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Inflammatory mediators and inflammatory cells in the inflammatory microenvironment promote the transformation of normal
cells to cancer cells in the early stage of cancer, promote the growth and development of cancer cells, and induce tumor immune
escape. The monomeric active ingredient -elemene is extracted from the traditional Chinese medicine Curcuma wenyujin and
has been proven to have good anti-inflammatory and antitumor activities in clinical applications for more than 20 years in
China. Recent studies have found that this traditional Chinese medicine plays a vital role in macrophage infiltration and M2
polarization, as well as in regulating immune disorders, and it even regulates the transcription factors NF-x¥B and STAT3 to
alter inflammation, tumorigenesis, and development. In addition, S-elemene regulates not only different inflammatory factors
(such as TNF-qa, IEN, TGF-f, and IL-6/10) but also oxidative stress in vivo and in vitro. The excellent anti-inflammatory and
antitumor effects of -elemene and its ability to alter the inflammatory microenvironment of tumors have been gradually
elaborated. Although the study of monomeric active ingredients in traditional Chinese medicines is insufficient in terms of
quality and quantity, the pharmacological effects of more active ingredients of traditional Chinese medicines will be revealed

after 3-elemene.

1. Introduction

Curcuma wenyujin, a kind of traditional Chinese medicine
that has been planted and used for thousands of years,
belongs to Zingiberaceae and has an oval, long oval, or spin-
dle shape [1]. The good cholagogic action and analgesic and
bactericidal effects of Curcuma wenyujin have been recorded
in the Compendium of Materia Medica [2, 3]. Current studies
have shown that it also has antioxidant, antiproliferation, and
antitumor effects [4, 5].

Elemene, a sesquiterpene compound extracted from
Curcuma wenyujin, is composed of two essential elements,
carbon and hydrogen [6]. The chemical formula of elemene
is C,sH,,, and the molecular mass is 204.355. f3-Elemene
(1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane) is the main
active ingredient among all three monomer forms of ele-

mene: a, 3, and & [7] (Figure 1). It is a noncytotoxic class
II antineoplastic drug that was developed in China with a
new structure and has many outstanding advantages, such
as broad antineoplastic effects, exact curative effects, low
toxicity and side effects, and low resistance [6, 8, 9].
Research has found that f3-elemene has direct antitumor
effects, and its antitumor mechanisms include inducing apo-
ptosis [10], arresting the cell cycle [11], inhibiting angiogen-
esis and cell migration [12], enhancing the immunogenicity
of tumor cells [13], promoting erythrocyte immune function,
and inhibiting cancer stem cell-like effects [14]. S-Elemene
not only has direct antitumor effects but also reverses multi-
drug resistance by reducing mitochondrial membrane poten-
tial, activating the intracellular redox system, and inducing
apoptosis of tumor cells [10, 15]. 3-Elemene increases che-
mosensitivity by inducing tumor cell apoptosis and increases
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FIGurk 1: (a) Curcuma wenyujin, a green plant of family Zingiberaceae, is the source of elemene. (b) The traditional Chinese medicine
turmeric, taken from the roots of Curcuma wenyujin. (c) The molecular structure of effective monomer components of 3-elemene.

the sensitivity to radiotherapy by inhibiting the P21-activated
kinasel (PAK1) signaling pathway [16, 17], inducing DNA
damage, and restraining DNA damage repair [18].

Currently, -elemene and its derivatives have been uti-
lized to treat various tumors including lung cancer [10], liver
cancer [11], brain cancer [19], breast cancer [20], ovarian
cancer [21], stomach cancer [16], prostate cancer, and other
tissues for over 20 years [22]. Their practical and effective
medicinal value has been confirmed gradually.

A total of 120 patients with refractory/relapsed acute
myeloid leukemia (AML) were treated with HAA (homo-
harringtonine, arabinosylcytosine, and aclacinomycin)
combined with f-elemene. The total effective rate of the
B-elemene emulsion plus HAA group was 80.8%, which
was significantly better than that of the control group
(52.9%). This result indicated that 3-elemene had a syner-
gistic effect on acute myelogenous leukemia [23].

In 2019, a meta-analysis of 15 randomized controlled tri-
als (RCTs) in accordance with PRISMA guidelines recruited
1410 patients with stage III/IV non-small-cell lung cancer
(NSCLC) and found that elemene improved clinical efficacy,
enhanced cellular immune function, and reduced the toxicity
of chemotherapy. It was confirmed that -elemene was a safe
and effective adjuvant therapy for platinum-based chemo-
therapy in stage III/IV NSCLC patients [24]. In 2018, Wang
et al. pooled 46 controlled clinical trials with a total of 2992
patients. The results showed that f-elemene significantly
increased the overall efficacy of controlling malignant pleural
effusion without increasing the incidence of chest pain and
fever [25].

In addition, Xu et al. [9], Wang et al. [26], Jiang et al. [27],
and Xu et al. [28] also confirmed the efficacy and safety of
B-elemene in clinical use over the past 20 years.

2. The Inflammatory Microenvironment
and Tumorigenesis

2.1. Overview of Inflammation and Tumors. There is an
abnormal relationship between the tumor parenchyma and

its surrounding microenvironment [29]. The interstitial cells
of the tumor are composed of two major types: cellular com-
ponents and noncellular components [30]. The interstitium
of the tumor participates in the interaction of the tumor
parenchyma to determine the biological behavior of the
tumor [31]. When a pathogen enters the host, it causes
damage to the organism and activates the immune system
[32, 33]. Moreover, a large number of inflammatory cells,
such as tumor-related macrophages and dendritic cells,
infiltrate and activate [34]. These cells also promote each
other with tumor-related inflammatory cells, which results
in a variety of tumorigenic factors in the tumor microen-
vironment [35]. These changes promote the growth of
tumor parenchyma and the formation of the tumor inter-
stitial blood vessels and destroy the immune system of the
body, resulting in the transformation of the interstitium
and the metastasis of tumors [31, 36, 37].

2.2. Changes in the Tumor Inflammatory Environment.
When the body is infected or repairs wounds, it permanently
activates and chemotactically accumulates a large number of
white blood cells (such as macrophages, neutrophils, lym-
phocytes, and dendritic cells) at the site of injury by releasing
cytokines/chemokines (such as interleukin-6/10 (IL-6/10)
[38, 39] and tumor necrosis factor-a (TNF-«)) [40], growth
factors (transforming growth factor- (TGF-p)) [41], matrix
metalloproteinases (MMPs) [42], vascular endothelial
growth factor (VEGF) [43], reactive oxygen species (ROS)
metabolites, and other substances [44]. These inflammatory
cytokines not only recruit inflammatory cells to amplify
inflammation at the tumor site [45] but also form a new envi-
ronment [46], leading to the destruction and atrophy of nor-
mal tissues [47] and promoting mass production of the
tumor matrix and blood vessels [48]. These factors play an
essential role in the occurrence and development of tumors
and promote the growth and metastasis of tumors. Inflam-
mation leads to cell transformation, and the tumor cells
and their surrounding interstitium secrete cytokines and
chemical activators, forming a positive cycle between cancer
and inflammation, which is conducive to the communication
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between tumors and the host stroma, thus accelerating the
progression of tumors [49, 50].

TNF-« is a special and multifunctional cytokine that
plays a key role in immune regulation, the inflammatory
response, and defense [51]. On the one hand, a high concen-
tration of TNF-« destroys tumor blood vessels, causes cell
necrosis, and also stimulates tumor-specific T cells, which
have an antitumor effect. In vitro studies have shown that
TNEF-a directly kills various human tumor cells, such as mel-
anoma, breast cancer, and cervical cancer cells [52]. On the
other hand, the role of TNF-« in chronic inflammation and
its tumor-promoting effect have also been proven [53]. In
human tumors such as bladder cancer, prostate cancer, colon
cancer, leukemia, and lymphoma, elevated TNF-« levels have
been detected [54]. In the tumor microenvironment, TNF-«
is secreted by macrophages and tumor cells. Continuous
TNF-a stimulation promotes tumor angiogenesis, DNA
damage, tumor epithelial-mesenchymal transition (EMT),
and other mechanisms to promote tumor survival and
metastasis [55], and its mechanism may be related to the acti-
vation of the nuclear factor kappa-B (NF-«B) signaling path-
way [56]. TNF-a treatment of tumor cells that were then
intravenously injected into nude mice significantly enhanced
their tumorigenicity [57]; at 9 days after tail vein injection of
cancer cells in nude mice, LPS stimulation not only signifi-
cantly improved the level of TNF-a but also increased the
number of lung metastases [58]. These studies show that
TNF-a plays an important role in the inflammatory environ-
ment and tumor microenvironment. Moreover, we hypothe-
size that the tumor-promoting or anticancer response of
TNF-« in the tumor microenvironment depends not only
on the local concentration but also on its expression source
in the tumor.

As an inflammatory cytokine, IL-6 is mainly derived
from stromal cells such as macrophages and fibroblasts
around the tumor, and it is not secreted or is rarely secreted
by the tumor cells themselves [59, 60]. IL-6, similar to
TNF-a, promotes the transformation of noncancer cells
into cancer stem cells [61] while regulating the biological
activity of tumor cells, leading to cell proliferation or dis-
tant metastasis [62]. In addition, IL-6 promotes tumor
development by enhancing the T cell-mediated immune-
inflammatory response, regulating gene expression, and
inhibiting apoptosis in the cell through the JAK-STAT sig-
naling pathway [63, 64].

2.3. Macrophages and Tumors. There are many inflammatory
cells involved in the initiation, development, and metastasis
of cancer, of which tumor-associated macrophages (TAM:s)
account for the largest proportion (50% of inflammatory
cells) and play the most significant role [65, 66]. Macro-
phages secrete a variety of cytokines and cytotoxic mediators,
including activator of transcription 3 (STAT3), colony-
stimulating factor receptors (CSF-1), ROS, and MMP [67],
which promote not only abnormal proliferation and apopto-
sis of early cells but also the formation and development of
tumors and accelerate the infiltration and metastasis of
tumor cells [68]. Studies have shown that M1 macrophages
are the main type in the early stage of inflammation, and

the M2-type macrophages are mainly found in the late stage
[69]. In addition, M1 macrophages can transform into M2
macrophages, which have immunosuppressive functions to
accelerate the malignant transformation of benign tumors
[70]. Therefore, the previous understanding of the functions
of M1 and M2 macrophages is not altogether true, but we can
be sure that macrophages are crucial in the transformation of
the tumor microenvironment and tumorigenesis.

2.4. Immune Function and Tumors. The immune characteris-
tics of the tumor microenvironment have been listed as one
of the ten characteristics of the tumor [71]. Studies have
shown that the tumor is locally infiltrated with a variety of
immune cell subsets. Macrophages, mast cells, dendritic cells
(DCs), and myeloid-derived suppressor cells (MDSCs) are
distributed in the central area and around the tumor. NK
cells are mainly located in the tumor matrix. Immature
DCs are mainly located in the central area of the tumor, while
mature DCs and B cells are mostly found in secondary lym-
phoid tissue. In addition, CD8" T cells are mainly distributed
at the edge of the tumor [72, 73].

The body’s normal immune system is able to recognize
and remove foreign cells or cancerous cells [74]. However,
in the inflammatory microenvironment, dynamic changes
in inflammation and immune abnormalities develop, which
mainly manifest as inflammation-induced immunosuppres-
sion and immune escape [75]. Tumor cells also secrete a vari-
ety of immunosuppressive factors. The inhibitory effects of
TGF-B1 and IL-10 are relatively strong [76, 77]. Immuno-
suppressive factors activate inflammatory mediators, such
as macrophages, mast cells, and natural killer (NK) cells, to
secrete IL-10, IL-6, and TNF-« [78]. The vicious cycle is
formed in the inflammatory microenvironment, which
induces tumor immunosuppression to some extent.

2.5. Oxidative Stress and Tumors. Infection or chronic
inflammation contributes to the occurrence of cancer mainly
by leukocytes and immune cells in inflammatory lesions,
which are activated by inflammation and produce ROS and
reactive nitrogen species (RNS) [79, 80]. ROS cause damage
by oxidizing DNA (including point mutations, deletions,
and gene reassortment), disrupting DNA repair, and post-
translationally modifying cancer proteins [81]. DNA damage
is increased by the secretion of MIF from macrophages and T
lymphocytes [82]. When cells are exposed to persistent oxi-
dative stress caused by chronic inflammation, the RNS nitric
oxide (NO) induces gene mutation and inactivates key
enzymes for DNA damage repair, thereby preventing or
impairing DNA repair and exacerbating DNA damage [83,
84]. NO is an important inflammatory mediator that is asso-
ciated with chronic inflammation and cancer and is pro-
duced endogenously through different isomerizations of
nitric oxide synthase (NOS) during arginine metabolism
[85, 86]. During inflammation, macrophages and epithelial
cells induce iNOS expression. In the inflammatory microen-
vironment, local iNOS activity is induced for a short time,
resulting in increased NO of more than 10 times the basal
level [87]. The local increase in NO is easily oxidized by
ROS to produce nitrogen peroxide (NOO), which is a RNS.
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Fi1GURk 2: Effect of inflammatory factors and inflammatory cells on tumor development in the inflammatory microenvironment.

In the clinic, many precancerous lesions and cancers have
elevated levels of iNOS and NO [85]. The endogenous NO
produced by tumor cells and tumor vascular endothelial
cells plays an important role in promoting tumor angio-
genesis and ensuring the maximum blood supply of
tumors. Tumor angiogenesis is the basis of tumor growth
and metastasis [88].

In addition, there is a dual relationship between NO and
tumors: an appropriate concentration of NO promotes
tumor growth, while a high concentration of NO is not
conducive to tumor growth and has an antitumor effect
[89]. In general, the concentration of NO that has an anti-
tumor effect is 10-100 times higher than the concentration
that promotes tumor growth [90]. On the one hand, NO
mediates the tumor-killing effect of macrophages. NO is
more effective than TNF-a in mediating the killing of
tumor cells by activated macrophages [91]. On the other
hand, NO directly kills tumor cells: (1) NO acts on mito-
chondrial oxidoreductase, and tumor cells die due to energy
metabolism disorders [92]; (2) NO combines with superox-
ide anion in cells to generate nitrogen/oxygen free radicals,
resulting in genotoxicity and DNA damage [93]; (3) NO
inhibits cell proliferation by inhibiting protein synthesis
[94]; (4) NO activates the expression of p53 and induces
apoptosis of tumor cells [94]; and (5) NO inhibits platelet
aggregation and tumor metastasis [95]. In addition, a large
number of studies have found that NO is also widely
involved in the chemotherapy and immunotherapy of
tumors, interacting with chemotherapy drugs and cytokines
and affecting the efficacy of drugs against tumors [96].

2.6. Tumor-Promoting Pathways. The transcription factors
NF-«B and STATS3 are involved in inflammation and tumor-
igenesis and regulate cell survival, growth, and proliferation
[97]. Many cytokines involved in the inflammatory response,
such as TNF and IL-1, are involved in the activation of the
NF-xB signaling pathway [88]. Activation of the STAT3
pathway also primarily depends on the corresponding inflam-
matory cytokines, such as IL-6, IL-10, and VEGF [98, 99].

There are some crossovers and interactions between these
two signaling pathways. After activating these two signaling
pathways in inflammatory cells, cytokines, chemokines, and
enzymes related to the synthesis of prostaglandins and induc-
ible nitric oxide synthase are released to form an inflamma-
tory microenvironment that is conducive to tumorigenesis
[100, 101]. In malignant transformed cells, these two signal-
ing pathways promote malignant proliferation, enhance
adhesion and promote the expression of antiapoptotic genes
such as Bcl-2 [102], and play a key role in the production, sur-
vival, epithelial-mesenchymal transition (EMT), invasion, and
metastasis of cancer cells by inhibiting adaptive immunity
and drug resistance [103]. These two signaling pathways play
a crucial role in bridging tumor cells and peripheral inflam-
matory cells (Figure 2).

3. f-Elemene Alters Inflammation and the
Tumor Microenvironment

3.1. Regulation of Inflammatory Factors by [3-Elemene. TNF
is a cytokine that directly kills tumor cells and has no obvious
toxicity to normal cells, and it is one of the most potent
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biologically active factors [52]. In many injury models, ele-
vated expression of TNF-q is associated with tissue damage
[54]. B-Elemene decreases the levels of endotoxin in plasma,
TNF-a in serum, and CD14 in the liver of rats with liver
fibrosis, preventing concurrent liver fibrosis induced by car-
bon tetrachloride (CCl,) and reducing liver injury and
inflammatory reactions [104, 105]. Elemene reduces not only
macrophage infiltration in inflammation but also the pro-
duction of TNF-a and IL-6 by macrophages to alleviate
endothelial damage and delay atherosclerosis [106]. In lipo-
polysaccharide- (LPS-) stimulated RAW264.7 macrophages,
B-elemene inhibited f-catenin in a dose-dependent manner
and inhibited the upregulation of IL-6, TNF-«, and IL-1p
under LPS stimulation, thereby confirming the importance
of the Wnt/f-catenin signaling pathway in the anti-
inflammatory activity of f-elemene [106]. The decrease in
TNF-a, IL-1p3, IL-6, IL-8, and other inflammatory factors
was detected after treatment of LPS-stimulated macrophages
and neutrophils with elemene, which shows that the anti-
inflammatory activity of 3-elemene is similar to that of dexa-
methasone and indicates that elemene has a strong inhibitory
effect on the inflammatory response [107-109]. When evalu-
ating the immunoregulatory activity of neutrophils stimu-
lated by LPS in vitro, it was found that reducing the
generation of MMP-9 and TNF-a protected tissues from
the proteolytic activity of matrix-degrading enzymes released
by neutrophils and inhibited neutrophil migration [108]. The
reduction in MMP-9 affected the release of TGF- 1, neutro-
phil chemotaxis, and VEGF [110].

The biological functions of TGF- 8 were initially studied
in inflammation, tissue repair, and embryonic development
[111]. Recently, it has been found that TGF-f plays an
important role in regulating cell growth, differentiation, and
immune function [112, 113]. In contrast to the effects on nor-
mal human airway fibroblasts, -elemene dose-dependently
inhibits the release and expression of Wnt3a, inactive GSK-
33, B-catenin, a-SMA, TGF-p, and Col-1 in human airway
granulation tissue fibroblasts and has the same effect on the
expression and nuclear translocation of active S-catenin
[114]. Therefore, the effect of 3-elemene on primary human
airway granulation tissue fibroblasts may occur through the
downregulation of the classical Wnt/f-catenin and TGF-
B/Smad pathways [115, 116]. These pathways may be
promising targets for improving benign airway stenosis
and inhibiting excessive proliferation of fibroblasts. TGF-f8
and Col-1 are two important molecules that are secreted
by fibroblasts and also induce fibroblasts to promote
inflammation and cancer. The TGF-B-induced upregula-
tion of a-SMA and CD44 in LX-2 cells was blocked by §3-
elemene [117]. In addition to CD44, a-SMA is produced
when fibroblasts are stimulated and is essential for cell
movement, tumor development, and invasion [118, 119].

3.2. B-Elemene Protects Immune Disorders. Progressive
growth and immune escape in most malignant tumors occur
when tumor antigens cannot be effectively presented to T
cells to induce antigen-specific immune response [120,
121]. When f-elemene is combined with immunotherapy, a
large number of inflammatory cells infiltrate tumor tissue

and enhance dendritic cell (DC) antigen presentation, which
may be one of the mechanisms by which [-elemene exerts
antitumor immunity and counteracts tumor immune escape
[122, 123]. When bone marrow-derived dendritic cells
(BM-DCs) modified with the murine IL-23 gene were used
in combination with elemene in pancreatic cancer model
mice, we found that the combination therapy significantly
increased the inhibition of tumors and enhances the spe-
cific Thl and cytotoxic T lymphocyte (CTL) responses
[124, 125]. This combination treatment significantly pro-
moted the secretion of interferon-y (IFN-y) and had antiviral,
antitumor, and immunoregulatory effects, and IFN-c inhib-
ited the expression of IL-4 in vitro and in vivo [122, 124].
This effect against immune escape and the antitumor syn-
ergy of -elemene are the focus of our future studies.

Immune disorders in tumors are often seen in demyelin-
ating diseases. S-Elemene regulates the immune balance
through the blood-brain barrier [126], inhibits the downreg-
ulation of Treg cells and Th17 and Thl polarization, and
downregulates the expression of the proinflammatory factor
IL-17, which has a substantial protective effect on optic nerve
inflammation in experimental autoimmune encephalomyeli-
tis [127]. In an experimental autoimmune encephalomyelitis
mouse model, we observed that 3-elemene selectively down-
regulated CD4+ T lymphocytes without affecting the activa-
tion of peripheral lymphoid tissue, significantly weakened
the signs in the nervous system and the development of
experimental autoimmune encephalomyelitis (EAE), inhib-
ited the Thl cell-mediated immune response, and upregu-
lated the Treg cell response in vitro [128]. Improvement of
EAE by pB-elemene may depend on inhibition of IL-6-
activated RORyt signal transduction, the STAT3 pathway,
and promotion of Treg cell proliferation to inhibit the devel-
opment and differentiation of Th17 cells [129]. Therefore, -
elemene control of inflammatory diseases mediated by Th17
cells and other cells and regulation of tumor immunity disor-
der are of great significance (Figure 3).

3.3. B-Elemene Regulates NF-kB/STAT3. There is a strong
link between the long-term inflammatory response and can-
cer, and an important mediator of the inflammatory response
and cancer is NF-«B. Inhibition of the NF-«B signaling path-
way may be one of the important mechanisms by which 8-
elemene changes the inflammatory environment and tumor
microenvironment. In LPS-stimulated macrophages, expres-
sion of NF-«B (p65) decreased in the S-elemene treatment
group [106], which may be related to the elemene-mediated
inhibition of the expression of Toll-like receptor 4 (TLR4),
iNOS, cyclooxygenase-2 (COX-2), TNF-q, IL-1p, IL-6, and
IL-12 [107]. 3-Elemene not only reduces the expression of
NEF-«B but also inhibits its transport to the nucleus; together
with inhibition of the RAC1/MLK3/p38 signaling pathway,
this may be one of the mechanisms by which elemene allevi-
ates septicemia-related encephalopathy (SAE) [109]. As a
radiosensitizer of lung cancer, 3-elemene effectively controls
radiation- and hypoxia-induced activation of the Prx-1/NF-
«B/HIF-1a pathway, inhibiting the expression of monocyte
chemoattractant protein 1 (MCP-1) and the infiltration and
polarization of M2 macrophages induced by radiation
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FIGURE 3: Overview of the mechanism by which -elemene changes the inflammatory environment to regulate inflammatory processes and

tumor development.

in vivo, which reduces the damage and improves the inflam-
matory environment of tumors [130]. Since 3-elemene easily
passes through the blood-brain barrier, the expression of
inflammatory factors, TLR4 and Caspase-3, is significantly
decreased, and the expression of IxB is upregulated when
traumatic brain injury (TBI) is treated with 3-elemene alone
or in combination with hyperbaric oxygen (HO) [131],
which exhibits an anti-inflammatory effect and neuroprotec-
tion by inhibiting the NF-«B signaling pathway. In the Thl
cell-mediated EAE animal model, S-elemene improves the
course of EAE mice by inhibiting RORyt, which is activated
by the IL-6 and STAT3 pathways [129]. The NF-«B and
STAT3 pathways play key roles in the formation of the
inflammatory environment, as well as in the development,
invasion, and metastasis of tumors [97]. The inhibitory effect
of 3-elemene on these two pathways has shown good anti-
inflammatory and anticancer applications, but this requires
turther research.

3.4. Effects of B-Elemene on Macrophages. Macrophages are
the core participants in inflammation and the immune
response and are involved in a variety of disease processes
[65]. One of the most effective stimuli for macrophages is
the bacterial endotoxin LPS [132]. When macrophages are
exposed to LPS, TLR4 recognizes LPS and induces the pro-
duction of many inflammatory cytokines, such as TNF-q,
IL-6, and IL-1f. Treatment with fS-elemene reduces the
expression of TLR4, suggesting that elemene has anti-
inflammatory activity in LPS-stimulated macrophages
[107]. B-Elemene inhibits the LPS-induced expression of
iNOS and IL-10 by inhibiting f3-catenin and downregulating
the Wnt/f-catenin signaling pathway [106]. [-Elemene
effectively inhibits the synthesis of COX-2 and prostaglandin
E2 (PGE2), and the concentrations of LPS-induced IL-1f3, IL-
6, TNF-qa, and IL-12 also decrease with the downregulation of
iNOS and NO [107], demonstrating the crucial role of 3-ele-
mene in the congenital and inflammatory responses of mac-
rophages triggered by TLRs. In atherosclerotic lesions,
macrophage foam cells contribute to the formation of fatty
streaks, which is an essential event in the eventual formation

of atherosclerotic plaques [133]. -Elemene reduces macro-
phage infiltrations, inhibits the production of TNF-a and
IL-6 in macrophages, and reduces serum total cholesterol
(TC), triglycerides (TGs), and low-density lipoprotein
(LDL-C) in vivo [105], regulating the level of blood lipids.
Moreover, ROS are mainly produced by macrophages, and
the decrease in macrophage infiltration also reduces endo-
thelial oxidative stress injury and delays the progression of
atherosclerosis [134].

Macrophages can be divided into two different pheno-
types: the M1 phenotype, which is the classically activated
phenotype that is involved in antitumor immunity, and the
M2 phenotype, which is an alternatively activated phenotype
with tumor-promoting properties [135]. A number of studies
have found that TAMs are mostly M2-polarized, and it has
been reported that these cells promote the growth and sur-
vival of tumors and may lead to resistance to cancer treat-
ment [65]. 3-Elemene not only decreases the proliferation,
migration, and invasion and strengthens the radiosensitivity
of lung cancer cells but also inhibits the promotion of migra-
tion, invasion, and EMT of lung cancer in M2 macrophage-
conditioned medium, regulating the polarization of macro-
phages from M2 to M1 [136]. Research shows that tumor
cells in the irradiated or hypoxic microenvironment recruit
macrophages and induce MCP-1 secretion, which leads to
nuclear accumulation of NF-«B and HIF-1a. 3-Elemene sig-
nificantly controls the infiltration and polarization of M2
macrophages and MCP-1 secretion induced by radiation
and hypoxia by inhibiting the Prx-1/NF-«B/HIF-1a pathway
[130]. MCP-1 is an important proinflammatory cytokine that
is secreted by macrophages, monocytes, and fibroblasts dur-
ing inflammation, and it has specific chemotactic effects on
monocytes/macrophages [137]. 3-Elemene inhibits macro-
phage infiltration in patients undergoing radiotherapy and
increases the radiosensitivity of lung cancer cells by enhanc-
ing DNA damage, inhibiting DNA repair, or causing apopto-
sis of radiation cells, which is a promising strategy for
chemotherapy or radiotherapy [10, 18]. 3-Elemene partici-
pates in the defense against Leishmania through increased
phagocytosis and lysosomal activity, which may be related
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to the activation of M1 macrophages by f-elemene [138].
B-Elemene plays important anti-inflammatory and antitu-
mor roles in inhibiting the activation and invasion of mac-
rophages, and the effects of the inflammatory environment
and tumor microenvironment on macrophages deserve
further study.

3.5. B-Elemene Changes iNOS and NO Levels. iNOS, induc-
ible nitric oxide synthase, is a catalytic enzyme that is pro-
duced by NOS active nitrogen free radicals in the body
[86], and the level of iNOS may be an important indicator
of the degree of inflammation in an organism [87]. In the
inflammatory microenvironment, macrophages and epithe-
lial cells induce the expression of iNOS, and then, the local
iNOS activity in the inflammatory microenvironment is sig-
nificantly increased quickly, leading to an increase in NO of
more than 10° times the basal state [139]. NO participates
in the regulation of physiological and pathophysiological
processes such as vascular and nervous system functions
and has cytotoxic effects at high concentrations [85]. Ele-
mene treatment of NCI-H292 cells, a human lung adeno-
carcinoma cell line, increased the levels of p38 mitogen-
activated protein kinase (MAPK) and iNOS, and so, a
locally increased concentration of NO may be associated
with elemene-induced apoptosis [140]. In a mouse model
of experimental autoimmune encephalomyelitis, elemene
restrained microglial activation and iNOS expression,
which was associated with the inhibition of axonal demy-
elination and neuronal death during the development of
the disease [128]. [B-Elemene effectively downregulates
iNOS expression and inhibits NO production; further-
more, inhibition of iNOS leads to a decrease in PGE2 syn-
thesis and downregulation of COX-2 expression, which
indicates that elemene has strong anti-inflammatory activ-
ity in LPS-stimulated macrophages [107, 141]. The inhibi-
tion of iNOS and IL-10 by f-elemene inhibits S-catenin
activity in a dose-dependent manner and downregulates
the Wnt/fB-catenin signaling pathway [106]. S-Elemene
increases the activity of T-AOC, SOD, CAT, and GSH-Px,
suggesting that f(-elemene enhances the removal of free
radicals and protects cells from oxidative damage caused
by free radicals [142]. By inhibiting the activation of the
MAPK signaling pathway, f-elemene significantly inhibits
the production of ROS and inhibits hydrogen peroxide-
induced apoptosis of human umbilical vein endothelial
cells (HUVECs), enhancing the viability of damaged cells
[143, 144]. The potential value of S-elemene in effectively
resisting oxidative stress associated with cardiovascular
diseases deserves further study.

NO expression in endothelial cells exerts antiprolifera-
tive, anti-inflammatory, and antioxidative effects in the vas-
cular wall. S-Elemene increases the production of nitric
oxide (NO) in HUVECs by significantly improving plasma
nitrite and nitrate levels and promotes the phosphorylation
of eNOS (ser1177) and Akt in vitro to maintain endothelial
function [145]. These data show that 3-elemene acts through
its antioxidant and anti-inflammatory characteristics to affect
atherosclerosis and enhanced plaque stability. In mouse
models of arterial injury, $-elemene effectively controls the

proliferation and migration of VSMCs and inhibits neointi-
mal formation in vivo [146]. These factors are associated with
oxidative stress and VSMC dilation and reveal the potential
clinical application of 3-elemene in preventing vascular ste-
nosis and remodeling. There is no obvious cytotoxicity of
B-elemene or a series of its derivatives. These factors have
the ability to increase superoxide dismutase activity and
nitric oxide secretion in cells and simultaneously decrease
malondialdehyde content and lactate dehydrogenase release
in cells; these changes mediate antioxidant activity [147]. In
addition, the regulation of biochemical substances (SOD,
MDA, NO, and LDH) in HUVEC:s treated with hydrogen
peroxide is better than that of the positive control vitamin
[148], and so, -elemene may be a potential treatment to
effectively resist oxidative stress associated with cardiovascu-
lar disease. B-Elemene and some derivatives produce high
levels of NO in vitro, and its antitumor activity in U87 cells
was significantly attenuated by NO scavengers (hemoglobin
or carboxyl-PTIO), and blocking activation of the PI3K/Akt
pathway induced G2 arrest of the cell cycle and apoptosis
in U87 cells, inhibiting tumor growth [149, 150].

3.6. The Relationship between [3-Elemene and EMT. TGF-f3 is
a potent inflammatory factor, as well as a strong activator of
the EMT, which is involved in the progression and metastasis
of cancer [151]. 3-Elemene reduces the expression and phos-
phorylation of Smad3 to inhibit the expression of nuclear
transcription factors (such as SNAI1, SNAI2, TWIST, and
SIPI1) and block the EMT induced by TGF-f1 in the human
breast cancer cell line MCF-7 [116]. TGF-f1 induces the
upregulation of a-SMA in human hepatic stellate cells, and
its expression and EMT phenotypic transformation can be
blocked by f-elemene [117]. TLR4 induces the EMT and
the production of antiapoptotic proteins and angiogenesis
factors, promoting the survival of cancer cells and inducing
immunosuppression [152]. The expression of TLR4 in the
TBI rat model is significantly downregulated by f-elemene
and changes the expression levels of Caspase-3 and IxB
[131]. The combination of elemene and gefitinib profoundly
impairs epithelial cell transformation to mesenchymal cells,
in a large part due to the regulation of the enhancer of zeste
homolog 2 (EZH2), a carcinogenic histone methyltransferase
and gene transcription regulator, thereby modulating the
subsequent effector molecule required for cancer progression
[153]. B-Catenin may also be the target of f-elemene in
reversing the malignant phenotype of tumor cells; moreover,
notchl, sonic hedgehog, and the epithelial marker of E-
cadherin are upregulated by f-elemene in human glioblas-
toma cells in vitro and in vivo [19]. S-Elemene-mediated
blockade of the phenotype transition of type 3 EMT in met-
astatic malignant tumors under the continuous stimulation
of inflammation may also be an important antitumor mech-
anism of f3-elemene.

4. Conclusion

It is well known that inflammatory factors in the inflamma-
tory microenvironment are closely related to the develop-
ment of inflammatory cells and tumors, and the regulation



of the inflammatory microenvironment is also involved in
the regulation of inflammation and tumor development. -
Elemene, an effective monomer extracted from the tradi-
tional Chinese medicine Curcuma wenyujin, has been
applied clinically for more than 20 years in China and
exhibits good antitumor and anti-inflammatory activities
without obvious cytotoxicity or clinical side effects. The
ability of -elemene to regulate the inflammatory environ-
ment of tumors has also been demonstrated in recent
research. f3-Elemene regulates many important inflamma-
tory factors (such as TNF-a, IFN, TGF-$, and IL-6/10),
similar to dexamethasone, indicating that it has robust
anti-inflammatory and regulatory abilities in the inflam-
matory environment of tumors. -Elemene downregulates
the levels of iNOS and NO, regulates oxidative stress
in vivo and in vitro, alleviates tissue damage, and inhibits
the formation of the microenvironment that promotes
tumorigenesis. Under certain conditions, elemene also
increases the ability of iNOS, which results in apoptosis
induced by a locally increased NO concentration, but its
specific mechanism needs to be further explored. The
NF-«B and STAT3 pathways play key roles in the forma-
tion of the inflammatory environment and the occurrence,
development, invasion, and metastasis of tumors. S-Ele-
mene not only reduces the expression of NF-xB and
inhibits its translocation to the nucleus but also upregu-
lates the expression of IxB. However, beyond that, f3-ele-
mene influences the inflammatory microenvironment of
tumors and inflammation and tumor progression by inhi-
biting the IL-6-induced RORyt and STAT3 pathways. The
inhibitory effect of S-elemene on these two pathways
shows good anti-inflammatory and anticancer application
prospects. Immune escape is an important reason for the
rapid growth and metastasis of tumors. Elemene plays an
important role in inhibiting macrophage infiltration and
M2 polarization, as well as in regulating immune disor-
ders. The modern pharmacological mechanism of elemene
as an antineoplastic drug and radiosensitizer is gradually
becoming understood. We hope that more effective mono-
mers of traditional Chinese medicine will gain attention
and that more traditional Chinese medicines with thou-
sands of years of application history will be verified by
modern pharmacology.
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