different cortical circuits.

It is important to point out our modifications to the
method of PNS conditioning with TMS (Nielsen et al.
1993; Niemann et al. 2018) which allowed us to confine
our conclusions to cortical circuits and exclude any spinal
interference with high certainty. Firstly, we calculated
RMS values of the first 0.5 ms of the EMG response
from H-reflex onset. This ensured that our measurements
included only the earliest, monosynaptic component of
the reflex (Burke, 2016). Secondly, we used small time
intervals between TMS and median nerve stimuli (0.1 ms
steps) in order to determine the earliest facilitation of
the H-reflex (EFD 0 ms) with high temporal precision.
Thirdly, the ‘slowest’ conducting corticospinal volley we
tested was only 0.6 ms delayed with respect to the fastest
conducting volley. Taking all three modifications together,
it is therefore highly unlikely that the excitability changes
are mediated by spinal rather than cortical effects. Spinal
circuits which could be affected by the earliest arriving
corticospinal volley and influence spinal motoneuron
responses at later corticospinal inputs would need more
time (at least 1 ms) (Pierrot-Deseilligny & Burke, 2005).

It is well known that the level of excitability of the motor
cortex can influence the size of the descending volley
elicited by TMS (Hess et al. 1986; Baker et al. 1995; Di
Lazzaro et al. 1998, 2003). For indirect volleys, theoretically
this could occur at two locations. Firstly, the TMS must
excite an interposed interneuron directly. Assuming the
stimulus activates this cell close to the cell body, the

probability that an action potential is elicited within it will
depend on the level of membrane depolarization, which
will reflect the current balance of excitatory and inhibitory
synaptic drive. Secondly, the interneuron must excite
a corticospinal cell indirectly (trans-synaptically). The
synaptic currents will sum at the initial segment; whether
they are sufficient to trigger an action potential will depend
on the level of excitability of the corticospinal cell. The
corticospinal volley amplitude must therefore reflect the
excitability of both the interneurons and corticospinal
neurons involved in I volley generation. Importantly, both
the early and late part of the I1 volley must pass through
the corticospinal neuron; changes in corticospinal cell
excitability would therefore be expected to modulate both
parts equally. Faced with a differential modulation of the
early and late parts of I1 (EFD 0 ms and EFD +0.6 ms)
in the dot motion discrimination task in humans, we
conclude that this reflects a different modulation of the
interneurons mediating each part.

Functional imaging can deliver sufficient spatial
resolution to resolve deep and superficial layers in
human motor cortex (Huber et al. 2017). However,
such high-resolution imaging is expensive and technically
challenging. It cannot be easily applied to a wide range of
motor tasks, due to the requirements for imaging stability
and non-magnetic manipulanda. In addition, functional
imaging relies on the relatively sluggish BOLD response,
which severely curtails temporal resolution. Many motor
processes occur on a time scale unobservable with such
methods: one example is the complex computation carried
out in just 400 ms after dot onset in our task. The
electrophysiological method described here can deliver
measurements with very high temporal specificity relative
to task performance.

Although our results point to the possibility
of segregating layers in human M1 with H-reflex
conditioning by TMS, this interpretation needs to be
treated with caution. Only direct measures in humans
could unambiguously demonstrate that this is really
possible. The currents induced by suprathreshold TMS are
assumed to activate fast conducting corticospinal neurons
in layer 5b trans-synaptically; the earliest facilitation (EFD
0 ms) likely reflects this activation (Rothwell, 1997; Di
Lazzaro et al. 2018). Further, TMS at suprathreshold
intensity is assumed to excite neurons at different cortical
layers simultaneously (Di Lazzaro et al. 2008, 2012; Di
Lazzaro & Ziemann, 2013). This means that human and
monkey experiments should be similar with regards to
the anatomical origin and the timings of effects from the
stimulations. However, depending on the placement of the
coil with respect to the scalp and the coil orientation, it
may be that structures other than fast conducting cortico-
spinal neurons in M1 could have been targeted, such as
axonal connections from the premotor to the motor cortex
(Hamada et al. 2014; Volz et al. 2015). A contribution
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from such connections cannot be excluded. However, the
close agreement between the data in monkey indicating a
0.6 ms time shift and the significant differences during task
performance found in humans when we modify stimulus
timing by this small value strongly suggests that our
non-invasive method is capable of resolving layer-specific
differences in excitability.

A further limitation of this technique is that not all
possible results will admit unambiguous interpretations.
Our primate data suggest that the earliest part of I1 can
only arise from stimulation of deep (layer 5) cells. By
contrast, later parts of I1 could have a contribution from
both deep and superficial layers. In circumstances where
we see changes in the early part of I1, it will thus be hard
to interpret changes in the late part reliably. This was seen
in our results for stimuli given 300 ms after delay onset
(Fig. 7A right plot), when there was a difficulty-related
modulation in the early part of I1 (EFD 0 ms) and a
non-significant similar modulation in the late part of I1
(EFD 0.6 ms). Unlike EFD 0 ms, the mechanistic inter-
pretation of EFD 0.6 would be difficult. However, when
we see no consistent changes in the early part of I1 (EFD
0 ms) but changes in later parts (EFD +0.6 ms), we believe
that this provides good evidence that distinct cortical
circuits have modulated their excitability. In support
of this conclusion, our results were as expected from
direct recordings of neurons in monkeys performing a
discrimination task (Chandrasekaran et al. 2017; Peixoto
et al. 2018).

One disadvantage of H-reflex conditioning with TMS
is that measurements can be very time-consuming. It
is necessary to find and maintain an H-reflex in the
FCR, locate the TMS hot spot, determine the threshold,
and scan multiple ranges of conditioning intervals to
locate EFD 0 ms prior to gathering the recordings of
primary interest. This ‘preparation’ can easily take 2 h.
It might be thought feasible to make the initial set-up
measurements on one day, and then perform the main
experiment after a break; this could extend the approach
to a wider range of subjects, e.g. to patients with movement
or cognitive disorders. However, a problem that prevents
such separate measurements is that any change in how
the peripheral nerve is stimulated can affect the H-reflex
latency and thus the delay between TMS and PNS defining
EFD 0 ms. We experienced this when subjects changed
their arm position in the middle of the experiment. The
slight modification of arm placement after a break could
sometimes change the H-reflex latency by 0.1–0.2 ms,
necessitating re-measurement of EFD 0 ms.

Although we have used this approach to study the upper
limb, there is no reason why it could not also be deployed
to investigate layer-specific contributions to the control of
the leg; indeed, this would be practically easier, as eliciting
H-reflexes in lower limb muscles such as soleus is generally
straightforward. However, future investigations testing

lower limb muscles with this method need to consider
possible pitfalls concerning the possibility of evoking D
volleys and not only I volleys around RMT (Houlden et al.
1999), and the reduced number of fast conducting mono-
synaptic projections in the lower leg compared to arm and
hand muscles (Lemon, 2008).

In conclusion, using data from both monkey and
human experiments we show that it is possible to measure
excitability changes of different cortical circuits which
likely reflect different cortical layers during a complex
cognitive motor task, with high temporal resolution. We
expect that this will open up new avenues for research
into cognitive, motor and sensory processing in humans,
both in health and in pathological states where changes in
layer-specific cortical circuits have been implicated, such
as autism (Fang et al. 2014) and cortical dysplasia (Thom
et al. 2005).
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